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Solutions with prescribed mass

Let Ω ⊂ RN be a bounded, Lipschitz domain, 1 < p < 2∗ − 1, ρ > 0.

Find (U, λ) ∈ H1
0 (Ω)× R s.t.


−∆U + λU = |U|p−1U∫

Ω

U2 dx = ρ.

Any u solution (for some λ) is a normalized solution.
Main goals:

existence/non-existence, depending on p and ρ (and Ω);

stability results for ground states (to be defined later).

Warning: two critical exponents,

p = 1 +
4

N
(L2, or mass crit. exp.)

p = 2∗ − 1 = 1 +
4

N − 2
(Sobolev, or energy crit. exp.)

For most of this talk: critical := L2 critical
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Motivation

Standing wave solutions of the (focusing) nonlinear Schrödinger equation (NLS)

−∆U + λU = |U|p−1U, U ∈ H1
0 (Ω)xy Φ(t, x) = eiλtU(x)

{
i∂Φ
∂t + ∆Φ + |Φ|p−1Φ = 0 (t, x) ∈ R× Ω

Φ(t, x) = 0 (t, x) ∈ R× ∂Ω,

NLS on bounded domains appears in different physical contexts:

Nonlinear optics (N = 2, p = 3, Ω = disk): propagation of laser beams in
hollow–core fibers. [Fibich, Merle (2001)]

Bose–Einstein condensation (N ≤ 3, p = 3): it models the presence of an
infinite well trapping potential (to describe confined particles in quantum
mechanics systems). [Lieb et al (2006), Bartsch, Parnet (2012)]

p = 3 is subcritical for N = 1, critical for N = 2 and supercritical for N = 3
(and Sobolev critical for N = 4).
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Basic facts about NLS

 i
∂Φ

∂t
+ ∆Φ + |Φ|p−1Φ = 0 (t, x) ∈ R× Ω

Φ(t, x) = 0 (t, x) ∈ R× ∂Ω,

Conserved quantities along trajectories (at least formally):

Energy: E(Φ) =

∫
Ω

(
1

2
|∇Φ|2 − 1

p + 1
|Φ|p+1

)
dx

Mass (or Charge): Q(Φ) =

∫
Ω

|Φ|2 dx .
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Two points of view about standing waves...

Going back to the elliptic problem:

−∆U + λU = |U|p−1U, U ∈ H1
0 (Ω).

Two points of view:
1 The chemical potential λ ∈ R is given

. Solutions are critical points of the Action Functional:

Aλ(U) = E(U) +
λ

2
Q(U)

=
1

2

∫
Ω

(|∇U|2 + λU2) dx − 1

p + 1

∫
Ω

|U|p+1 dx .

2 λ ∈ R is an unknown of the problem

. Fix the mass Q(U) = ρ, and find critical points of E|{Q=ρ}.

. λ appears as a Lagrange multiplier

Here we focus on the second point of view.

gianmaria.verzini (polimi.it) Normalized solutions Venezia 2019 6 / 32



Two points of view about standing waves...

Going back to the elliptic problem:

−∆U + λU = |U|p−1U, U ∈ H1
0 (Ω).

Two points of view:
1 The chemical potential λ ∈ R is given

. Solutions are critical points of the Action Functional:

Aλ(U) = E(U) +
λ

2
Q(U)

=
1

2

∫
Ω

(|∇U|2 + λU2) dx − 1

p + 1

∫
Ω

|U|p+1 dx .

2 λ ∈ R is an unknown of the problem

. Fix the mass Q(U) = ρ, and find critical points of E|{Q=ρ}.

. λ appears as a Lagrange multiplier

Here we focus on the second point of view.

gianmaria.verzini (polimi.it) Normalized solutions Venezia 2019 6 / 32



... and two notions of ground states

Consequently, ground states are defined by two (non equivalent) minimizations:

either infAλ or inf{E : Q = ρ}.

1 λ given. Least Action Solutions:

. minimize the action Aλ among its nontrivial critical points.

aλ = inf{Aλ(U) : U ∈ H1
0 , U 6≡ 0, A′λ(U) = 0}

[Berestycki, Lions ARMA (1983)]

2 λ unknown, fixed mass. Least Energy Solutions: p ≤ 1 + 4
N ,

eρ = inf
Q(U)=ρ

E(U)

[Cazenave, Lions CMP (1982)]

Why the restriction on the exponent in the second case?
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The L2-critical exponent

This critical exponent comes from the Gagliardo-Nirenberg inequality:∫
Ω

|U|p+1 dx ≤ CN,p

(∫
Ω

|∇U|2 dx
)βN,p

(∫
Ω

|U|2 dx
)p+1−βN,p

∀U ∈ H1
0 (Ω).

with βN,p, CN,p independent of Ω. If Q(U) = ρ:

E(U) ≥ 1

2

∫
Ω

|∇U|2 dx − C

(∫
Ω

|∇U|2 dx
)β

where C depends on ρ and

β =
N

4
(p − 1) ≤ 1 ⇐⇒ p ≤ 1 +

4

N
.

Then

aλ = inf{Aλ(U) : U non-trivial critical point}
eρ = inf {E(U) : Q(U) = ρ,U constrained critical point} .
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Straightforward remarks in RN

Let Ω = RN and ZN,p be the unique solution (up to translations) of

−∆Z + Z = Z p, Z ∈ H1(RN), Z > 0.

Then it “uniquely” achieves the Gagliardo-Nirenberg inequality.

Scaling:

Uh(x) = h2ZN,p(hp−1x) satisfies

{
−∆Uh + h2(p−1)Uh = Up,∫
RN U

2
h dx = h4−N(p−1)

∫
RN Z

2
N,p dx .

Then

1 aλ is uniquely achieved for every λ > 0 (with h = λ1/2(p−1));

2 if p 6= 1 + 4/N, eρ is uniquely achieved for every ρ > 0;

3 in the critical case p = 1 + 4/N: eρ is achieved iff ρ = ‖ZN,p‖2
L2 , by infinitely

many solutions.
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The L2-critical exponent: consequences when Ω = RN

i
∂Φ

∂t
+ ∆Φ + |Φ|p−1Φ = 0 (t, x) ∈ R× RN

Critical Exponent: p = 1 +
4

N
.

Subcritical Case (1 < p < 1 + 4/N): global existence for all initial data.

Critical Case (p = 1 + 4/N): global existence for data with small mass Q.

Supercritical Case (p > 1 + 4/N): explosion in finite time.

Let ZN,p be the unique solution (up to translations) of

−∆Z + Z = Z p, Z ∈ H1(RN), Z > 0.

Then it achieves the Gagliardo-Nirenberg inequality and

eitZN,p is orbitally stable if p < 1 + 4/N (subcritical);

eitZN,p is unstable if p ≥ 1 + 4/N (critical and supercritical).

Proofs: [Coffman (1972), Kwong ARMA (1989)], [Cazenave, Lions CMP (1982)].
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Known results

When global minimizers do not exist and scaling is not allowed, existence of
normalized solutions is nontrivial

many techniques developed for the case with fixed λ can not be directly
adapted

After
[Jeanjean, Nonlinear Anal (1997)]

only more recent results:

normalized solutions in RN , with non-homogeneous nonlinearities and/or
systems: Bartsch, Bellazzini, de Valeriola, Guo, Jeanjean, Soave

on bounded domains (both equations and systems): Noris, Pistoia, Pellacci,
Pierotti, Tavares, Vaira, V.

on metric graphs: Adami, Dovetta, Serra, Tilli

for Mean Field Games systems: Cesaroni, Cirant, Gomes, V.
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Existence
Case Ω = B1

Warning: we restrict our attention to positive solutions!

Theorem ([Noris, Tavares, V., Analysis & PDE (2014)])

Let Ω = B1.

1 If 1 < p < 1 + 4/N then, for every ρ > 0, there exists a unique positive
solution, which achieves eρ;

2 if p = 1 + 4/N,

. for 0 < ρ < ‖ZN,p‖2
L2(RN ), there exists a unique positive solution, which

achieves eρ;
. for ρ ≥ ‖ZN,p‖2

L2(RN ), no positive solution exists;

3 if 1 + 4/N < p < 2∗ − 1, there exists ρ∗ > 0, depending on p, such that:

. eρ is achieved if and only if 0 < ρ ≤ ρ∗.

. no positive solutions exists for ρ > ρ∗,

. For 0 < ρ < ρ∗ there exist at least two distinct positive solutions.

In this latter case, there exist positive solutions of the problem which are not
least energy solutions.
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Remarks on least action solutions

−∆U + λU = Up, U ∈ H1
0 (B1)

aλ = inf{Aλ(U) : U ∈ H1
0 (B1), U 6≡ 0, A′λ(U) = 0}

Existence and uniqueness of (positive) solution for any λ ∈ (−λ1(B1),∞):

λ 7→ Uλ (least action solution).

Corollary

For 1 < p ≤ 1 + 4/N (subcritical and critical), the notions of least energy
and of least action coincide.

For p > 1 + 4/N, this no longer happens: there are least action solutions
which are not least energy solutions.
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Orbital Stability

Let U denote a least energy solution of
−∆U + λU = Up∫
B1

U2 dx = ρ, U > 0.

and let
Φ(t, x) = eiλtU(x).

Theorem

If 1 < p ≤ 1 + 4/N (subcritical and critical) then Φ is orbitally stable;

if 1 + 4/N < p < 2∗ − 1 (supercritical) then Φ is orbitally stable for a.e.
ρ ∈ (0, ρ∗].

Conjecture: in the latter case, stability ∀ ρ ∈ (0, ρ∗), instability for ρ = ρ∗.
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The boundary of the domain has a stabilizing effect.

This effect was already observed in
[Fibich, Merle Phys. D (2001), Fukuizumi, Selem, Kikuchi Nonlinearity (2012)]

when dealing with least action solutions:
according to their results, the corresponding standing waves are stable when
λ ∼ −λ1(B1) and λ ∼ +∞, in the subcritical and critical cases.
In the supercritical one

. when λ ∼ −λ1, least action solutions are stable;

. when λ ∼ +∞, least action solutions are unstable.

Our contribution:

Corollary

Let Uλ be the unique positive solution of

−∆U + λU = Up, U ∈ H1
0 (B1).

(hence a least action solution).
If 1 < p ≤ 1 + 4/N, then eiλtUλ is orbitally stable for every λ ∈ (−λ1(B1),+∞).
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Ideas of the proof

For the moment, take Ω any bounded domain.


−∆U + λU = Up∫

Ω

U2 dx = ρ

U(x)=
√
ρu(x)

←−−−−−−−→
µ=ρ(p−1)/2


−∆u + λu = µup∫

Ω

u2 dx = 1

We choose to parameterize solutions with

α =

∫
Ω

|∇u|2 ≥ λ1(Ω),

and to study the (possibly ill-defined, multivalued) map

α 7→ (u, λ, µ).

If we succeed, our original problem is translated into:

to find α such that a corresponding µ = ρ(p−1)/2.
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Existence
Optimization Problem with two constraints

For each α > λ1(Ω), take

Mα = sup

{∫
Ω

|u|p+1 dx : u ∈ H1
0 (Ω),

∫
Ω

u2 dx = 1,

∫
Ω

|∇u|2 dx = α

}
.

Related to Gagliardo-Nirenberg inequality:

‖u‖p+1
Lp+1(Ω) ≤ CN,p‖u‖p+1−N(p−1)/2

L2(Ω) ‖∇u‖N(p−1)/2
L2(Ω) , ∀u ∈ H1

0 (Ω)

by:

CN,p = sup
α≥λ1(Ω)

Mα

αN(p−1)/2
.

Theorem

Mα is achieved by a positive function u ∈ H1
0 (Ω), and there exist µ > 0,

λ > −λ1(Ω) such that

−∆u + λu = µup,

∫
Ω

u2 dx = 1,

∫
Ω

|∇u|2 dx = α.
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Behavior near α = λ1

What happens for α ∼ λ1(Ω)?

−∆u + λu = µup,

∫
Ω

u2 dx = 1.

Take the map:

Φ(u, µ, λ) =

(
∆u − λu + µup,

∫
Ω

u2 dx − 1,

∫
Ω

|∇u|2 dx
)
.

We can prove that (ϕ1, 0,−λ1) is ordinary singular for Φ, in the sense of
Ambrosetti–Prodi.

Proposition

The equation
Φ(u, µ, λ) = (0, 0, λ1 + ε)

has exactly two solutions for each small ε > 0. One of these solutions is such that∫
Ω
up+1 = Mα and satisfies λ > −λ1, µ > 0. The other is associated to the

defocusing case λ < −λ1, µ < 0.
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Behavior for α large

By construction, u has Morse index 1 or 2. When αn → +∞, we find a singularly
perturbed problem: if xn is a local maximum for un, then

vn(x) :=

(
µn

λn

)1/(p−1)

un

(
x√
λn

+ xn

)
satisfies, up to subs.,

vn → ZN,p in C 1
loc(RN).

[Druet, Hebey and Robert; Esposito and Petralla]. As a consequence

Proposition

As αn → +∞, we have
λn → +∞,

and

µn →


+∞ 1 < p < 1 + 4

N

C (N, p) p = 1 + 4
N

0 1 + 4
N < p < 2∗ − 1.
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The upper curve
Ω = B1(0)

Back to Ω = B1(0) (and µ > 0): combining results/ideas of many authors [Gidas

Ni Nirenberg, Kwong, Kwong Li, Korman, Aftalion Pacella, Felmer Mart́ınez Tanaka] we have
uniqueness of positive solutions, which Morse index is always one. Let:

S+ =

{
(u, µ, λ) : −∆u + λu = µup, u > 0,

∫
B1

u2 = 1, µ > 0

}

Proposition

We can parameterize S+ with α in a smooth way:

α 7→ (u(α), µ(α), λ(α)),

where
∫
B1
|∇u(α)|2 = α, and u(α) achieves Mα. Moreover, λ′(α) > 0.

It turns out that the behavior of µ is crucial:

prescribing the mass ρ is equivalent to prescribing µ = ρ(p−1)/2;

µ′ positive (resp. negative) implies orbital stability (resp. instability) of the
corresponding standing waves [Grillakis, Shatah, Strauss JFA (1987)].
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The upper curve
Ω = B1(0)

Subcritical and Critical cases. We prove µ′ > 0 for every α

Existence and stability follow.
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The upper curve
Ω = B1(0)

Supercritical case, p > 1 + 4/N: Conjecture

20 40 60 80
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Μ

Numerical simulation for N = 3, p = 3

Existence follows. Also stability, with some further work.
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Some questions

The full picture for positive solutions in the ball suggests several
questions/conjectures (for p critical or supercritical):

non-existence of positive solutions for large ρ in general Ω

existence of positive solutions, maybe stable, for small ρ in general Ω

existence of non-necessary positive solutions for large ρ (also in B)

systems of NLS equations on bounded domains.
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Non-existence: some examples

For p critical and supercritical and ρ large no positive solution exists in the ball.

What about general domains and/or changing-sign solutions?

Necklace solutions: any Dirichlet solution of

−∆U + λU = |U|p−1U in a rectangle R ⊂ RN

can be scaled to a solution of

−∆U + k2λU = |U|p−1U in R/k, k ∈ N+,

and then kN copies of it can be juxtaposed, with alternating sign. The new
solution on R has k4/(p−1) times the mass of the starting one. In the disk?

Dumb-bell domains: taking k copies of B1, joined by small channels, one can
construct positive solutions having mass close to k times the mass of the
solution on B1.

The second example suggests to classify solutions in terms of their Morse index,
rather than in terms of their nodal properties.
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Non-existence: the role of the Morse index

U solution for some λ. Its Morse index is

m(U) = max

k :

∃V ⊂ H1
0 (Ω), dim(V ) = k : ∀v ∈ V \ {0}∫

Ω

|∇v |2 + λv2 − p|U|p−1v2 dx < 0

 ∈ N.

In Ω = B1, a solution U is positive iff m(U) = 1.

Theorem ([Pierotti, V., Calc Var PDE (2017)])

For every Ω ⊂ RN bounded C 1 domain, k ≥ 1, 1 < p < 2∗ − 1,

sup

{
ρ > 0 :

there exists a solution U (for some λ)
having Morse index m(U) ≤ k

}
< +∞ ⇐⇒ p ≥ 1 +

4

N
.

Proof: blow-up analysis of sequences of solutions with bounded Morse index, via
suitable a priori pointwise estimates. In case the mass is unbounded on such a
sequence, the sequence splits in the superposition of at most k profiles, which
converge (suitably rescaled) to entire solutions.
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Existence: Local minimizers

The Grillakis-Shatah-Strauss theory for orbital stability implies that the orbitally
stable solutions we found in B are minimizers.

Theorem ([Pierotti, V., Calc Var PDE (2017)], [Noris, Tavares, V., Nonlinearity (2019)])

For every 0 < ρ < ρ̂1 = ρ̂1(Ω, p) there exists a solution which is a local minimizer
of the energy E on {Q = ρ}, and the corresponding ground state set is orb. stable.
Furthermore, for every Lipschitz Ω,

1 < p < 1 +
4

N
=⇒ ρ̂1 (Ω, p) = +∞,

p = 1 +
4

N
=⇒ ρ̂1 (Ω, p) ≥ ‖ZN,p‖2

L2(RN ),

1 +
4

N
< p ≤ 2∗ − 1 =⇒ ρ̂1 (Ω, p) ≥ DN,pλ1(Ω)

2
p−1−

N
2 ,

where the universal constant DN,p is explicit.

We deal also with the Sobolev critical case.

This explains the second (unstable) positive solution in the supercritical case.

The last estimate is new also for the ball. Furthermore, it provides
information on the necklace solutions.
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Consequences on special domains

Theorem

Let Ω = B be a ball in RN . Then

p < 1 +
4

N − 1
=⇒ there exists a solution for every ρ > 0.

An analogous result holds when Ω = R is a rectangle, without further restrictions
on p < 2∗ − 1.

Higher masses require higher Morse index–solutions. In particular, in the ball, even
though no positive solution exists, nodal solutions with higher Morse index can be
obtained: nodal ground states with higher Morse index.

Proof: divide the ball in 2k equal sectors and estimate the corresponding first
eigenvalue.

gianmaria.verzini (polimi.it) Normalized solutions Venezia 2019 29 / 32



Consequences on special domains

Theorem

Let Ω = B be a ball in RN . Then

p < 1 +
4

N − 1
=⇒ there exists a solution for every ρ > 0.

An analogous result holds when Ω = R is a rectangle, without further restrictions
on p < 2∗ − 1.

Higher masses require higher Morse index–solutions. In particular, in the ball, even
though no positive solution exists, nodal solutions with higher Morse index can be
obtained: nodal ground states with higher Morse index.

Proof: divide the ball in 2k equal sectors and estimate the corresponding first
eigenvalue.

gianmaria.verzini (polimi.it) Normalized solutions Venezia 2019 29 / 32



Systems

The existence of minimizers and their orbital stability can be proved also for
systems: 

−∆u1 + ω1u1 = µ1u1|u1|p−1 + βu1|u1|(p−3)/2|u2|(p+1)/2

−∆u2 + ω2u2 = µ2u2|u2|p−1 + βu2|u2|(p−3)/2|u1|(p+1)/2∫
Ω
u2
i = ρi , i = 1, 2,

(u1, u2) ∈ H1
0 (Ω;R2).

Also in this case we can cover p = 2∗ − 1.
[Noris, Tavares, V., Nonlinearity (2019)]
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Open problems – Work in progress

Our main conjecture is the existence of solutions for every ρ, p, Ω.

Methodological approach: topological approach? Indeed, applications to
ergodic Mean Field Games systems motivate the study of normalized solutions
to some class of non-variational semilinear elliptic equations/systems.

Metric graphs: existence of normalized local minimizers when a global one
does not exists.

Semiclassical analysis: it seems to make sense only in the subcritical case
p < 1 + 4

N .
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Thank you for your attention, and...

Tanti auguri Professore!!
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