Normalized solutions to semilinear elliptic equations and systems

Gianmaria Verzini
Dipartimento di Matematica
Politecnico di Milano
Istituto Canossiano San Trovaso,
Venezia, 30 November 2019
joint works with
Benedetta Noris (Amiens), Hugo Tavares (Lisboa), Dario Pierotti (PoliMi)

Table of contents

(1) The problem
(2) Positive solutions in the ball
(3) The general case

Solutions with prescribed mass

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded, Lipschitz domain, $1<p<2^{*}-1, \rho>0$.

Main goals:

- existence/non-existence, depending on p and ρ (and Ω);
- stability results for ground states (to be defined later).

Solutions with prescribed mass

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded, Lipschitz domain, $1<p<2^{*}-1, \rho>0$.

Find

$$
(U, \lambda) \in H_{0}^{1}(\Omega) \times \mathbb{R} \quad \text { s.t. } \quad\left\{\begin{array}{l}
-\Delta U+\lambda U=|U|^{p-1} U \\
\int_{\Omega} U^{2} d x=\rho
\end{array}\right.
$$

Any u solution (for some λ) is a normalized solution.

Main goals:

- existence/non-existence, depending on p and ρ (and Ω);
- stability results for ground states (to be defined later).

Warning: two critical exponents,

$$
\begin{array}{ll}
p=1+\frac{4}{N} & \left(L^{2},\right. \text { or mass crit. exp.) } \\
p=2^{*}-1=1+\frac{4}{N-2} & (\text { Sobolev, or energy crit. exp. })
\end{array}
$$

For most of this talk: critical $:=L^{2}$ critical

Motivation

Standing wave solutions of the (focusing) nonlinear Schrödinger equation (NLS)

$$
\begin{gathered}
-\Delta U+\lambda U=|U|^{p-1} U, U \in H_{0}^{1}(\Omega) \\
\uparrow \Phi(t, x)=e^{\mathrm{i} \lambda t} U(x) \\
\begin{cases}\mathrm{i} \frac{\partial \Phi}{\partial t}+\Delta \Phi+|\Phi|^{p-1} \Phi=0 & (t, x) \in \mathbb{R} \times \Omega \\
\Phi(t, x)=0 & (t, x) \in \mathbb{R} \times \partial \Omega\end{cases}
\end{gathered}
$$

Motivation

Standing wave solutions of the (focusing) nonlinear Schrödinger equation (NLS)

$$
\begin{gathered}
-\Delta U+\lambda U=|U|^{p-1} U, U \in H_{0}^{1}(\Omega) \\
\downarrow \Phi(t, x)=e^{\mathrm{i} \lambda t} U(x) \\
\begin{cases}\mathrm{i} \frac{\partial \Phi}{\partial t}+\Delta \Phi+|\Phi|^{p-1} \Phi=0 & (t, x) \in \mathbb{R} \times \Omega \\
\Phi(t, x)=0 & (t, x) \in \mathbb{R} \times \partial \Omega,\end{cases}
\end{gathered}
$$

NLS on bounded domains appears in different physical contexts:

- Nonlinear optics ($N=2, p=3, \Omega=$ disk): propagation of laser beams in hollow-core fibers. [Fibich, Merle (2001)]
- Bose-Einstein condensation $(N \leq 3, p=3)$: it models the presence of an infinite well trapping potential (to describe confined particles in quantum mechanics systems). [Lieb et al (2006), Bartsch, Parnet (2012)]
$p=3$ is subcritical for $N=1$, critical for $N=2$ and supercritical for $N=3$ (and Sobolev critical for $N=4$).

Basic facts about NLS

$$
\begin{cases}\mathrm{i} \frac{\partial \Phi}{\partial t}+\Delta \Phi+|\Phi|^{p-1} \Phi=0 & (t, x) \in \mathbb{R} \times \Omega \\ \Phi(t, x)=0 & (t, x) \in \mathbb{R} \times \partial \Omega\end{cases}
$$

Conserved quantities along trajectories (at least formally):

- Energy: $\mathcal{E}(\Phi)=\int_{\Omega}\left(\frac{1}{2}|\nabla \Phi|^{2}-\frac{1}{p+1}|\Phi|^{p+1}\right) d x$
- Mass (or Charge): $\mathcal{Q}(\Phi)=\int_{\Omega}|\Phi|^{2} d x$.

Two points of view about standing waves...

Going back to the elliptic problem:

$$
-\Delta U+\lambda U=|U|^{p-1} U, \quad U \in H_{0}^{1}(\Omega)
$$

Two points of view:
(1) The chemical potential $\lambda \in \mathbb{R}$ is given
\triangleright Solutions are critical points of the Action Functional:

$$
\begin{aligned}
\mathcal{A}_{\lambda}(U) & =\mathcal{E}(U)+\frac{\lambda}{2} \mathcal{Q}(U) \\
& =\frac{1}{2} \int_{\Omega}\left(|\nabla U|^{2}+\lambda U^{2}\right) d x-\frac{1}{p+1} \int_{\Omega}|U|^{p+1} d x .
\end{aligned}
$$

Two points of view about standing waves...

Going back to the elliptic problem:

$$
-\Delta U+\lambda U=|U|^{p-1} U, \quad U \in H_{0}^{1}(\Omega)
$$

Two points of view:
(1) The chemical potential $\lambda \in \mathbb{R}$ is given
\triangleright Solutions are critical points of the Action Functional:

$$
\begin{aligned}
\mathcal{A}_{\lambda}(U) & =\mathcal{E}(U)+\frac{\lambda}{2} \mathcal{Q}(U) \\
& =\frac{1}{2} \int_{\Omega}\left(|\nabla U|^{2}+\lambda U^{2}\right) d x-\frac{1}{p+1} \int_{\Omega}|U|^{p+1} d x .
\end{aligned}
$$

(2) $\lambda \in \mathbb{R}$ is an unknown of the problem
\triangleright Fix the mass $\mathcal{Q}(U)=\rho$, and find critical points of $\left.\mathcal{E}\right|_{\{\mathcal{Q}=\rho\}}$.
$\triangleright \lambda$ appears as a Lagrange multiplier

Here we focus on the second point of view.
... and two notions of ground states

Consequently, ground states are defined by two (non equivalent) minimizations: either $\inf \mathcal{A}_{\lambda} \quad$ or $\quad \inf \{\mathcal{E}: \mathcal{Q}=\rho\}$.
... and two notions of ground states

Consequently, ground states are defined by two (non equivalent) minimizations:

$$
\text { either } \quad \inf \mathcal{A}_{\lambda} \quad \text { or } \quad \inf \{\mathcal{E}: \mathcal{Q}=\rho\} .
$$

(1) λ given. Least Action Solutions:
\triangleright minimize the action \mathcal{A}_{λ} among its nontrivial critical points.

$$
a_{\lambda}=\inf \left\{\mathcal{A}_{\lambda}(U): U \in H_{0}^{1}, U \not \equiv 0, \mathcal{A}_{\lambda}^{\prime}(U)=0\right\}
$$

[Berestycki, Lions ARMA (1983)]
(2) λ unknown, fixed mass. Least Energy Solutions: $p \leq 1+\frac{4}{N}$,

$$
e_{\rho}=\inf _{\mathcal{Q}(U)=\rho} \mathcal{E}(U)
$$

[Cazenave, Lions CMP (1982)]

and two notions of ground states

Consequently, ground states are defined by two (non equivalent) minimizations:

$$
\text { either } \quad \inf \mathcal{A}_{\lambda} \quad \text { or } \quad \inf \{\mathcal{E}: \mathcal{Q}=\rho\} .
$$

(1) λ given. Least Action Solutions:
\triangleright minimize the action \mathcal{A}_{λ} among its nontrivial critical points.

$$
a_{\lambda}=\inf \left\{\mathcal{A}_{\lambda}(U): U \in H_{0}^{1}, U \not \equiv 0, \mathcal{A}_{\lambda}^{\prime}(U)=0\right\}
$$

[Berestycki, Lions ARMA (1983)]
(2) λ unknown, fixed mass. Least Energy Solutions: $p \leq 1+\frac{4}{N}$,

$$
e_{\rho}=\inf _{\mathcal{Q}(U)=\rho} \mathcal{E}(U)
$$

[Cazenave, Lions CMP (1982)]
Why the restriction on the exponent in the second case?

The L^{2}-critical exponent

This critical exponent comes from the Gagliardo-Nirenberg inequality:
$\int_{\Omega}|U|^{p+1} d x \leq C_{N, p}\left(\int_{\Omega}|\nabla U|^{2} d x\right)^{\beta_{N, p}}\left(\int_{\Omega}|U|^{2} d x\right)^{p+1-\beta_{N, p}} \quad \forall U \in H_{0}^{1}(\Omega)$.
with $\beta_{N, p}, C_{N, p}$ independent of Ω. If $\mathcal{Q}(U)=\rho$:

$$
\mathcal{E}(U) \geq \frac{1}{2} \int_{\Omega}|\nabla U|^{2} d x-C\left(\int_{\Omega}|\nabla U|^{2} d x\right)^{\beta}
$$

where C depends on ρ and

$$
\beta=\frac{N}{4}(p-1) \leq 1 \quad \Longleftrightarrow \quad p \leq 1+\frac{4}{N} .
$$

The L^{2}-critical exponent

This critical exponent comes from the Gagliardo-Nirenberg inequality:
$\int_{\Omega}|U|^{p+1} d x \leq C_{N, p}\left(\int_{\Omega}|\nabla U|^{2} d x\right)^{\beta_{N, p}}\left(\int_{\Omega}|U|^{2} d x\right)^{p+1-\beta_{N, p}} \quad \forall U \in H_{0}^{1}(\Omega)$.
with $\beta_{N, p}, C_{N, p}$ independent of Ω. If $\mathcal{Q}(U)=\rho$:

$$
\mathcal{E}(U) \geq \frac{1}{2} \int_{\Omega}|\nabla U|^{2} d x-C\left(\int_{\Omega}|\nabla U|^{2} d x\right)^{\beta}
$$

where C depends on ρ and

$$
\beta=\frac{N}{4}(p-1) \leq 1 \quad \Longleftrightarrow \quad p \leq 1+\frac{4}{N} .
$$

Then

$$
\begin{aligned}
& a_{\lambda}=\inf \left\{\mathcal{A}_{\lambda}(U): U \text { non-trivial critical point }\right\} \\
& e_{\rho}=\inf \{\mathcal{E}(U): \mathcal{Q}(U)=\rho, U \text { constrained critical point }\} .
\end{aligned}
$$

Straightforward remarks in \mathbb{R}^{N}

Let $\Omega=\mathbb{R}^{N}$ and $Z_{N, p}$ be the unique solution (up to translations) of

$$
-\Delta Z+Z=Z^{p}, \quad Z \in H^{1}\left(\mathbb{R}^{N}\right), \quad Z>0
$$

Then it "uniquely" achieves the Gagliardo-Nirenberg inequality.

Scaling:

$$
U_{h}(x)=h^{2} Z_{N, p}\left(h^{p-1} x\right) \text { satisfies }\left\{\begin{array}{l}
-\Delta U_{h}+h^{2(p-1)} U_{h}=U^{p}, \\
\int_{\mathbb{R}^{N}} U_{h}^{2} d x=h^{4-N(p-1)} \int_{\mathbb{R}^{N}} Z_{N, p}^{2} d x .
\end{array}\right.
$$

Straightforward remarks in \mathbb{R}^{N}

Let $\Omega=\mathbb{R}^{N}$ and $Z_{N, p}$ be the unique solution (up to translations) of

$$
-\Delta Z+Z=Z^{p}, \quad Z \in H^{1}\left(\mathbb{R}^{N}\right), \quad Z>0
$$

Then it "uniquely" achieves the Gagliardo-Nirenberg inequality.

Scaling:

$$
U_{h}(x)=h^{2} Z_{N, p}\left(h^{p-1} x\right) \text { satisfies }\left\{\begin{array}{l}
-\Delta U_{h}+h^{2(p-1)} U_{h}=U^{p}, \\
\int_{\mathbb{R}^{N}} U_{h}^{2} d x=h^{4-N(p-1)} \int_{\mathbb{R}^{N}} Z_{N, p}^{2} d x
\end{array}\right.
$$

Then
(1) a_{λ} is uniquely achieved for every $\lambda>0$ (with $h=\lambda^{1 / 2(p-1)}$);
(2) if $p \neq 1+4 / N, e_{\rho}$ is uniquely achieved for every $\rho>0$;
(3) in the critical case $p=1+4 / N: e_{\rho}$ is achieved iff $\rho=\left\|Z_{N, p}\right\|_{L^{2}}^{2}$, by infinitely many solutions.

The L^{2}-critical exponent: consequences when $\Omega=\mathbb{R}^{N}$

$$
\begin{gathered}
\mathrm{i} \frac{\partial \Phi}{\partial t}+\Delta \Phi+|\Phi|^{p-1} \Phi=0 \quad(t, x) \in \mathbb{R} \times \mathbb{R}^{N} \\
\text { Critical Exponent: } \quad p=1+\frac{4}{N}
\end{gathered}
$$

The L^{2}-critical exponent: consequences when $\Omega=\mathbb{R}^{N}$

$$
\begin{gathered}
\mathrm{i} \frac{\partial \Phi}{\partial t}+\Delta \Phi+|\Phi|^{p-1} \Phi=0 \quad(t, x) \in \mathbb{R} \times \mathbb{R}^{N} \\
\text { Critical Exponent: } \quad p=1+\frac{4}{N} .
\end{gathered}
$$

- Subcritical Case ($1<p<1+4 / N$): global existence for all initial data.
- Critical Case $(p=1+4 / N)$: global existence for data with small mass \mathcal{Q}.
- Supercritical Case $(p>1+4 / N)$: explosion in finite time.

The L^{2}-critical exponent: consequences when $\Omega=\mathbb{R}^{N}$

$$
\begin{gathered}
\mathrm{i} \frac{\partial \Phi}{\partial t}+\Delta \Phi+|\Phi|^{p-1} \Phi=0 \quad(t, x) \in \mathbb{R} \times \mathbb{R}^{N} \\
\text { Critical Exponent: } \quad p=1+\frac{4}{N} .
\end{gathered}
$$

- Subcritical Case $(1<p<1+4 / N)$: global existence for all initial data.
- Critical Case $(p=1+4 / N)$: global existence for data with small mass \mathcal{Q}.
- Supercritical Case ($p>1+4 / N$): explosion in finite time.

Let $Z_{N, p}$ be the unique solution (up to translations) of

$$
-\Delta Z+Z=Z^{p}, \quad Z \in H^{1}\left(\mathbb{R}^{N}\right), \quad Z>0
$$

Then it achieves the Gagliardo-Nirenberg inequality and

- $e^{\text {it }} Z_{N, p}$ is orbitally stable if $p<1+4 / N$ (subcritical);
- $e^{\text {it }} Z_{N, p}$ is unstable if $p \geq 1+4 / N$ (critical and supercritical).

Proofs: [Coffman (1972), Kwong ARMA (1989)], [Cazenave, Lions CMP (1982)].

Known results

- When global minimizers do not exist and scaling is not allowed, existence of normalized solutions is nontrivial
- many techniques developed for the case with fixed λ can not be directly adapted
After
[Jeanjean, Nonlinear Anal (1997)]
only more recent results:
- normalized solutions in \mathbb{R}^{N}, with non-homogeneous nonlinearities and/or systems: Bartsch, Bellazzini, de Valeriola, Guo, Jeanjean, Soave
- on bounded domains (both equations and systems): Noris, Pistoia, Pellacci, Pierotti, Tavares, Vaira, V.
- on metric graphs: Adami, Dovetta, Serra, Tilli
- for Mean Field Games systems: Cesaroni, Cirant, Gomes, V.

Table of contents

(1) The problem

(2) Positive solutions in the ball
(3) The general case

Existence

Case $\Omega=B_{1}$
Warning: we restrict our attention to positive solutions!
Theorem ([Noris, Tavares, V., Analysis \& PDE (2014)])
Let $\Omega=B_{1}$.
(1) If $1<p<1+4 / N$ then, for every $\rho>0$, there exists a unique positive solution, which achieves e_{ρ};

Existence

Case $\Omega=B_{1}$

Warning: we restrict our attention to positive solutions!

Theorem ([Noris, Tavares, V., Analysis \& PDE (2014)])

Let $\Omega=B_{1}$.
(1) If $1<p<1+4 / N$ then, for every $\rho>0$, there exists a unique positive solution, which achieves e_{ρ};
(2) if $p=1+4 / N$,
\triangleright for $0<\rho<\left\|Z_{N, p}\right\|_{L^{(}\left(\mathbb{R}^{N}\right)}^{2}$, there exists a unique positive solution, which achieves e_{ρ};
\triangleright for $\rho \geq\left\|Z_{N, p}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}$, no positive solution exists;

Existence

Case $\Omega=B_{1}$
Warning: we restrict our attention to positive solutions!

Theorem ([Noris, Tavares, V., Analysis \& PDE (2014)])

Let $\Omega=B_{1}$.
(1) If $1<p<1+4 / N$ then, for every $\rho>0$, there exists a unique positive solution, which achieves e_{ρ};
(2) if $p=1+4 / N$,
\triangleright for $0<\rho<\left\|Z_{N, p}\right\|_{L^{(}\left(\mathbb{R}^{N}\right)}^{2}$, there exists a unique positive solution, which achieves e_{ρ};
\triangleright for $\rho \geq\left\|Z_{N, p}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}$, no positive solution exists;
(3) if $1+4 / N<p<2^{*}-1$, there exists $\rho^{*}>0$, depending on p, such that:
$\triangleright e_{\rho}$ is achieved if and only if $0<\rho \leq \rho^{*}$.
\triangleright no positive solutions exists for $\rho>\rho^{*}$,
\triangleright For $0<\rho<\rho^{*}$ there exist at least two distinct positive solutions.
In this latter case, there exist positive solutions of the problem which are not least energy solutions.

Remarks on least action solutions

$$
\begin{gathered}
-\Delta U+\lambda U=U^{p}, \quad U \in H_{0}^{1}\left(B_{1}\right) \\
a_{\lambda}=\inf \left\{\mathcal{A}_{\lambda}(U): U \in H_{0}^{1}\left(B_{1}\right), U \not \equiv 0, \mathcal{A}_{\lambda}^{\prime}(U)=0\right\}
\end{gathered}
$$

Existence and uniqueness of (positive) solution for any $\lambda \in\left(-\lambda_{1}\left(B_{1}\right), \infty\right)$:

$$
\lambda \mapsto U_{\lambda} \quad \text { (least action solution). }
$$

Corollary

- For $1<p \leq 1+4 / N$ (subcritical and critical), the notions of least energy and of least action coincide.
- For $p>1+4 / N$, this no longer happens: there are least action solutions which are not least energy solutions.

Orbital Stability

Let U denote a least energy solution of

$$
\left\{\begin{array}{l}
-\Delta U+\lambda U=U^{p} \\
\int_{B_{1}} U^{2} d x=\rho, \quad U>0
\end{array}\right.
$$

and let

$$
\Phi(t, x)=e^{\mathrm{i} \lambda t} U(x) .
$$

Theorem

- If $1<p \leq 1+4 / N$ (subcritical and critical) then Φ is orbitally stable;
- if $1+4 / N<p<2^{*}-1$ (supercritical) then Φ is orbitally stable for a.e. $\rho \in\left(0, \rho^{*}\right]$.

Conjecture: in the latter case, stability $\forall \rho \in\left(0, \rho^{*}\right)$, instability for $\rho=\rho^{*}$.

The boundary of the domain has a stabilizing effect.

This effect was already observed in
[Fibich, Merle Phys. D (2001), Fukuizumi, Selem, Kikuchi Nonlinearity (2012)] when dealing with least action solutions:
according to their results, the corresponding standing waves are stable when $\lambda \sim-\lambda_{1}\left(B_{1}\right)$ and $\lambda \sim+\infty$, in the subcritical and critical cases.
In the supercritical one
\triangleright when $\lambda \sim-\lambda_{1}$, least action solutions are stable;
\triangleright when $\lambda \sim+\infty$, least action solutions are unstable.
Our contribution:

Corollary

Let U_{λ} be the unique positive solution of

$$
-\Delta U+\lambda U=U^{p}, \quad U \in H_{0}^{1}\left(B_{1}\right) .
$$

(hence a least action solution).
If $1<p \leq 1+4 / N$, then $e^{i \lambda t} U_{\lambda}$ is orbitally stable for every $\lambda \in\left(-\lambda_{1}\left(B_{1}\right),+\infty\right)$.

Ideas of the proof

For the moment, take Ω any bounded domain.

$$
\left\{\begin{array} { l }
{ - \Delta U + \lambda U = U ^ { p } \quad \stackrel { U (x) = \sqrt { \rho } u (x) } { \mu = \rho ^ { (p - 1) / 2 } } } \\
{ \int _ { \Omega } U ^ { 2 } d x = \rho }
\end{array} \quad \left\{\begin{array}{l}
-\Delta u+\lambda u=\mu u^{p} \\
\int_{\Omega} u^{2} d x=1
\end{array}\right.\right.
$$

Ideas of the proof

For the moment, take Ω any bounded domain.

$$
\left\{\begin{array} { l }
{ - \Delta U + \lambda U = U ^ { p } \quad \stackrel { U (x) = \sqrt { \rho } u (x) } { \mu = \rho ^ { (\rho - 1) / 2 } } } \\
{ \int _ { \Omega } U ^ { 2 } d x = \rho }
\end{array} \quad \left\{\begin{array}{l}
-\Delta u+\lambda u=\mu u^{p} \\
\int_{\Omega} u^{2} d x=1
\end{array}\right.\right.
$$

We choose to parameterize solutions with

$$
\alpha=\int_{\Omega}|\nabla u|^{2} \geq \lambda_{1}(\Omega),
$$

and to study the (possibly ill-defined, multivalued) map

$$
\alpha \mapsto(u, \lambda, \mu)
$$

If we succeed, our original problem is translated into:

$$
\text { to find } \alpha \text { such that a corresponding } \mu=\rho^{(p-1) / 2} \text {. }
$$

Existence

Optimization Problem with two constraints
For each $\alpha>\lambda_{1}(\Omega)$, take

$$
M_{\alpha}=\sup \left\{\int_{\Omega}|u|^{p+1} d x: u \in H_{0}^{1}(\Omega), \int_{\Omega} u^{2} d x=1, \int_{\Omega}|\nabla u|^{2} d x=\alpha\right\}
$$

Existence

Optimization Problem with two constraints
For each $\alpha>\lambda_{1}(\Omega)$, take

$$
M_{\alpha}=\sup \left\{\int_{\Omega}|u|^{p+1} d x: u \in H_{0}^{1}(\Omega), \int_{\Omega} u^{2} d x=1, \int_{\Omega}|\nabla u|^{2} d x=\alpha\right\}
$$

Related to Gagliardo-Nirenberg inequality:

$$
\|u\|_{L^{p+1}(\Omega)}^{p+1} \leq C_{N, p}\|u\|_{L^{2}(\Omega)}^{p+1-N(p-1) / 2}\|\nabla u\|_{L^{2}(\Omega)}^{N(p-1) / 2}, \quad \forall u \in H_{0}^{1}(\Omega)
$$

by:

$$
C_{N, p}=\sup _{\alpha \geq \lambda_{1}(\Omega)} \frac{M_{\alpha}}{\alpha^{N(p-1) / 2}}
$$

Existence

Optimization Problem with two constraints
For each $\alpha>\lambda_{1}(\Omega)$, take

$$
M_{\alpha}=\sup \left\{\int_{\Omega}|u|^{p+1} d x: u \in H_{0}^{1}(\Omega), \int_{\Omega} u^{2} d x=1, \int_{\Omega}|\nabla u|^{2} d x=\alpha\right\}
$$

Related to Gagliardo-Nirenberg inequality:

$$
\|u\|_{L^{p+1}(\Omega)}^{p+1} \leq C_{N, p}\|u\|_{L^{2}(\Omega)}^{p+1-N(p-1) / 2}\|\nabla u\|_{L^{2}(\Omega)}^{N(p-1) / 2}, \quad \forall u \in H_{0}^{1}(\Omega)
$$

by:

$$
C_{N, p}=\sup _{\alpha \geq \lambda_{1}(\Omega)} \frac{M_{\alpha}}{\alpha^{N(p-1) / 2}}
$$

Theorem

M_{α} is achieved by a positive function $u \in H_{0}^{1}(\Omega)$, and there exist $\mu>0$, $\lambda>-\lambda_{1}(\Omega)$ such that

$$
-\Delta u+\lambda u=\mu u^{p}, \quad \int_{\Omega} u^{2} d x=1, \quad \int_{\Omega}|\nabla u|^{2} d x=\alpha
$$

Behavior near $\alpha=\lambda_{1}$

What happens for $\alpha \sim \lambda_{1}(\Omega)$?

$$
-\Delta u+\lambda u=\mu u^{p}, \quad \int_{\Omega} u^{2} d x=1
$$

Take the map:

$$
\Phi(u, \mu, \lambda)=\left(\Delta u-\lambda u+\mu u^{p}, \int_{\Omega} u^{2} d x-1, \int_{\Omega}|\nabla u|^{2} d x\right) .
$$

We can prove that $\left(\varphi_{1}, 0,-\lambda_{1}\right)$ is ordinary singular for Φ, in the sense of Ambrosetti-Prodi.

Proposition

The equation

$$
\Phi(u, \mu, \lambda)=\left(0,0, \lambda_{1}+\varepsilon\right)
$$

has exactly two solutions for each small $\varepsilon>0$. One of these solutions is such that $\int_{\Omega} u^{p+1}=M_{\alpha}$ and satisfies $\lambda>-\lambda_{1}, \mu>0$. The other is associated to the defocusing case $\lambda<-\lambda_{1}, \mu<0$.

Behavior for α large

By construction, u has Morse index 1 or 2 . When $\alpha_{n} \rightarrow+\infty$, we find a singularly perturbed problem: if x_{n} is a local maximum for u_{n}, then

$$
v_{n}(x):=\left(\frac{\mu_{n}}{\lambda_{n}}\right)^{1 /(p-1)} u_{n}\left(\frac{x}{\sqrt{\lambda_{n}}}+x_{n}\right)
$$

satisfies, up to subs.,

$$
v_{n} \rightarrow Z_{N, p} \quad \text { in } C_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right)
$$

[Druet, Hebey and Robert; Esposito and Petralla]. As a consequence

Proposition

As $\alpha_{n} \rightarrow+\infty$, we have

$$
\lambda_{n} \rightarrow+\infty,
$$

and

$$
\mu_{n} \rightarrow \begin{cases}+\infty & 1<p<1+\frac{4}{N} \\ C(N, p) & p=1+\frac{4}{N} \\ 0 & 1+\frac{4}{N}<p<2^{*}-1 .\end{cases}
$$

The upper curve

$\Omega=B_{1}(0)$
Back to $\Omega=B_{1}(0)$ (and $\mu>0$): combining results/ideas of many authors [Gidas Ni Nirenberg, Kwong, Kwong Li, Korman, Aftalion Pacella, Felmer Martínez Tanaka] we have uniqueness of positive solutions, which Morse index is always one. Let:

$$
\mathcal{S}^{+}=\left\{(u, \mu, \lambda):-\Delta u+\lambda u=\mu u^{p}, u>0, \int_{B_{1}} u^{2}=1, \mu>0\right\}
$$

Proposition

We can parameterize \mathcal{S}^{+}with α in a smooth way:

$$
\alpha \mapsto(u(\alpha), \mu(\alpha), \lambda(\alpha))
$$

where $\int_{B_{1}}|\nabla u(\alpha)|^{2}=\alpha$, and $u(\alpha)$ achieves M_{α}. Moreover, $\lambda^{\prime}(\alpha)>0$.

The upper curve

$\Omega=B_{1}(0)$

Back to $\Omega=B_{1}(0)$ (and $\left.\mu>0\right)$: combining results/ideas of many authors [Gidas Ni Nirenberg, Kwong, Kwong Li, Korman, Aftalion Pacella, Felmer Martínez Tanaka] we have uniqueness of positive solutions, which Morse index is always one. Let:

$$
\mathcal{S}^{+}=\left\{(u, \mu, \lambda):-\Delta u+\lambda u=\mu u^{p}, u>0, \int_{B_{1}} u^{2}=1, \mu>0\right\}
$$

Proposition

We can parameterize \mathcal{S}^{+}with α in a smooth way:

$$
\alpha \mapsto(u(\alpha), \mu(\alpha), \lambda(\alpha))
$$

where $\int_{B_{1}}|\nabla u(\alpha)|^{2}=\alpha$, and $u(\alpha)$ achieves M_{α}. Moreover, $\lambda^{\prime}(\alpha)>0$.
It turns out that the behavior of μ is crucial:

- prescribing the mass ρ is equivalent to prescribing $\mu=\rho^{(p-1) / 2}$;
- μ^{\prime} positive (resp. negative) implies orbital stability (resp. instability) of the corresponding standing waves [Grillakis, Shatah, Strauss JFA (1987)].

The upper curve
 $\Omega=B_{1}(0)$

Subcritical and Critical cases. We prove $\mu^{\prime}>0$ for every α

Existence and stability follow.

The upper curve

$\Omega=B_{1}(0)$

Supercritical case, $p>1+4 / N$: Conjecture

Numerical simulation for $N=3, p=3$
Existence follows. Also stability, with some further work.

Table of contents

(1) The problem

(2) Positive solutions in the ball
(3) The general case

Some questions

The full picture for positive solutions in the ball suggests several questions/conjectures (for p critical or supercritical):

- non-existence of positive solutions for large ρ in general Ω
- existence of positive solutions, maybe stable, for small ρ in general Ω
- existence of non-necessary positive solutions for large ρ (also in B)
- systems of NLS equations on bounded domains.

Non-existence: some examples

For p critical and supercritical and ρ large no positive solution exists in the ball.
What about general domains and/or changing-sign solutions?

Non-existence: some examples

For p critical and supercritical and ρ large no positive solution exists in the ball.
What about general domains and/or changing-sign solutions?

- Necklace solutions: any Dirichlet solution of

$$
-\Delta U+\lambda U=|U|^{p-1} U \quad \text { in a rectangle } R \subset \mathbb{R}^{N}
$$

can be scaled to a solution of

$$
-\Delta U+k^{2} \lambda U=|U|^{p-1} U \quad \text { in } R / k, k \in \mathbb{N}_{+}
$$

and then k^{N} copies of it can be juxtaposed, with alternating sign. The new solution on R has $k^{4 /(p-1)}$ times the mass of the starting one. In the disk?

Non-existence: some examples

For p critical and supercritical and ρ large no positive solution exists in the ball.
What about general domains and/or changing-sign solutions?

- Necklace solutions: any Dirichlet solution of

$$
-\Delta U+\lambda U=|U|^{p-1} U \quad \text { in a rectangle } R \subset \mathbb{R}^{N}
$$

can be scaled to a solution of

$$
-\Delta U+k^{2} \lambda U=|U|^{p-1} U \quad \text { in } R / k, k \in \mathbb{N}_{+}
$$

and then k^{N} copies of it can be juxtaposed, with alternating sign. The new solution on R has $k^{4 /(p-1)}$ times the mass of the starting one. In the disk?

- Dumb-bell domains: taking k copies of B_{1}, joined by small channels, one can construct positive solutions having mass close to k times the mass of the solution on B_{1}.

Non-existence: some examples

For p critical and supercritical and ρ large no positive solution exists in the ball.
What about general domains and/or changing-sign solutions?

- Necklace solutions: any Dirichlet solution of

$$
-\Delta U+\lambda U=|U|^{p-1} U \quad \text { in a rectangle } R \subset \mathbb{R}^{N}
$$

can be scaled to a solution of

$$
-\Delta U+k^{2} \lambda U=|U|^{p-1} U \quad \text { in } R / k, k \in \mathbb{N}_{+}
$$

and then k^{N} copies of it can be juxtaposed, with alternating sign. The new solution on R has $k^{4 /(p-1)}$ times the mass of the starting one. In the disk?

- Dumb-bell domains: taking k copies of B_{1}, joined by small channels, one can construct positive solutions having mass close to k times the mass of the solution on B_{1}.
The second example suggests to classify solutions in terms of their Morse index, rather than in terms of their nodal properties.

Non-existence: the role of the Morse index

U solution for some λ. Its Morse index is

$$
m(U)=\max \left\{k: \begin{array}{c}
\exists V \subset H_{0}^{1}(\Omega), \operatorname{dim}(V)=k: \forall v \in V \backslash\{0\} \\
\int_{\Omega}|\nabla v|^{2}+\lambda v^{2}-p|U|^{p-1} v^{2} d x<0
\end{array}\right\} \in \mathbb{N} .
$$

In $\Omega=B_{1}$, a solution U is positive iff $m(U)=1$.

Non-existence: the role of the Morse index

U solution for some λ. Its Morse index is

$$
m(U)=\max \left\{k: \begin{array}{c}
\exists V \subset H_{0}^{1}(\Omega), \operatorname{dim}(V)=k: \forall v \in V \backslash\{0\} \\
\int_{\Omega}|\nabla v|^{2}+\lambda v^{2}-p|U|^{p-1} v^{2} d x<0
\end{array}\right\} \in \mathbb{N} .
$$

In $\Omega=B_{1}$, a solution U is positive iff $m(U)=1$.

Theorem ([Pierotti, V., Calc Var PDE (2017)])

For every $\Omega \subset \mathbb{R}^{N}$ bounded C^{1} domain, $k \geq 1,1<p<2^{*}-1$,
$\sup \left\{\rho>0: \begin{array}{l}\text { there exists a solution } U(\text { for some } \lambda) \\ \text { having Morse index } m(U) \leq k\end{array}\right\}<+\infty \Longleftrightarrow p \geq 1+\frac{4}{N}$.
Proof: blow-up analysis of sequences of solutions with bounded Morse index, via suitable a priori pointwise estimates. In case the mass is unbounded on such a sequence, the sequence splits in the superposition of at most k profiles, which converge (suitably rescaled) to entire solutions.

Existence: Local minimizers

The Grillakis-Shatah-Strauss theory for orbital stability implies that the orbitally stable solutions we found in B are minimizers.

Theorem ([Pierotti, V., Calc Var PDE (2017)], [Noris, Tavares, V., Nonlinearity (2019)])
For every $0<\rho<\hat{\rho}_{1}=\hat{\rho}_{1}(\Omega, p)$ there exists a solution which is a local minimizer of the energy \mathcal{E} on $\{\mathcal{Q}=\rho\}$, and the corresponding ground state set is orb. stable. Furthermore, for every Lipschitz Ω,

- $1<p<1+\frac{4}{N} \Longrightarrow \hat{\rho}_{1}(\Omega, p)=+\infty$,
- $p=1+\frac{4}{N} \Longrightarrow \hat{\rho}_{1}(\Omega, p) \geq\left\|Z_{N, p}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}$,
- $1+\frac{4}{N}<p \leq 2^{*}-1 \Longrightarrow \hat{\rho}_{1}(\Omega, p) \geq D_{N, p} \lambda_{1}(\Omega)^{\frac{2}{p-1}-\frac{N}{2}}$,
where the universal constant $D_{N, p}$ is explicit.

Existence: Local minimizers

The Grillakis-Shatah-Strauss theory for orbital stability implies that the orbitally stable solutions we found in B are minimizers.

Theorem ([Pierotti, V., Calc Var PDE (2017)], [Noris, Tavares, V., Nonlinearity (2019)])
For every $0<\rho<\hat{\rho}_{1}=\hat{\rho}_{1}(\Omega, p)$ there exists a solution which is a local minimizer of the energy \mathcal{E} on $\{\mathcal{Q}=\rho\}$, and the corresponding ground state set is orb. stable. Furthermore, for every Lipschitz Ω,

- $1<p<1+\frac{4}{N} \Longrightarrow \hat{\rho}_{1}(\Omega, p)=+\infty$,
- $p=1+\frac{4}{N} \Longrightarrow \hat{\rho}_{1}(\Omega, p) \geq\left\|Z_{N, p}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}$,
- $1+\frac{4}{N}<p \leq 2^{*}-1 \Longrightarrow \hat{\rho}_{1}(\Omega, p) \geq D_{N, p} \lambda_{1}(\Omega)^{\frac{2}{p-1}-\frac{N}{2}}$,
where the universal constant $D_{N, p}$ is explicit.
- We deal also with the Sobolev critical case.
- This explains the second (unstable) positive solution in the supercritical case.
- The last estimate is new also for the ball. Furthermore, it provides information on the necklace solutions.

Consequences on special domains

Theorem

Let $\Omega=B$ be a ball in \mathbb{R}^{N}. Then

$$
p<1+\frac{4}{N-1} \quad \Longrightarrow \quad \text { there exists a solution for every } \rho>0
$$

An analogous result holds when $\Omega=R$ is a rectangle, without further restrictions on $p<2^{*}-1$.

Higher masses require higher Morse index-solutions. In particular, in the ball, even though no positive solution exists, nodal solutions with higher Morse index can be obtained: nodal ground states with higher Morse index.

Consequences on special domains

Theorem

Let $\Omega=B$ be a ball in \mathbb{R}^{N}. Then

$$
p<1+\frac{4}{N-1} \quad \Longrightarrow \quad \text { there exists a solution for every } \rho>0
$$

An analogous result holds when $\Omega=R$ is a rectangle, without further restrictions on $p<2^{*}-1$.

Higher masses require higher Morse index-solutions. In particular, in the ball, even though no positive solution exists, nodal solutions with higher Morse index can be obtained: nodal ground states with higher Morse index.

Proof: divide the ball in $2 k$ equal sectors and estimate the corresponding first eigenvalue.

Systems

The existence of minimizers and their orbital stability can be proved also for systems:

$$
\left\{\begin{array}{l}
-\Delta u_{1}+\omega_{1} u_{1}=\mu_{1} u_{1}\left|u_{1}\right|^{p-1}+\beta u_{1}\left|u_{1}\right|^{(p-3) / 2}\left|u_{2}\right|^{(p+1) / 2} \\
-\Delta u_{2}+\omega_{2} u_{2}=\mu_{2} u_{2}\left|u_{2}\right|^{p-1}+\beta u_{2}\left|u_{2}\right|^{(p-3) / 2}\left|u_{1}\right|^{(p+1) / 2} \\
\int_{\Omega} u_{i}^{2}=\rho_{i}, \quad i=1,2, \\
\left(u_{1}, u_{2}\right) \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{2}\right) .
\end{array}\right.
$$

Also in this case we can cover $p=2^{*}-1$.
[Noris, Tavares, V., Nonlinearity (2019)]

Open problems - Work in progress

- Our main conjecture is the existence of solutions for every ρ, p, Ω.
- Methodological approach: topological approach? Indeed, applications to ergodic Mean Field Games systems motivate the study of normalized solutions to some class of non-variational semilinear elliptic equations/systems.
- Metric graphs: existence of normalized local minimizers when a global one does not exists.
- Semiclassical analysis: it seems to make sense only in the subcritical case $p<1+\frac{4}{N}$.

Thank you for your attention, and...

Tanti auguri Professore!!

