Baiocchi, Claudio and Komornik, Vilmos and Loreti, Paola: 
Ingham type theorems and applications to control theory
 Bollettino dell'Unione Matematica Italiana Serie 8 2-B (1999), fasc. n.1, p. 33-63, Unione Matematica Italiana (English)
pdf (318 Kb), djvu (333 Kb).  | MR1794544  | Zbl 0924.42022  
Sunto
Ingham [6] ha migliorato un risultato precedente di Wiener [23] sulle serie di Fourier non armoniche. Modificando la sua funzione di peso noi otteniamo risultati ottimali, migliorando precedenti teoremi di Kahane [9], Castro e Zuazua [3], Jaffard, Tucsnak e Zuazua [7] e di Ullrich [21]. Applichiamo poi questi risultati a problemi di osservabilità simultanea.
Referenze Bibliografiche
[1] J. N. J. W. L. CARLESON - P. MALLIAVIN (editors), The Collected Works of Arne Beurling, Volume 2, Birkhäuser (1989).
[2] 
                     J. W. S. 
                     CASSELS
                  , 
An Introduction to Diophantine Approximation, 
Cambridge Tracts in Mathematics - Mathematical Physics, No. 
45. 
Cambridge University Press, New York (
1957). | 
MR 87708 | 
Zbl 0077.04801[3] 
                     CASTRO
                  -
                     E. 
                     ZUAZUA
                  , 
Une remarque sur les séries de Fourier non-harmoniques et son application à la contrôlabilité des cordes avec densité singulière, 
C. R. Acad. Sci. Paris Sér. I, 
322 (
1996), 365-370. | 
MR 1408769 | 
Zbl 0865.35075[4] 
                     K. D. 
                     GRAHAM
                  -
                     D. L. 
                     RUSSELL
                  , 
Boundary value control of the wave equation in a spherical region, 
SIAM J. Control, 
13 (
1975), 174-196. | 
MR 355756 | 
Zbl 0315.93004[5] 
                     A. 
                     HARAUX
                  , 
Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire, 
J. Math. Pures Appl., 
68 (
1989), 457-465. | 
MR 1046761 | 
Zbl 0685.93039[6] 
                     A. E. 
                     INGHAM
                  , 
Some trigonometrical inequalities with applications in the theory of series, 
Math. Z., 
41 (
1936), 367-379. | 
MR 1545625 | 
Zbl 0014.21503[7] 
                     S. 
                     JAFFARD
                  -
                     M. 
                     TUCSNAK
                  -
                     E. 
                     ZUAZUA
                  , 
On a theorem of Ingham, 
J. Fourier Analysis, to appear. | 
MR 1491935 | 
Zbl 0939.42004[8] 
                     S. 
                     JAFFARD
                  -
                     M. 
                     TUCSNAK
                  -
                     E. 
                     ZUAZUA
                  , 
Singular internal stabilization of the wave equation, 
J. Differential Equations, to appear. | 
MR 1620290 | 
Zbl 0920.35029[10] 
                     V. 
                     KOMORNIK
                  , 
Exact Controllability and Stabilization. The Multiplier Method, 
Collection RMA, Vol. 
36, 
Masson-John Wiley, Paris-Chicester (
1994). | 
MR 1359765 | 
Zbl 0937.93003[11] 
                     V. 
                     KOMORNIK
                  -
                     P. 
                     LORETI
                  , 
Observabilité frontière de systèmes couplés par analyse non harmonique vectorielle, 
C. R. Acad. Sci. Paris Sér. I Math., 
324 (
1997), 895-900. | 
MR 1450445 | 
Zbl 0880.93006[12] 
                     V. 
                     KOMORNIK
                  -
                     P. 
                     LORETI
                  , 
Ingham type theorems for vector-valued functions and observability of coupled linear systems, 
SIAM J. Control Optim., to appear. | 
MR 1655862 | 
Zbl 0963.93013[13] 
                     V. 
                     KOMORNIK
                  -
                     P. 
                     LORETI
                  , 
Observability of compactly perturbed systems, submitted. | 
Zbl 0952.34047[14] 
                     J.-L. 
                     LIONS
                  , 
Contrôle des systèmes distribués singuliers, 
Gauthiers-Villars, Paris (
1983). | 
MR 712486 | 
Zbl 0514.93001[15] 
                     P. 
                     LORETI
                  -
                     V. 
                     VALENTE
                  , 
Partial exact controllability for spherical membranes, 
SIAM J. Control Optim., 
35 (
1997), 641-653. | 
MR 1436643 | 
Zbl 0879.93002[18] 
                     R. E. A. C. 
                     PALEY
                  -
                     N. 
                     WIENER
                  , 
Fourier Transforms in the Complex Domain, 
Amer. Math. Soc. Colloq. Publ., Vol. 
19, 
Amer. Math. Soc., New York (
1934). | 
MR 1451142 | 
Zbl 0011.01601[19] 
                     K. 
                     SEIP
                  , On the connection between exponential bases and certain related sequences in $\ell_{2}(-\pi, \pi)$, 
J. Funct. Anal., 
130 (
1995), 131-160. | 
MR 1331980 | 
Zbl 0872.46006[20] 
                     P. 
                     TURÁN
                  , 
On an inequality, 
Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 
1 (
1959), 3-6. | 
MR 101445 | 
Zbl 0092.29001[21] 
                     D. 
                     ULLRICH
                  , 
Divided differences and systems of nonharmonic Fourier series, 
Proc. Amer. Math. Soc., 
80 (
1980), 47-57. | 
MR 574507 | 
Zbl 0448.42009[22] 
                     G. N. 
                     WATSON
                  , 
A Treatise on the Theory of Bessel Functions, 
Cambridge University Press (
1962). | 
MR 1349110 | 
Zbl 0174.36202[24] 
                     R. M. 
                     YOUNG
                  , 
An Introduction to Nonharmonic Fourier Series, 
Academic Press (
1980). | 
MR 591684 | 
Zbl 0493.42001