Loreti, Paola: 
Exact controllability of shells in minimal time (Controllabilità esatta di calotte in tempo minimo)
 Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni Serie 9 12 (2001), fasc. n.1, p. 43-48,  (English)
pdf (317 Kb), djvu (98 Kb).  | MR1898447  | Zbl 1170.93310 
Sunto
Dimostriamo un risultato di controllabilità esatta per calotte sottili, utilizzando il metodo di Fourier e miglioramenti recenti di teoremi di tipo Ingham, dati in un precedente articolo [2].
Referenze Bibliografiche
[2] 
C. Baiocchi - 
V. Komornik - 
P. Loreti, 
Généralisation d’un théorème de Beurling et application à la théorie du contrȏle. 
C. R. Acad. Sci. Paris Sér. I Math., 
330 (4), 
2000, 281-286. | 
fulltext (doi) | 
MR 1753294 | 
Zbl 0964.42019[3] L. Carleson - P. Malliavin - J. Neuberger - J. Wermer (eds.), The Collected Works of Arne Beurling. Vol. 2, Birkhäuser, Boston 1989.
[4] G. Geymonat - P. Loreti - V. Valente, Introduzione alla controllabilità esatta per la calotta sferica. Quaderno IAC 8/1989.
[5] 
G. Geymonat - 
P. Loreti - 
V. Valente, 
Exact Controllability of a shallow shell model. 
Int. Series of Num. Math., 
107, 
1992, 85-97. | 
MR 1223361 | 
Zbl 0766.73044[6] 
G. Geymonat - 
P. Loreti - 
V. Valente, 
Exact controllability of a spherical shell via harmonic analysis. In: 
J.-L. Lions - 
C. Baiocchi (eds.), 
Boundary Values Problems for Partial Differential Equations and Applications. 
Masson, Paris 
1993. | 
MR 1260466 | 
Zbl 0803.73052[7] 
G. Geymonat - 
P. Loreti - 
V. Valente, 
Spectral problems for thin shells and exact controllability. In: 
Spectral Analysis of Complex Structures. Travaux en cours, 
49, 
Hermann, Paris 
1995, 35-57. | 
MR 1488734 | 
Zbl 0840.35112[10] 
V. Komornik - 
P. Loreti, 
Ingham type theorems for vector-valued functions and observability of coupled linear systems. 
SIAM J. Control Optim., 
37, 
1998, 461-485. | 
fulltext (doi) | 
MR 1655862 | 
Zbl 0963.93013[13] 
J. Lagnese - 
J.-L. Lions, 
Modelling, Analysis and Control of Thin Plates. 
Masson, Paris 
1988. | 
MR 953313 | 
Zbl 0662.73039[15] 
J.-L. Lions, 
Contrôlabilité exacte et stabilisation de systèmes distribués. Voll. 
1-2, 
Masson, Paris 
1988. | 
fulltext EuDML | 
Zbl 0653.93002[16] P. Loreti, Application of a new Ingham type theorem to the control of spherical shells. In: V. Zakharov (ed.), Proceedings of the 11th IFAC International Workshop Control Applications of Optimization (St. Petersburg, Russia, July 3-6, 2000). Pergamon, 2000.
[18] 
E. Sanchez-Palencia, 
Asymptotic and spectral properties of a class of singular-stiff problems. 
J. Math. Pures Appl., 
71, 
1992, 379-406. | 
MR 1191581 | 
Zbl 0833.47011[19] 
S. Timoshenko, 
Theory of elastic stability. 
McGraw-Hill, New York 
1936. | 
MR 134026[20] 
E. C. Titchmarsh, 
Eigenfunction Expansions Associated with Second-Order Differential Equations. 
Clarendon Press, Oxford 
1962. | 
MR 176151 | 
Zbl 0099.05201