L'attività di ricerca di chi scrive si è finora indirizzata principalmente verso l'esame dei modelli di transizione di fase, dei modelli di isteresi, e delle relative equazioni non lineari alle derivate parziali. Qui si illustrano brevemente tali problematiche, indicando alcuni degli elementi che le collegano tra di loro. Il lavoro è organizzato come segue. I paragrafi 1, 2, 3 vertono sulle transizioni di fase: si introducono le formulazioni forte e debole del classico modello di Stefan, e si illustrano alcune generalizzazioni motivate fisicamente. Nei paragrafi 4, 5, 6 si definisce il concetto di operatore di isteresi, si forniscono alcuni esempi, e si discutono alcune equazioni alle derivate parziali in cui figurano tali operatori. Le due parti sono presentate in modo da consentirne una lettura indipendente.
Referenze Bibliografiche
[1] F. F. ABRAHAM, Homogeneous Nucleation Theory, Academic Press, New York 1974.
[2] J. C. BRICE, The Growth of Crystals from Liquids, North-Holland, Amsterdam 1973.
[3] B. CHALMERS, Principles of Solidification, Wiley, New York 1964.
[4] J. W. CHRISTIAN, The Theory of Transformations in Metals and Alloys. Part 1: Equilibrium and General Kinetic Theory, Pergamon Press, London 1975.
[5] R. H. DOREMUS, Rates of Phase Transformations, Academic Press, Orlando 1985.
[6] M. C. FLEMINGS, Solidification Processing, McGraw-Hill, New York 1973.
[7] W. KURZ-D. J. FISHER, Fundamentals of Solidification, Trans Tech, Aedermannsdorf 1989.
[8] R. PAMPLIN (ed.), Crystal Growth, Pergamon Press, Oxford 1975.
[9] V. P. SKRIPOV, Metastable Liquids, Wiley, Chichester 1974.
[10] D. TURNBULL, Phase Changes, Solid State Physics, 3 (1956), 225-306.
[11] A. R. UBBELOHDE, The Molten State of Matter, Wiley, Chichester 1978.
[12] P. D. WOODRUFF, The Solid-Liquid Interface, Cambridge Univ. Press, Cambridge 1973.
[13] V. ALEXIADES-A. D. SOLOMON, Mathematical Modeling of Melting and Freezing Processes, Hemisphere Publishing, Washington DC 1993.
[15] 
M. E. GURTIN, 
Thermomechanics of Evolving Phase Boundaries in the Plane, 
Clarendon Press, Oxford 
1993. | 
MR 1402243 | 
Zbl 0787.73004[16] 
A. M. MEIRMANOV, 
The Stefan Problem, 
De Gruyter, Berlin 
1992 (Russian edition: 
Nauka, Novosibirsk 
1986). | 
MR 1154310 | 
Zbl 0751.35052[17] 
A. ROMANO, 
Thermomechanics of Phase Transitions in Classical Field Theory, 
World Scientific, Singapore 
1993. | 
MR 1347688 | 
Zbl 0827.73001[18] 
L. RUBINSTEIN, 
The Stefan Problem. A.M.S., Providence 
1971 (Russian edition: 
Zvaigzne, Riga 
1967). | 
MR 222436[20] 
J. R. CANNON, 
The One-Dimensional Heat Equation, 
Encyclopedia of Mathematics and its Applications, Vol. 23, 
Addison Wesley, Menlo Park 
1984. | 
MR 747979 | 
Zbl 0567.35001[21] 
S. J. CHAPMAN-
S. D. HOWISON-
J. R. OCKENDON, 
Macroscopic models for superconductivity, 
S.I.A.M. Rev., 
34 (
1992), 529-560. | 
MR 1193011 | 
Zbl 0769.73068[22] 
I. I. DANILYUK, 
On the Stefan problem, 
Russian Math. Surveys, 
40 (
1985), 157-223. | 
MR 810813 | 
Zbl 0604.35080[23] 
A. FASANO, 
Las Zonas Pastosas en el Problema de Stefan, 
Cuad. Inst. Mat. Beppo Levi, No. 13, Rosario 
1987. | 
MR 914370 | 
Zbl 0642.35081[24] 
A. FASANO, 
Esperienza di collaborazione con industrie su programmi a lungo termine, 
Boll. Un. Matem. Ital., 
7-A (
1997), 1-40. | 
Zbl 0973.00517[26] 
E. MAGENES, 
Problemi di Stefan bifase in piu variabili spaziali, 
Le Matematiche, 
36 (
1981), 65-108. | 
MR 736797 | 
Zbl 0545.35096[28] 
M. NIEZGOÓLDKA, 
Stefan-like problems, In: 
Free Boundary Problems: Theory and Applications (A. Fasano, M. Primicerio, eds.). 
Pitman, Boston 
1983, pp. 321-347. | 
MR 714922[29] 
O. A. OLEĬNIK-
M. PRIMICERIO-
E. V. RADKEVICH, 
Stefan-like problems, 
Meccanica, 
28 (
1993), 129-143. | 
Zbl 0786.76091[30] 
M. PRIMICERIO, 
Problemi a contorno libero per l'equazione della diffusione, 
Rend. Sem. Mat. Univers. Politecn. Torino, 
32 (
1973-74), 183-206. | 
MR 477466 | 
Zbl 0307.76048[31] 
M. PRIMICERIO, 
Problemi di diffusione a frontiera libera, 
Boll. Un. Matem. Ital., 
18-A (
1981), 11-68. | 
Zbl 0468.35082[32] 
J.-F. RODRIGUES, 
The variational inequality approach to the one-phase Stefan problem, 
Acta Applicandae Mathematicae, 
8 (
1987), 1-35. | 
MR 871691 | 
Zbl 0653.35083[33] 
D. A. TARZIA, 
A Bibliography on Moving-Free Boundary Problems for the Heat Diffusion Equation. The Stefan Problem, Progetto Nazionale M.P.I. «Equazioni di Evoluzione e Applicazioni Fisico-Matematiche», Firenze, 
1988. | 
MR 1007840 | 
Zbl 0694.35221[36] D. G. WILSON-A. D. SOLOMON-J. S. TRENT, A Bibliography on Moving Boundary Problems with Key Word Index, Oak Ridge National Laboratory, 1979.
[37] A. BOSSAVIT-A. DAMLAMIAN-M. FRÉMOND (EDS.), Free Boundary Problems: Theory and Applications, Pitman, Boston 1985.
[38] J. M. CHADAM-H. RASMUSSEN (EDS.), 
Emerging Applications in Free Boundary Problems, 
Longman, Harlow 
1993. | 
MR 1216352[39] J. M. CHADAM-H. RASMUSSEN (eds.), 
Free Boundary Problems Involving Solids, 
Longman, Harlow 
1993. | 
MR 1216392[40] J. M. CHADAM-H. RASMUSSEN (eds.), 
Free Boundary Problems in Fluid Flow with Applications, 
Longman, Harlow 
1993. | 
MR 1216373[41] J. I. DIAZ-M. A. HERRERO-A. LIÑÁN, J. L. VÁZQUEZ (eds.), 
Free Boundary Problems: Theory and Applications, 
Longman, Harlow 
1995. | 
MR 1342322[42] A. FASANO-M. PRIMICERIO (eds.), 
Free Boundary Problems: Theory and Applications, 
Pitman, Boston 
1983. | 
MR 714939 | 
Zbl 0504.00012[43] K.-H. HOFFMANN-J. SPREKELS (eds.), 
Free Boundary Problems: Theory and Applications, 
Longman, Harlow 
1990. | 
Zbl 0703.00015[44] H. HOFFMANN-J. SPREKELS (eds.), 
Free Boundary Value Problems, 
Birkhäuser, Boston 
1990. | 
MR 1111018 | 
Zbl 0702.00021[45] N. KENMOCHI-M. NIEZGÓDKA-P. STRZELECKI (eds.), 
Nonlinear Analysis and Applications, 
Gakkotosho, Tokyo 
1996. | 
MR 1422923[46] E. MAGENES (ed.), Free Boundary Problems, Istituto di Alta Matematica, Roma 1980.
[47] M. NIEZGÓDKA-P. STRZELECKI (EDS.), 
Free Boundary Problems: Theory and Applications, 
Longman, Harlow 
1996. | 
MR 1462964 | 
Zbl 0856.00025[48] J. R. OCKENDON-W. R. HODGKINS (eds.), 
Moving Boundary Problems in Heat Flow and Diffusion, 
Clarendon Press, Oxford 
1975. | 
Zbl 0295.76064[49] D. G. WILSON-A. D. SOLOMON-P. T. BOGGS (eds.), 
Moving Boundary Problems, 
Academic Press, New York 
1978. | 
MR 466887 | 
Zbl 0432.00011[50] 
I. ATHANASSOPOULOS-
L. A. CAFFARELLI-
S. SALSA, 
Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems, 
Ann. Math., 
143 (
1996), 413-434. | 
MR 1394964 | 
Zbl 0853.35049[51] 
I. ATHANASSOPOULOS-
L. A. CAFFARELLI-
S. SALSA, 
Regularity of the free boundary in phase transition problems, 
Acta Math., 
176 (
1996). | 
Zbl 0891.35164[52] 
I. ATHANASSOPOULOS-
L. A. CAFFARELLI-
S. SALSA, 
Phase transition problems of parabolic type: flat free boundaries are smooth, 
Comm. Pure Appl. Math., 
51 (
1998), 77-112. | 
MR 1486632 | 
Zbl 0924.35197[53] 
C. BAIOCCHI, 
Su un problema di frontiera libera connesso a questioni di idraulica, 
Ann. Mat. Pura Appl., 
92 (
1972), 107-127. | 
MR 408443 | 
Zbl 0258.76069[54] 
C. BAIOCCHI-
A. CAPELO, 
Variational and Quasivariational Inequalities, Applications to Free Boundary Problems, 
Wiley, Chichester 
1983. | 
MR 745619 | 
Zbl 0551.49007[55] 
A. E. BERGER-
H. BRÉZIS-
J. W. ROGERS, 
A numerical method for solving the problem $u_{t} - \Delta f(u) = 0$, 
R.A.I.R.O., Analyse Numérique, 
13 (
1979), 297-312. | 
fulltext mini-dml | 
MR 555381 | 
Zbl 0426.65052[56] 
A. E. BERGER-
J. W. ROGERS, 
Some properties of the nonlinear semigroup for the problem $u_{t} - \Delta f(u) = 0$, 
Nonlinear Analysis, T.M.A., 
8 (
1984), 909-939. | 
MR 753767 | 
Zbl 0557.35129[57] 
H. BRÉZIS, 
On some degenerate nonlinear parabolic equations, In: 
Nonlinear Functional Analysis (F. E. Browder, ed.). 
Proc. Symp. Pure Math., 
XVIII A.M.S., Providence 
1970, pp. 28-38. | 
MR 273468 | 
Zbl 0231.47034[58] 
L. A. CAFFARELLI, 
The regularity of free boundaries in higher dimensions, 
Acta Math., 
139 (
1977), 155-184. | 
MR 454350 | 
Zbl 0386.35046[59] 
L. A. CAFFARELLI, 
Some aspects of the one-phase Stefan problem, 
Indiana Univ. Math. J., 
27 (
1978), 73-77. | 
MR 466965 | 
Zbl 0393.35064[60] 
L. A. CAFFARELLI-
L. C. EVANS, 
Continuity of the temperature in the two-phase Stefan problem, 
Arch. Rational Mech. Anal., 
81 (
1983), 199-220. | 
MR 683353 | 
Zbl 0516.35080[61] 
L. A. CAFFARELLI-
A. FRIEDMAN, 
Continuity of the temperature in the Stefan problem, 
Indiana Univ. Math. J., 
28 (
1979), 53-70. | 
MR 523623 | 
Zbl 0406.35032[62] 
J. R. CANNON-
C. D. HILL, 
On the infinite differentiability of the free boundary in a Stefan problem, 
J. Math. Anal. Appl., 
22 (
1968), 385-387. | 
MR 225013 | 
Zbl 0167.10504[63] 
A. DAMLAMIAN, 
Homogenization for eddy currents, 
Delft Progress Report, 
6 (
1981), 268-275. | 
Zbl 0483.35004[64] 
E. DIBENEDETTO, 
Regularity results for the n-dimensional two-phase Stefan problem, 
Boll. Un. Mat. Ital. Suppl. (
1980), 129-152. | 
MR 677695 | 
Zbl 0458.35098[65] 
E. DIBENEDETTO, 
Continuity of weak solutions to certain singular parabolic equations, 
Ann. Mat. Pura Appl., 
121 (
1982), 131-176. | 
MR 663969 | 
Zbl 0503.35018[66] 
E. DIBENEDETTO-
V. VESPRI, 
On the singular equation $\beta(u)_{t} = \Delta u$, 
Arch. Rational Mech. Anal., 
132 (
1995), 247-309. | 
MR 1365831 | 
Zbl 0849.35060[67] 
J. D. P. DONNELLY, 
A model for non-equilibrium thermodynamic processes involving phase changes, 
J. Inst. Math. Appl., 
24 (
1979), 425-438. | 
MR 556152 | 
Zbl 0426.35060[68] 
G. DUVAUT, 
Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro degrés), 
C.R. Acad. Sci. Paris, Série I, 
276-A (
1973), 1461-1463. | 
MR 328346 | 
Zbl 0258.35037[69] G. DUVAUT, The solution of a two-phase Stefan by a variational inequality, In: Moving Boundary Problems in Heat Flow and Diffusion (J. R. Ockendon, W. R. Hodgkins, eds.), Clarendon Press, Oxford 1975, pp. 173-181.
[70] 
G. W. EVANS, 
A note on the existence of a solution to a Stefan problem, 
Quart. Appl. Math., 
IX (
1951), 185-193. | 
Zbl 0043.41101[71] 
A. FASANO-
M. PRIMICERIO, 
General free boundary problems for the heat equation, 
J. Math. Anal. Appl.: I, 
57 (
1977), 694-723; 
II, 
58 (
1977), 202-231; 
III, 
59 (
1977), 1-14. | 
Zbl 0355.35037[72] 
A. FASANO-
M. PRIMICERIO, 
Free boundary problems for nonlinear parabolic equations with nonlinear free boundary conditions, 
J. Math. Anal. Appl., 
72 (
1979), 247-273. | 
MR 552335 | 
Zbl 0421.35080[73] 
A. FASANO-
M. PRIMICERIO, 
Phase-change with volumetric heat sources: Stefan's scheme vs. enthalpy formulation, 
Boll. Un. Mat. Ital. Suppl., 
4 (
1985), 131-149. | 
MR 784301 | 
Zbl 0578.35087[74] 
A. FASANO-
M. PRIMICERIO, 
Mushy regions with variable temperature in melting processes, 
Boll. Un. Mat. Ital., 
4-B (
1985), 601-626. | 
MR 805431 | 
Zbl 0591.35088[75] 
A. FASANO-
M. PRIMICERIO, 
A parabolic-hyperbolic free boundary problem, 
S.I.A.M. J. Math. Anal., 
17 (
1986), 67-73. | 
MR 819213 | 
Zbl 0594.35092[76] 
A. FASANO-
M. PRIMICERIO, 
A critical case for the solvability of Stefan-like problems, 
Math. Meth. Appl. Sci., 
5 (
1983), 84-96. | 
MR 690897 | 
Zbl 0526.35078[77] 
A. FASANO-
M. PRIMICERIO-
S. KAMIN, 
Regularity of weak solutions of one-dimensional two-phase Stefan problems, 
Ann. Mat. Pura Appl., 
115 (
1977), 341-348. | 
MR 477460 | 
Zbl 0378.35008[78] 
M. FRÉMOND, 
Variational formulation of the Stefan problem, coupled Stefan problem, frost propagation in porous media, In: 
Proc. Conf. Computational Methods in Nonlinear Mechanics (J. T. Oden, ed.). 
University of Texas, Austin (
1974), pp. 341-349. | 
MR 398299 | 
Zbl 0316.76063[79] 
A. FRIEDMAN, 
Free boundary problems for parabolic equations. I, II, III, 
J. Math. Mech., 
8 (
1959), 499-517; 
9 (
1960), 19-66; 
9 (
1960), 327-345. | 
Zbl 0199.42301[80] 
A. FRIEDMAN, 
Partial Differential Equations of Parabolic Type, 
Prentice-Hall, Englewood Cliffs 
1964. | 
MR 181836 | 
Zbl 0144.34903[81] 
A. FRIEDMAN, 
The Stefan problem in several space variables, 
Trans. Amer. Math. Soc., 
133 (
1968), 51-87. | 
MR 227625 | 
Zbl 0162.41903[82] 
A. FRIEDMAN, 
One dimensional Stefan problems with non-monotone free boundary, 
Trans. Amer. Math. Soc., 
133 (
1968), 89-114. | 
MR 227626 | 
Zbl 0162.42001[83] 
A. FRIEDMAN, 
Analyticity of the free boundary for the Stefan problem, 
Arch. Rational Mech. Anal., 
61 (
1976), 97-125. | 
MR 407452 | 
Zbl 0329.35034[84] 
A. FRIEDMAN-
D. KINDERLEHRER, 
A one phase Stefan problem, 
Indiana Univ. Math. J., 
25 (
1975), 1005-1035. | 
MR 385326 | 
Zbl 0334.49002[85] 
I.G. GÖTZ-
B. B. ZALTZMAN, 
Nonincrease of mushy region in a nonhomogeneous Stefan problem, 
Quart. Appl. Math., 
XLIX (
1991), 741-746. | 
MR 1134749 | 
Zbl 0756.35119[86] 
L. S. JIANG, 
The two-phase Stefan problem. I, II, 
Chinese Math., 
4 (
1963), 686-702; 5 (
1964), 36-53. | 
Zbl 0149.31601[87] 
S. KAMENOMOSTSKAYA, 
On the Stefan problem, 
Math. Sbornik, 
53 (
1961), 489-514 (Russian). | 
Zbl 0102.09301[89] 
D. KINDERLEHRER-
L. NIRENBERG, 
The smoothness of the free boundary in the one-phase Stefan problem, 
Comm. Pure Appl. Math., 
31 (
1978), 257-282. | 
MR 480348 | 
Zbl 0391.35060[90] 
I. I. KOLODNER, 
Free boundary problem for the heat equation with applications to problems with change of phase, 
Comm. Pure Appl. Math., 
10 (
1957), 220-231. | 
Zbl 0070.43803[91] G. LAMÉ, B.P. CLAYPERON, Mémoire sur la solidification par refroidissement d'un globe solide, Ann. Chem. Phys., 47 (1831), 250-256.
[92] 
S. LUCKHAUS, 
Solutions of the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature, 
Euro. J. Appl. Math., 
1 (
1990), 101-111. | 
MR 1117346 | 
Zbl 0734.35159[93] 
A. M. MEIRMANOV, 
On the classical solvability of the Stefan problem, 
Soviet Math. Dokl., 
20 (
1979), 1426-1429. | 
Zbl 0498.35087[94] 
A. M. MEIRMANOV, 
On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations, 
Math. U.S.S.R.-Sbornik, 
40 (
1981), 157-178. | 
Zbl 0467.35053[95] 
A. M. MEIRMANOV, 
An example of nonexistence of a classical solution of the Stefan problem, 
Soviet Math. Dokl., 
23 (
1981), 564-566. | 
MR 620870 | 
Zbl 0545.35097[96] 
O. A. OLEĬNIK, 
A method of solution of the general Stefan problem, 
Soviet Math. Dokl., 
1 (
1960), 1350-1353. | 
MR 125341 | 
Zbl 0131.09202[97] 
M. PRIMICERIO, 
Mushy regions in phase-change problems, In: 
Applied Functional Analysis (R. Gorenflo, K.-H. Hoffmann, eds.). 
Lang, Frankfurt (
1983), pp. 251-269. | 
MR 685609 | 
Zbl 0518.35087[98] J.-F. RODRIGUES (ed.), 
Mathematical Models for Phase Change Problems, 
Birkhäuser, Basel 
1989. | 
MR 1038061 | 
Zbl 0676.00021[99] 
L. RUBINSTEIN, 
On the determination of the position of the boundary which separates two phases in the one-dimensional problem of Stefan, 
Dokl. Acad. Nauk USSR, 
58 (
1947), 217-220. | 
MR 22979 | 
Zbl 0032.13101[100] 
L. RUBINSTEIN-
A. FASANO-
M. PRIMICERIO, 
Remarks on the analyticity of the free boundary for the one-dimensional Stefan problem, 
Ann. Mat. Pura Appl., 
125 (
1980), 295-311. | 
MR 605212 | 
Zbl 0456.35096[101] 
D. SCHAEFFER, 
A new proof of infinite differentiability of the free boundary in the Stefan problem, 
J. Differential Equations, 
20 (
1976), 266-269. | 
MR 390499 | 
Zbl 0314.35044[102] 
G. SESTINI, 
Esistenza di una soluzione in problemi analoghi a quello di Stefan, 
Rivista Mat. Univ. Parma, 
3 (
1952), 3-23; 
8 (
1958), 1-209. | 
Zbl 0048.43406[103] 
R. E. SHOWALTER, 
Mathematical formulation of the Stefan problem, 
Int. J. Eng. Sc., 
20 (
1982), 909-912. | 
MR 660566 | 
Zbl 0506.76103[104] 
J. STEFAN, 
Über einige Probleme der Theorie der Wärmeleitung, Sitzungber., 
Wien, Akad. Mat. Natur., 
98 (
1889), 473-484. Also ibid. pp. 614-634, 965-983, 1418-1442. | 
Jbk 21.1197.01[105] 
A. VISINTIN, 
Two-scale Stefan problem with surface tension, In: 
Nonlinear Analysis and Applications (N. Kenmochi, M. Niezgódka, P. Strzelecki, eds.) (
Gakkotosho, Tokyo 
1996), 405-424. | 
MR 1422948 | 
Zbl 0868.35144[107] 
A. VISINTIN, 
Nucleation and mean curvature flow, 
Communications in P.D.E.s, 
23 (
1998), 17-35. | 
MR 1608492 | 
Zbl 0901.53045[108] 
W. P. ZIEMER, 
Interior and boundary continuity of weak solutions of degenerate parabolic equations, 
Trans. A.M.S., 
271 (
1982), 733-748. | 
MR 654859 | 
Zbl 0506.35053[109] G. BERTOTTI, Hysteresis in Magnetism, Academic Press, Boston 1998.
[110] 
M. BROKATE, 
Optimale Steuerung von gewöhnlichen Differentialgleichungen mit Nichtlinearitäten vom Hysteresis-Typ, 
Lang, Frankfurt am Main (
1987). English translation: 
Optimal control of ordinary differential equations with nonlinearities of hysteresis type. In: 
Automation and Remote Control, 
52 (
1991), 
53 (
1992). | 
MR 1031251 | 
Zbl 0691.49025[112] E. DELLA TORRE, Magnetic Hysteresis, IEEE Press, 1999.
[113] A. IVÁNYI, Hysteresis Models in Electromagnetic Computation, Akademḿiai Kiado, Budapest, 1997.
[114] 
M. A. KRASNOSEL'SKĬ-
A. V. POKROVSKIĬ, 
Systems with Hysteresis, 
Springer, Berlin 
1989 (Russian ed. 
Nauka, Moscow 
1983). | 
MR 987431 | 
Zbl 0665.47038[115] 
P. KREJČÍ, 
Convexity, Hysteresis and Dissipation in Hyperbolic Equations, 
Gakkotosho, Tokyo 
1997. | 
Zbl 1187.35003[118] 
M. BROKATE, 
Elastoplastic constitutive laws of nonlinear kinematic hardening type, In: 
Functional analysis with current applications in science, technology and industry (M. Brokate, A. H. Siddiqi, eds.), 
Longman, Harlow (
1998), pp. 238-272. | 
MR 1607891 | 
Zbl 0911.73021[119] 
Y. HUO-
I. MUELLER, 
Non-equilibrium thermodynamics of pseudoelasticity, 
Cont. Mech. Thermodyn., 
5 (
1993), 163-204. | 
Zbl 0780.73006[120] 
M. A. KRASNOSEL'SKIĬ, 
Equations with non-linearities of hysteresis type, VII Int. Konf. Nichtlin. Schwing., Berlin 1975; 
Abh. Akad. Wiss. DDR, 
3 (
1977), 437-458 (Russian). | 
Zbl 0406.93032[121] 
P. KREJČÍ, 
Evolution variational inequalities and multidimensional hysteresis operators, In: 
Nonlinear differential equations (P. Drábek, P. Krejčí, P. Takáč, eds.) 
Research Notes in Mathematics, 
Chapman & Hall/CRC, London (
1999), pp. 47-110. | 
Zbl 0949.47053[122] 
I. MUELLER, 
Six lectures on shape memory, 
Proceedings of a Summer School held in Banff in 1995. 
AMS. 
CRM Proceedings and Lecture Notes, 
13 (
1998), pp. 125-161. | 
MR 1619114 | 
Zbl 0909.73013[123] 
J. W. MACKI-
P. NISTRI-
P. ZECCA, 
Mathematical models for hysteresis, 
S.I.A.M. Review, 
35 (
1993), 94-123. | 
MR 1207799 | 
Zbl 0771.34018[124] 
A. VISINTIN, 
Mathematical models of hysteresis, In: 
Topics in Nonsmooth Mechanics (J. J. Moreau, P. D. Panagiotopoulos, G. Strang, eds.), 
Birkhäuser, Basel 
1988, pp. 295-326. | 
MR 957094 | 
Zbl 0656.73043[125] 
A. VISINTIN, 
Mathematical models of hysteresis, In: 
Modelling and optimization of distributed parameter systems (K. Malanowski et al., ed.), 
Chapman and Hall, (
1996), pp. 71-80 | 
MR 1388519 | 
Zbl 0906.93006[126] 
A. VISINTIN, 
Mathematical models of hysteresis. A survey, In: 
Nonlinear Partial Differential Equations. College de France. Vol. XIII (D. Cioranescu, J. L. Lions, eds.), 
Longman, Harlow (
1998), pp. 327-338. | 
MR 1773088 | 
Zbl 1007.47034[127] 
A. VISINTIN, 
Six talks on hysteresis, 
Proceedings of a Summer School held in Banff in 1995. 
AMS. 
CRM Proceedings and Lecture Notes, 
13 (
1998), pp. 207-236. | 
MR 1619117 | 
Zbl 0918.35067[128] 
M. BROKATE-
K. DRESSLER-
P. KREJČÍ-
T. I. SEIDMAN-
L. TAVERNINI-
A. VISINTIN, 
Contributions to the session on Problems in Hysteresis, In: 
Nonlinear Analysis, Proceedings of the First World Congress of Nonlinear Analysts (ed. V. Laksmikantham), 
De Gruyter, Berlin (
1996), 797-806. | 
Zbl 0858.47039[129] 
M. BROKATE-
N. KENMOCHI-
I. MÜLLER-
J. F. RODRIGUES-
C. VERDI (A. VISINTIN, ed.), 
Phase Transitions and Hysteresis, 
Lecture Notes in Mathematics, vol. 
1584. 
Springer, Berlin 
1994. | 
MR 1321829[130] A. VISINTIN (ed.), 
Models of Hysteresis, 
Proceedings of a meeting held in Trento in 1991. 
Longman, Harlow 
1993. | 
MR 1235109 | 
Zbl 0785.00016[131] A. BOSSAVIT-C. EMSON-I. D. MAYERGOYZ, Géométrie différentielle, éléments finis, modèles d'hystérésis, Eyrolles, Paris 1991.
[132] 
R. BOUC, 
Solution périodique de l'équation de la ferrorésonance avec hystérésis, 
C.R. Acad. Sci. Paris, Serie A, 
263 (
1966), 497-499. | 
MR 201106 | 
Zbl 0152.42103[133] 
R. BOUC, 
Modèle mathématique d'hystérésis et application aux systèmes à un degré de liberté, These, Marseille 
1969. | 
Zbl 0237.73020[134] 
M. BROKATE, 
Optimale Steuerung von gewohnlichen Differentialgleichungen mit Nichtlinearitaten vom Hysteresis-Typ, Habilitations Schrift. 
Lang, Frankfurt am Main 
1987. English translation: 
Optimal control of ordinary differential equations with nonlinearities of hysteresis type. In: 
Automation and Remote Control, 
52 (
1991) and 
53 (
1992). | 
MR 1031251 | 
Zbl 0691.49025[136] 
V. CHERNORUTSKII.-
D. RACHINSKII: 
On uniqueness of an initial-problem for ODE with hysteresis, 
NoDEA, 
4 (
1997), 391-399. | 
MR 1458534 | 
Zbl 0882.34004[137] 
A. DAMLAMIAN-
A. VISINTIN, 
Une géneralisation vectorielle du modèle de Preisach pour l'hystérésis, 
C. R. Acad. Sci. Paris, Serie I, 
297 (
1983), 437-440. | 
MR 732853 | 
Zbl 0546.35068[138] 
P. DUHEM, 
The evolution of mechanics, 
Sijthoff and Noordhoff, Alphen aan den Rijn, 
1980. Original edition: 
L'évolution de la méchanique. 
Joanin, Paris 
1903. | 
Zbl 0424.01002[139] 
M. HILPERT, 
On uniqueness for evolution problems with hysteresis, In: 
Mathematical Models for Phase Change Problems (J. F. Rodrigues, ed.) (
Birkhauser, Basel 
1989), 377-388. | 
MR 1038080 | 
Zbl 0701.35009[140] 
K.-H. HOFFMANN-
J. SPREKELS-
A. VISINTIN, 
Identification of hysteresis loops, 
J. Comp. Phys., 
78 (
1988), 215-230. | 
MR 959083 | 
Zbl 0659.65125[141] A.Y. ISHLINSKIĬ, Some applications of statistical methods to describing deformations of bodies, Izv. Akad. Nauk S.S.S.R., Techn. Ser., 9 (1944), 580-590 (Russian).
[142] E. MADELUNG, Uber Magnetisierung durch schnellverlaufende Strome und die, Wirkungsweise des Rutherford-Marconischen Magnetdetektors. Ann. Phys., 17 (1905), 861-890.
[143] 
M.A. KRASNOSEL’SKIĬ-
B. M. DARINSKIĬ-
I. V. EMELIN-
P. P. ZABREĬKO, 
E. A. LIFSIC - 
A. V. POKROVSKIĬ, 
Hysterant operator, 
Soviet Math. Soviet Dokl., 
11 (
1970), 29-33.  | 
Zbl 0212.58002 [144] I. D. MAYERGOYZ, Mathematical models of hysteresis, Phys. Rev. Letters, 56 (1986), 1518-1521.
[145] I. D. MAYERGOYZ, Mathematical models of hysteresis, I.E.E.E. Trans. Magn., 22 (1986), 603-608. 
[146] Z. MRÓZ, On the description of anisotropic work-hardening, J. Mech. Phys. Solids, 15 (1967), 163-175.
[147] 
I. MÜLLER, 
A model for a body with shape-memory, 
Arch. Rational Mech. Anal., 
70 (
1979), 61-77.  | 
MR 535632[148] 
I. MÜLLER, 
On the size of hysteresis in pseudoelasticity, 
Continuum Mech. Thermodyn., 
1 (
1989), 125-142. | 
MR 1050819[149] L. NÉEL, Theorie des lois d’aimantation de Lord Rayleigh. I. Les déplacements d’une paroi isolée; II. Multiples domaines et champ coercive, Cahiers de Physique, 12 (1942), 1-20; 13 (1943), 18-30.
[150] L. PRANDTL: Spannungverteilung in plastischen Körpern, In: Proc. 1st Intern. Congr. Appl. Mech. Delft (1924), pp. 43-54.
[151] 
L. PRANDTL, 
Ein Gedankenmodell zur kinetischen Theorie der festen Körper, 
Z. Angew. Math. Mech., 
8 (
1928), 85-106.  | 
Jbk 54.0847.04[152] F. PREISACH, Über die magnetische Nachwirkung, Z. Physik, 94 (1935), 277-302.
[153] 
 RAYLEIGH, 
On the behaviour of iron and steel under the operation of feeble magnetic forces, 
Phil. Mag., 
23 (
1887), 225-248.  | 
Jbk 19.1131.04[154] 
C. VERDI-
A. VISINTIN, 
Numerical approximation of hysteresis problems, 
I.M.A. J. Numer. Anal., 
5 (
1985), 447-463. | 
MR 816068 | 
Zbl 0608.65082[155] 
C. VERDI-
A. VISINTIN, 
Numerical approximation of the Preisach model for hysteresis, 
Math. Model. and Numer. Anal., 
23 (
1989), 335-356.  | 
MR 1001333 | 
Zbl 0672.65115[156] 
A. VISINTIN, 
A model for hysteresis of distributed systems, 
Ann. Mat. Pura Appl., 
131 (
1982), 203-231. | 
MR 681564 | 
Zbl 0494.35052[157] 
A. VISINTIN, 
On the Preisach model for hysteresis, 
Nonlinear Analysis, T.M.A., 
9 (
1984), 977-996.  | 
MR 760191 | 
Zbl 0563.35007[158] 
A. VISINTIN, 
Hysteresis and semigroups, In: 
Models of hysteresis (A. Visintin, ed.), 
Longman, Harlow (
1993), pp. 192-206. | 
MR 1235125 | 
Zbl 0834.35033[159] A. VISINTIN, Modified Landau-Lifshitz equation for ferromagnetism, Physica B, 233 (1997), 365-369. 
[160] P. WEISS-J. DE FREUDENREICH, Etude de l’aimantation initiale en fonction de la température (suite et fin), Arch. Sci. Phys. Nat., (Genève), 42 (1916), 449-470.
[161] 
V. BARBU, 
Nonlinear Semigroups and Differential Equations in Banach Spaces, 
Noordhoff, Leyden 
1976.  | 
MR 390843 | 
Zbl 0328.47035[162] H. BÉNILAN, Equations d’Évolution dans un Espace de Banach Quelconque et Applications, Thèse, Orsay 1972.
[163] 
M. BERTSCH-
P. PODIO-GUIDUGLI-
V. VALENTE, 
On the dynamics of deformable ferromagnets 1. Global weak solutions for soft ferromagnets at rest, Preprint, 
1999. | 
Zbl 1097.74017[164] 
H. BRÉZIS, 
Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, 
North-Holland, Amsterdam 
1973. | 
MR 348562 | 
Zbl 0252.47055[165] W. F. JR. BROWN, Micromagnetics, Krieger, Huntington 1978.
[166] 
H. S. CARSLAW-
J. C. JAEGER, 
Conduction of heat in solids, 
Clarendon Press and Oxford University Press, New York, 
1988.  | 
MR 959730 | 
Zbl 0972.80500[167] 
G. DUVAUT-
J. L. LIONS, 
Les Inéquations en Mécanique et en Physique, 
Dunod, Paris 
1972. | 
MR 464857 | 
Zbl 0298.73001[168] L. LANDAU-E. LIFSHITZ, On the theory of dispersion of magnetic permeability in ferromagnetic bodies, Physik. Z. Sowietunion, 8 (1935), 153-169. 
[170] 
J. L. LIONS, 
Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, 
Dunod, Paris 
1969. | 
MR 259693 | 
Zbl 0189.40603[171] 
A. VISINTIN, 
On Landau-Lifshitz equations in ferromagnetism, 
Japan J. Appl. Math., 
2 (
1985), 69-84.  | 
MR 839320 | 
Zbl 0613.35018[172] P. WEISS, L’hypothèse du champ moléculaire et la proprièté ferromagnétique, J. Physique, 6 (1907), 661-690.