Birindelli, Isabeau:
Louis Nirenberg, un problem-solver, e molto di più
Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana Serie 1 5 (2020), fasc. n.3, p. 193-199, (Italian)
pdf, djvu.
Referenze Bibliografiche
[1]
H. BERESTYCKI,
I. CAPUZZO DOLCETTA,
A. PORRETTA,
L. ROSSI,
Maximum principle and generalized principal eigenvalue for degenerate elliptic operators.
J. Math. Pures Appl. (9)
103 (
2015), no. 5, 1276-1293. |
fulltext (doi) |
MR 3333057 |
Zbl 1323.35123[2]
H. BERESTYCKI,
R. DUCASSE,
L. ROSSI,
Influence of a road on a population in an ecological niche facing climate change.
J. Math. Biol. 81 (
2020), no. 4-5, 1059-1097. |
fulltext (doi) |
MR 4162431 |
Zbl 1451.35228[4]
H. BERESTYCKI,
L. NIRENBERG,
S.R.S. VARADHAN,
The principal eigenvalue and maximum principle for second order elliptic operators in general domains.
Comm. Pure Appl. Math. 47 (
1994), no. 1, 47-92. |
fulltext (doi) |
MR 1258192 |
Zbl 0806.35129[5]
I. BIRINDELLI,
F. DEMENGEL,
Eigenvalue and Maximum principle for fully nonlinear singular operators.
Advances in Partial Diff. Equations 11 n.1 (
2006), 91-119. |
MR 2192416 |
Zbl 1132.35427[6]
I. BIRINDELLI,
G. GALISE,
H. ISHII,
A family of degenerate elliptic operators: maximum principle and its consequences.
Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (
2018), no. 2, 417-441. |
fulltext (doi) |
MR 3765548 |
Zbl 1390.35079[7] H. ISHII, Y. YOSHIMURA, Demi-eigen values for uniformly elliptic Isaacs operators. preprint.
[8]
A. QUAAS,
B. SIRAKOV,
On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators.
C. R. Math. Acad. Sci. Paris 342 (
2006), no. 2, 115-118. |
fulltext (doi) |
MR 2193657 |
Zbl 1134.35048