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The problem

Let us consider the following Liouville type problem:

(Pλ)

{
−∆u = λ2eu in Ω

u = 0 on ∂Ω

where
Ω ⊂ R2 is a smooth and bounded domain.
λ > 0 is a parameter.
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Asymptotic behavior of solutions of (Pλ)
Let uλ be a solution of (Pλ).

Then

λ2
∫

Ω

euλ dx→ 8π` as λ→ 0 ` = 0, 1, 2, . . . ,+∞

Moreover one of the following holds:

(a) ` = 0 =⇒ uλ → 0 uniformly in Ω as λ→ 0;

(b) ` ∈ N =⇒ there exist ` different points ξ1, . . . , ξ` ∈ Ω s.t. as λ→ 0
uλ(ξj)→ +∞ and

uλ → 8π
∑̀
j=1

G(x, ξj) C2
loc(Ω̄ \ {ξ1, . . . , ξ`})1

i.e. uλ blows-up at each ξ1, . . . , ξ`

(c) ` = +∞ =⇒ uλ(x)→ +∞ for any x ∈ Ω, i.e.

uλ blows-up in whole domain

Nagasaki, Suzuki Asymp. Anal. (1990)

1G denotes the Green’s function of −∆ with D. B.C.
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Existence results for (Pλ)

Forλ large there are no solutions of (Pλ)

What about the existence for λ small?
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About the minimal solution

uλ,min is a solution close to zero which represents a strict local minimizer of
the energy functional

J(u) =
1
2

∫
Ω

|∇u|2 dx− λ2
∫

Ω

eu dx

Properties of uλ,min:

∗ uλ,min → 0 as λ→ 0

∗ λ2
∫

Ω

euλ,min dx→ 0 as λ→ 0
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Existence results for (Pλ)

Ω bounded domain minimal solution uλ,min

unbounded solution uλ,unb
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About the unbounded solution

If uλ blows-up at ` points ξ1, . . . , ξ` then (ξ1, . . . , ξ`) is a critical point of
the Kirchoff-Routh path function

H(x1, . . . , x`) :=
∑̀
j=1

H(xj, xj)−
∑̀
i,j=1
i 6=j

G(xi, xj)
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G is the Green’s function
of−∆ with D.B.C. and H is its
regular part
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About the unbounded solution
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i 6=j

G(xi, xj)

If (ξ1, . . . , ξ`) is a C1− stable critical point of the functionH then there
exists λ0 such that for any λ ∈ (0, λ0) the problem has a solution uλ such
that as λ→ 0
∗ uλ blow-up at ξ1, . . . , ξ`
∗ uλ → 8π

∑`
j=1 G(x, ξj) C2

loc(Ω̄ \ {ξ1, . . . , ξ`})

∗ λ2
∫

Ω

euλ → 8π`.

Nagasaki, Suzuki Asymp. Anal. (1990)

Baraket, Pacard Calc. Var. (1997)

del Pino, Kowalczyk, Musso Calc. Var. (2005)

Esposito, Grossi, Pistoia Ann. I. H. P. (2005)
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Situation in a convex domain

In a convex domain only solutions with one blow-up point do exist

Grossi, Takahashi JFA (2010)
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Situation in a non-simply connected domain

In a non-simply connected domain for any ` ∈ N there exists a solution with `
blow-up points

del Pino, Kowalczyk, Musso Calc. Var. (2005)
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Existence results for (Pλ)

Ω bounded domain minimal solution uλ,min

unbounded solution uλ,unb

Ω bounded + convex uλ,unb is a 1- bubble solution

Ω bounded + not simply connected uλ,unb is a `- bubble solution

Ω = A = Br2 \ Br1 , r2 > r1 maximal solution umax,λ
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About the maximal solution in A

Properties of umax,λ

∗ umax,λ is radial

∗ umax,λ → +∞ as λ→ 0

∗ λ2eumax,λ →

{
0 r 6=

√
r1r2

+∞ r =
√

r1r2
as λ→ 0

∗ λ2
∫

Ω

eumax,λ → +∞ as λ→ 0

Nagasaki, Suzuki, J. of Diff. Eqs. (1990)
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An accurate asymptotic analysis in the annulus
A := {x ∈ R2 : r1 < |x| < r2}.
As λ→ 0

umax,λ ∼
(

2 ln
1
λ

)
W in C0

loc(r1, r2) \ r0

where r0 :=
√

r1r2 andW is the
capacity potential of the curve
γ := {|x| = r0}, i.e. solves the
elliptic problem
W ′′ + 1

r
W ′ = 0 r ∈ (r1, r2) \ r0

W(r1) =W(r2) = 0
W(r0) = 1

and satisfies the free-boundary
condition

W ′+(r0) = −W ′−(r0)
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If rλ is the maximum of the
solution umax,λ(rλ) := ‖umax,λ‖∞
then

ūλ(t) := umax,λ(ελt + rλ)− umax,λ(rλ)

t ∈ Aλ :=

(
r1 − rλ
ελ

,
r2 − rλ
ελ

)
As λ→ 0

rλ → r0 :=
√

r1r2

ε2
λ := 1

λ2e‖umax,λ‖∞
→ 0

ūλ → U in C1
loc(R) where

U(t) := ln 4
e
√

2t

(1 + e
√

2t)2

is the unique solution to{
U ′′ + eU = 0 in R
U(0) = U ′(0) = 0

Gladiali, Grossi, Asymp. Anal.
(2007).
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In a convex bounded domain there are only two solutions

the minimal solution;

the solution blowing up at the minimum point of the Robin’s functionH(x) := H(x, x).

Weston, Siam J. Math. Anal. (1978)

Moseley, SIAM J. of Math. Anal. (1983)

Suzuki, Annales de l’I.H.P. (1992)

In a not simply-connected domain there are

the minimal solutions;

the solution blowing up at the C1− stable critical point of the Kirchoff-Routh path function
H(x).

In an annulus there are

the minimal solutions;

the solution blowing up at the C1− stable critical point of the Kirchoff-Routh path function
H(x).

the maximal solutions.
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Open problem

Is it possible to find a maximal solution with infinite mass, i. e.∫
Ω

λ2euλ → +∞ as λ→ 0

in a general domain?

Remark
A maximal solution cannot concentrate on a finite set of points
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The main ingredient: the curve

Let Ω be a bounded domain. Find γ ⊂ Ω a simple and closed curve whose
capacity potential Wγ ∈ C2(Ω \ γ) ∩ C0(Ω)

∆Wγ = 0 in Ω \ γ
Wγ = 0 on ∂Ω

Wγ = 1 on γ.

satisfies the free boundary
condition

∂ν+Wγ = ∂ν−Wγ on γ

We call (FB) this problem!

Giusi Vaira Maximal solution of the Liouville equation In honour of Prof. Ambrosetti



The main ingredient: the curve

Let Ω be a bounded domain. Find γ ⊂ Ω a simple and closed curve whose
capacity potential Wγ ∈ C2(Ω \ γ) ∩ C0(Ω)

∆Wγ = 0 in Ω \ γ
Wγ = 0 on ∂Ω

Wγ = 1 on γ.

satisfies the free boundary
condition

∂ν+Wγ = ∂ν−Wγ on γ

We call (FB) this problem!

Giusi Vaira Maximal solution of the Liouville equation In honour of Prof. Ambrosetti



About (FB)

In the Annulus
γ := {|x| = √r1r2 = r0} is the
solution of the free boundary
problem
W ′′ + 1

r
W ′ = 0 if r ∈ (r1, r2) \ r0

W(r1) =W(r2) = 0
W(r0) = 1
W ′+(r0) = −W ′−(r0)

In a multiply connected domain
There exists γ solutions of
(FB)?
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About (FB) in a doubly connected domain

Lemma
Let Ω ⊂ R2 be a doubly connected set, bounded such that the bounded component of
R2 \ Ω is not a point. There exists a simple, closed and smooth curve γ ⊂ Ω such that
Wγ satisfies (FB). Additionally, γ is unique.

Remark
We rely here on a generalization of the Riemann mapping theorem which says
that any doubly connected domain is conformally equivalent to an annulus,
i.e. there exists a holomorphic, bijective map ψ : Ω → Br1 \ Br2 with some
r1 > r2 > 0.
Moreover we have that

ψ(γ) = γr0 r0 =
√

r1r2.
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Theorem
Let Ω be a doubly connected, bounded domain such that the bounded
component of R2 \ Ω is not a point. There exist a sequence λn → 0, and a
sequence of maximal solutions uλn of the Liouville problem (Pλ) with the
following properties:

1 It holds uλn

2 log 1
λn

→Wγ , as λn → 0

over compact subsets of Ω \ γ.
2 We have

λ2
n

2 log 1
λn

∫
Ω

euλn dx→ 4π
log r1

r2

, as λn → 0.
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Some remarks

The mass of the maximal solution depends only on the conformal class of
Ω.
In the general case we can only prove existence of the maximal solution
for an open set of λ such that 0 is its limit point, while in the
radially symmetric case the analogous theorem holds for the interval
λ ∈ (0, λ0) for some λ0.
The Morse index of the maximal solution grows to +∞ as λ→ 0.
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How to build the solution

Glue the two profiles founded by Gladiali and Grossi
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Scheme for the annulus
Far from the curve γ := {|x| = √r1r2}

uλ ∼ 2 ln
1
λ
W

where
W ′′ +

1
r
W ′ = 0 if r ∈ (r1, r2) \ r0

W(r1) =W(r2) = 0

W(r0) = 1

W ′+(r0) = −W ′−(r0)

Close to the curve γ := {|x| = √r1r2}
the solutions looks like

uλ → U

U(t) := ln 4
e
√

2t

(1 + e
√

2t)2

is the unique solution to{
U ′′ + eU = 0 in R

U(0) = U ′(0) = 0.
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Outline of the proof

Ω
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γ
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Outline of the proof

Ω = Ω+ ∪ Ω−

γ
Ω−

Ω+
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Outline of the proof

γ

Ω
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Outline of the proof

δλ

Inner Region

We parametrize a neighborhood
of γ by x 7→ (s, t) where s is the
arc length parameter on and t is
the signed distance. Near γ the
solution should be of the form

v0(s, t) = U(λµλ(s)t) + 2 logµλ(s)

where 1
λµλ
→ 0 as λ→ 0 and

U(t) = ln 4
e
√

2t

(1 + e
√

2t)2

and

δλ → 0 as λ→ 0
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Outline of the proof

2δλ

Outer Region

Far from γ the function u is
essentially harmonic and the
outer approximation of u is
given by

(∗)

{
∆w±0 = 0 in Ω±

w±0 = 0 in ∂Ω ∩ ∂Ω±

No information on γ so far.
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Outline of the proof

t
γ(s)

U(λµλt) + 2 log(µλ)

Figure: Inner approximation

∆w−0 = 0

w−0 = 0

∆w+
0 = 0

w+
0 = 0

?

Figure: Outer approximation
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Outline of the proof

Intermediate Region
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The matching conditions

It holds:

v0(s, t) = b0 + 2 logµλ − a0λµλ|t|+ O
(

e−a0λµλ|t|
)

and
w±0 (s, t) = w±0 (s, 0) + t∂nw±0 (s, 0) + . . .
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The matching conditions

It holds:

v0(s, t) = b0 + 2 logµλ −a0λµλ|t| + O
(

e−a0λµλ|t|
)

and

w±0 (s, t) = w±0 (s, 0) + t∂nw±0 (s, 0) + . . .

(∗∗)

{
w+

0 = b0 + 2 logµλ

∂nw+
0 = −a0λµλ.

{
w−0 = b0 + 2 logµλ

∂nw−0 = a0λµλ.

(*) and (**) give one overdetermined, nonlinear problem for µλ.
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The match

At this point we solve (*)+(**) only with a certain precision.
Hence we find

w±0 ≈ (β + log β)W±γ
where

β := 2 log
1

a0λ
+ b0 µλ = −β + log β

a0λ
∂nW+

γ =
β + log β

a0λ
∂nW−γ

Then with this choice:
∂nw±0 ± a0λµλ = O(1) on γ;

w±0 − b0 − 2 logµλ = O
(

log log 1
λ

log 1
λ

)
;
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A fixed point argument

We define the first approximation:

u0 = χ0v0 + χ+
0 w+

0 + χ−0 w−0

where χ0 and χ±0 are some cutoff functions overlapping at the distance O(δλ)
of γ.

We want to set up a fixed point scheme to find a function ψ ∈ H1
0(Ω) such

that
∆(u0 + ψ) + λ2eu0+ψ = 0

i.e.
∆ψ + λ2eu0ψ︸ ︷︷ ︸
Lu0 (ψ)

linear operator at u0

= −(∆u0 + λ2eu0)︸ ︷︷ ︸
Eu0error

− λ2eu0(eψ − 1− ψ)︸ ︷︷ ︸
Q(ψ)

quadratic inψ
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The error

The error of the first order approximation
close to the curve is still quite large and not

even bounded!

Indeed, we use stretched variables η = λµλt and we get

Eu0 ∼ ∂2
ηηU + eU︸ ︷︷ ︸

:=0

+ log
1
λ
U ′ = O

(
log

1
λ

)
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Improvement of the solution

We look for a solution of (Pλ) in the form

u = u0 + u1 + u2

where
u0 = χ0v0 + χ+

0 w+
0 + χ−0 w−0

u1 = χ1v̄1 + χ+
1 w+

1 + χ−1 w−1

u2 = χ2v2

where
1 χ0 and χ±0 are some cutoff functions overlapping at the distance O(δλ) of
γ;

2 χ1 and χ±1 are some cutoff functions overlapping at the distance O(m1δλ)
of γ with m1 > 2;

3 χ2 is a cutoff function supported in |t| < 2m2δλ with m2 > m1
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Improvement of the solution

We look for a solution of (Pλ) in the form

u = u0 + u1 + u2

where
u0 = χ0v0 + χ+

0 w+
0 + χ−0 w−0

u1 = χ1v̄1 + χ+
1 w+

1 + χ−1 w−1

u2 = χ2v2

where
1 v̄1 is an ”almost” affine function so that the error of v0 + v̄1 is small in the

inner region;
2 w±1 is an ”almost” harmonic function in the domain (up to the curve)

which matches with v̄1 close to the curve
3 v2 is an exponentially decaying function
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How to build v̄1: the linear theory close to the curve

In the inner region we let the linear operator

Lu0 = ∂2
η + e U(η) .

where η = λµλt is a stretched variable.
The fundamental set K of Lu0 is given by

K = span {ϕ1, ϕ2} (1)

where

ϕ1 = U′= −2
η

|η|
+ O(e−2|η|) and ϕ2 = ηU′ + 2= −2|η|+ 2 + O(e−2|η|)
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v̄1(s, η) solves 
Lu0 v = g in [0, `(γ)]× R∫

R
g(η)ϕ1(η) dη = 0 =

∫
R

g(η)ϕ2(η) dη.

namely

v̄1(s, η) = h̄1(s)ϕ1(η) + h̄2(s)ϕ2(η) = h̄±1 (s)︸ ︷︷ ︸
free

+ h̄±2 (s)︸ ︷︷ ︸
free

η + ṽ1

as η → ±∞.
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How to build w±1 : the linear theory associated to the
free boundary problem

−∆w±= g±, in Ω±,

w±= 0, on ∂Ω± ∩ ∂Ω.

w±= h±1 , on γ,

∂nw±= λµλh±2 , on γ.
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The right matching problem

We look for functions w± such that

−∆w±= g±, in Ω±,

w±= 0, on ∂Ω± ∩ ∂Ω.

w±= h±1 , on γ,

∂nw±= λµλh±2 , on γ.

the matching problem is overdetermined and its solution are the functions w±

together with the function h.
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A result for solving the matching problem

Proposition
There exists a sequence λn → 0 such that for any g± ∈ L2(Ω±) the matching
problem has a solution w± ∈ H2(Ω±) and h ∈ H1(γ).
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Other idea for solving the problem: suggested by S.
Terracini

The function
W := min{u, 2− u} and the
curve γ := {u = 1}
solves the problem

∆W = 0 in Ω \ γ
W = 0 on ∂Ω

W = 1 on γ

∂ν+W = ∂ν−W on γ.

One can obtain the same result by making
some changes (technical changes) in the
proof and by means of the Dirichlet to

Neumann map!
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In a general multiply connected domain: work in
progress..
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Related results

Let

(KS)

{
∆u + u + λeu = 0 in Ω

∂nu = 0 on ∂Ω

which comes up as a stationary equation for the Keller-Segel model.

(KS) has bubbling solutions, including bubbles on ∂Ω

del Pino, Wei Nonlinearity (2006);
It has solutions that blow up along the whole boundary.

del Pino, Pistoia, V. J. of Diff. Eqs (2016);
Pistoia, V. Proc. of the Royal Soc. of Ed. Sec A (2015);
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Thank you for the attention!
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