MAXIMAL SOLUTION OF THE LIOUVILLE EQUATION IN DOUBLY CONNECTED DOMAIN

Giusi Vaira

Variational methods, with applications to problems in mathematical physics and geometry Venezia, November 30 - December 01, 2019

School of Polytechnics and of the Basic Sciences Department of Mathematics and Physics

The problem

Let us consider the following Liouville type problem:

$$(\mathcal{P}_{\lambda}) \qquad \begin{cases} -\Delta u = \lambda^2 e^u & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega \end{cases}$$

4 D F 4 B F

The problem

Let us consider the following Liouville type problem:

$$(\mathcal{P}_{\lambda}) \qquad \begin{cases} -\Delta u = \lambda^2 e^u & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where

• $\Omega \subset \mathbb{R}^2$ is a smooth and bounded domain.

The problem

Let us consider the following Liouville type problem:

$$(\mathcal{P}_{\lambda}) \qquad \begin{cases} -\Delta u = \lambda^2 e^u & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where

- $\Omega \subset \mathbb{R}^2$ is a smooth and bounded domain.
- $\lambda > 0$ is a parameter.

Let u_{λ} be a solution of (\mathcal{P}_{λ}) .

 ^{1}G denotes the Green's function of $-\Delta$ with D. B.C.

Maximal solution of the Liouville equation

Let u_{λ} be a solution of (\mathcal{P}_{λ}) . Then

$$\lambda^2 \int_{\Omega} e^{u_{\lambda}} dx \to 8\pi \ell$$
 as $\lambda \to 0$ $\ell = 0, 1, 2, \dots, +\infty$

 ^{1}G denotes the Green's function of $-\Delta$ with D. B.C.

Maximal solution of the Liouville equation

Let u_{λ} be a solution of (\mathcal{P}_{λ}) . Then

$$\lambda^2 \int_{\Omega} e^{u_{\lambda}} dx \to 8\pi \ell$$
 as $\lambda \to 0$ $\ell = 0, 1, 2, \dots, +\infty$

Moreover one of the following holds:

 ^{1}G denotes the Green's function of $-\Delta$ with D. B.C.

Maximal solution of the Liouville equation

In honour of Prof. Ambrosetti

Let u_{λ} be a solution of (\mathcal{P}_{λ}) . Then

$$\lambda^2 \int_{\Omega} e^{u_{\lambda}} dx \to 8\pi \ell \quad \text{as } \lambda \to 0 \quad \ell = 0, 1, 2, \dots, +\infty$$

Moreover one of the following holds:

(a) $\ell = 0 \implies u_{\lambda} \to 0$ uniformly in Ω as $\lambda \to 0$;

 ^{1}G denotes the Green's function of $-\Delta$ with D. B.C.

Maximal solution of the Liouville equation

In honour of Prof. Ambrosetti

Let u_{λ} be a solution of (\mathcal{P}_{λ}) . Then

$$\lambda^2 \int_{\Omega} e^{u_{\lambda}} dx \to 8\pi \ell \quad \text{as } \lambda \to 0 \quad \ell = 0, 1, 2, \dots, +\infty$$

Moreover one of the following holds:

- (a) $\ell = 0 \implies u_{\lambda} \to 0$ uniformly in Ω as $\lambda \to 0$;
- (b) $\ell \in \mathbb{N} \implies$ there exist ℓ different points $\xi_1, \ldots, \xi_\ell \in \Omega$ s.t. as $\lambda \to 0$ $u_\lambda(\xi_j) \to +\infty$ and

$$u_{\lambda} \to 8\pi \sum_{j=1}^{\ell} G(x,\xi_j) \qquad C^2_{loc}(\bar{\Omega} \setminus \{\xi_1,\ldots,\xi_\ell\})^1$$

 ^{1}G denotes the Green's function of $-\Delta$ with D. B.C.

Let u_{λ} be a solution of (\mathcal{P}_{λ}) . Then

$$\lambda^2 \int_{\Omega} e^{u_{\lambda}} dx \to 8\pi \ell \quad \text{as } \lambda \to 0 \quad \ell = 0, 1, 2, \dots, +\infty$$

Moreover one of the following holds:

(a)
$$\ell = 0 \implies u_{\lambda} \to 0$$
 uniformly in Ω as $\lambda \to 0$;

(b) $\ell \in \mathbb{N} \implies$ there exist ℓ different points $\xi_1, \ldots, \xi_\ell \in \Omega$ s.t. as $\lambda \to 0$ $u_\lambda(\xi_j) \to +\infty$ and

$$u_{\lambda} \to 8\pi \sum_{j=1}^{\ell} G(x,\xi_j) \qquad C^2_{loc} (\bar{\Omega} \setminus \{\xi_1,\ldots,\xi_\ell\})^1$$

i.e. u_{λ} blows-up at each $\xi_1, \ldots, \xi_{\ell}$

¹*G* denotes the Green's function of $-\Delta$ with D. B.C.

Let u_{λ} be a solution of (\mathcal{P}_{λ}) . Then

$$\lambda^2 \int_{\Omega} e^{u_{\lambda}} dx \to 8\pi \ell \quad \text{as } \lambda \to 0 \quad \ell = 0, 1, 2, \dots, +\infty$$

Moreover one of the following holds:

(a)
$$\ell = 0 \implies u_{\lambda} \to 0$$
 uniformly in Ω as $\lambda \to 0$;

(b) $\ell \in \mathbb{N} \implies$ there exist ℓ different points $\xi_1, \ldots, \xi_\ell \in \Omega$ s.t. as $\lambda \to 0$ $u_\lambda(\xi_j) \to +\infty$ and

$$u_{\lambda} \to 8\pi \sum_{j=1}^{\ell} G(x,\xi_j) \qquad C^2_{loc}(\bar{\Omega} \setminus \{\xi_1,\ldots,\xi_\ell\})^1$$

i.e. u_{λ} blows-up at each $\xi_1, \ldots, \xi_{\ell}$

(c) $\ell = +\infty \implies u_{\lambda}(x) \to +\infty$ for any $x \in \Omega$, i.e.

 ^{1}G denotes the Green's function of $-\Delta$ with D. B.C.

Let u_{λ} be a solution of (\mathcal{P}_{λ}) . Then

$$\lambda^2 \int_{\Omega} e^{u_{\lambda}} dx \to 8\pi \ell \quad \text{as } \lambda \to 0 \quad \ell = 0, 1, 2, \dots, +\infty$$

Moreover one of the following holds:

(a)
$$\ell = 0 \implies u_{\lambda} \to 0$$
 uniformly in Ω as $\lambda \to 0$;

(b) $\ell \in \mathbb{N} \implies$ there exist ℓ different points $\xi_1, \ldots, \xi_\ell \in \Omega$ s.t. as $\lambda \to 0$ $u_\lambda(\xi_j) \to +\infty$ and

$$u_{\lambda} \to 8\pi \sum_{j=1}^{\ell} G(x,\xi_j) \qquad C^2_{loc}(\bar{\Omega} \setminus \{\xi_1,\ldots,\xi_\ell\})^1$$

i.e. u_{λ} blows-up at each $\xi_1, \ldots, \xi_{\ell}$

(c) $\ell = +\infty \implies u_{\lambda}(x) \to +\infty$ for any $x \in \Omega$, i.e.

 u_{λ} blows-up in whole domain

 ${}^{1}G$ denotes the Green's function of $-\Delta$ with D. B.C.

Let u_{λ} be a solution of (\mathcal{P}_{λ}) . Then

$$\lambda^2 \int_{\Omega} e^{u_{\lambda}} dx \to 8\pi \ell$$
 as $\lambda \to 0$ $\ell = 0, 1, 2, \dots, +\infty$

Moreover one of the following holds:

(a)
$$\ell = 0 \implies u_{\lambda} \to 0$$
 uniformly in Ω as $\lambda \to 0$;

(b) $\ell \in \mathbb{N} \implies$ there exist ℓ different points $\xi_1, \ldots, \xi_\ell \in \Omega$ s.t. as $\lambda \to 0$ $u_\lambda(\xi_j) \to +\infty$ and

$$u_{\lambda} \to 8\pi \sum_{j=1}^{\ell} G(x,\xi_j) \qquad C^2_{loc}(\bar{\Omega} \setminus \{\xi_1,\ldots,\xi_\ell\})^1$$

i.e. u_{λ} blows-up at each $\xi_1, \ldots, \xi_{\ell}$

(c)
$$\ell = +\infty \implies u_{\lambda}(x) \to +\infty$$
 for any $x \in \Omega$, i.e.

 u_{λ} blows-up in whole domain

¹*G* denotes the Green's function of $-\Delta$ with D. B.C.

For λ large there are no solutions of (\mathcal{P}_{λ})

In honour of Prof. Ambrosetti

-

э

For λ large there are no solutions of (\mathcal{P}_{λ})

What about the existence for λ small?

Giusi Vaira

Maximal solution of the Liouville equation

In honour of Prof. Ambrosetti

For λ large there are no solutions of (\mathcal{P}_{λ})

What about the existence for λ small?

 Ω bounded domain *mini*

minimal solution $u_{\lambda,min}$

unbounded solution $u_{\lambda,unb}$

For λ large there are no solutions of (\mathcal{P}_{λ})

What about the existence for λ small?

 Ω bounded domain

minimal solution $u_{\lambda,min}$

unbounded solution $u_{\lambda,unb}$

About the *minimal* solution

 $u_{\lambda,\min}$ is a solution close to zero which represents a strict local minimizer of the energy functional

$$J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \lambda^2 \int_{\Omega} e^u \, dx$$

About the *minimal* solution

 $u_{\lambda,min}$ is a solution close to zero which represents a strict local minimizer of the energy functional

$$J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \lambda^2 \int_{\Omega} e^u \, dx$$

Properties of $u_{\lambda,min}$:

* $u_{\lambda,min} \rightarrow 0$ as $\lambda \rightarrow 0$

About the *minimal* solution

 $u_{\lambda,min}$ is a solution close to zero which represents a strict local minimizer of the energy functional

$$J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \lambda^2 \int_{\Omega} e^u \, dx$$

Properties of $u_{\lambda,min}$:

*
$$u_{\lambda,\min} \to 0 \text{ as } \lambda \to 0$$

* $\lambda^2 \int_{\Omega} e^{u_{\lambda,\min}} dx \to 0 \text{ as } \lambda \to 0$

Ω bounded domain

minimal solution $u_{\lambda,min}$

unbounded solution $u_{\lambda,unb}$

If *u_λ* blows-up at *ℓ* points *ξ*₁,...,*ξ_ℓ* then (*ξ*₁,...,*ξ_ℓ*) is a critical point of the Kirchoff-Routh path function

$$\mathcal{H}(x_1,\ldots,x_\ell):=\sum_{\substack{j=1\\i\neq j}}^\ell H(x_j,x_j)-\sum_{\substack{i,j=1\\i\neq j}}^\ell G(x_i,x_j)$$

If *u_λ* blows-up at *l* points *ξ*₁,...,*ξ_l* then (*ξ*₁,...,*ξ_l*) is a critical point of the Kirchoff-Routh path function

$$\sum_{j=1}^{\ell} H(x_j, x_j) - \sum_{\substack{i,j=1\\i\neq j}}^{\ell} G(x_i, x_j)$$

G is the Green's function of $-\Delta$ with D.B.C. and H is its regular part

In honour of Prof. Ambrosetti

If *u_λ* blows-up at *l* points *ξ*₁,...,*ξ_l* then (*ξ*₁,...,*ξ_l*) is a critical point of the Kirchoff-Routh path function

$$\mathcal{H}(x_1,\ldots,x_\ell):=\sum_{j=1}^\ell H(x_j,x_j)-\sum_{\substack{i,j=1\\i\neq j}}^\ell G(x_i,x_j)$$

If *u_λ* blows-up at *l* points *ξ*₁,...,*ξ_l* then (*ξ*₁,...,*ξ_l*) is a critical point of the Kirchoff-Routh path function

$$\mathcal{H}(x_1,\ldots,x_\ell):=\sum_{j=1}^\ell H(x_j,x_j)-\sum_{\substack{i,j=1\\i\neq j}}^\ell G(x_i,x_j)$$

- If $(\xi_1, \ldots, \xi_\ell)$ is a C^1 stable critical point of the function \mathcal{H} then there exists λ_0 such that for any $\lambda \in (0, \lambda_0)$ the problem has a solution u_λ such that as $\lambda \to 0$
 - * u_{λ} blow-up at $\xi_1, \ldots, \xi_{\ell}$

If *u_λ* blows-up at *ℓ* points *ξ*₁,...,*ξ_ℓ* then (*ξ*₁,...,*ξ_ℓ*) is a critical point of the Kirchoff-Routh path function

$$\mathcal{H}(x_1,\ldots,x_\ell):=\sum_{j=1}^\ell H(x_j,x_j)-\sum_{\substack{i,j=1\\i\neq j}}^\ell G(x_i,x_j)$$

- If $(\xi_1, \ldots, \xi_\ell)$ is a C^1 stable critical point of the function \mathcal{H} then there exists λ_0 such that for any $\lambda \in (0, \lambda_0)$ the problem has a solution u_λ such that as $\lambda \to 0$
 - * u_{λ} blow-up at $\xi_1, \ldots, \xi_{\ell}$ * $u_{\lambda} \to 8\pi \sum_{j=1}^{\ell} G(x, \xi_j) C^2_{loc}(\bar{\Omega} \setminus \{\xi_1, \ldots, \xi_{\ell}\})$

If *u_λ* blows-up at *l* points *ξ*₁,...,*ξ_l* then (*ξ*₁,...,*ξ_l*) is a critical point of the Kirchoff-Routh path function

$$\mathcal{H}(x_1,\ldots,x_\ell):=\sum_{\substack{j=1\\i\neq j}}^\ell H(x_j,x_j)-\sum_{\substack{i,j=1\\i\neq j}}^\ell G(x_i,x_j)$$

• If $(\xi_1, \ldots, \xi_\ell)$ is a C^1 - stable critical point of the function \mathcal{H} then there exists λ_0 such that for any $\lambda \in (0, \lambda_0)$ the problem has a solution u_λ such that as $\lambda \to 0$

*
$$u_{\lambda}$$
 blow-up at $\xi_1, \ldots, \xi_{\ell}$
* $u_{\lambda} \to 8\pi \sum_{j=1}^{\ell} G(x, \xi_j) C^2_{loc}(\bar{\Omega} \setminus \{\xi_1, \ldots, \xi_{\ell}\})$
* $\lambda^2 \int_{\Omega} e^{u_{\lambda}} \to 8\pi \ell.$

Nagasaki, Suzuki Asymp. Anal. (1990)

- Baraket, Pacard Calc. Var. (1997)
- del Pino, Kowalczyk, Musso Calc. Var. (2005)
- Esposito, Grossi, Pistoia Ann. I. H. P. (2005)

Situation in a convex domain

In a convex domain only solutions with one blow-up point do exist

Grossi, Takahashi JFA (2010)

In honour of Prof. Ambrosetti

Situation in a non-simply connected domain

In a non-simply connected domain for any $\ell \in \mathbb{N}$ there exists a solution with ℓ blow-up points

del Pino, Kowalczyk, Musso Calc. Var. (2005)

Ω bounded domain	minimal solution $u_{\lambda,min}$
	unbounded solution $u_{\lambda,unb}$
Ω bounded + convex	$u_{\lambda,unb}$ is a 1- bubble solution
Ω bounded + not simply connected	$u_{\lambda,unb}$ is a ℓ - bubble solution
$\Omega = \mathcal{A} = B_{r_2} \setminus B_{r_1}, r_2 > r_1$	maximal solution $u_{max,\lambda}$

ж

イロト イポト イヨト イヨト

Ω bounded domain	minimal solution $u_{\lambda,min}$
	unbounded solution $u_{\lambda,unb}$
Ω bounded + convex	$u_{\lambda,unb}$ is a 1- bubble solution
Ω bounded + not simply connected	$u_{\lambda,unb}$ is a ℓ - bubble solution
$\Omega = \mathcal{A} = B_{r_2} \setminus B_{r_1}, r_2 > r_1$	maximal solution $u_{max,\lambda}$

ж

イロト イポト イヨト イヨト

Properties of $u_{max,\lambda}$

* $u_{max,\lambda}$ is radial

Giusi Vaira

In honour of Prof. Ambrosetti

Properties of $u_{max,\lambda}$

- * $u_{max,\lambda}$ is radial
- * $u_{max,\lambda} \to +\infty$ as $\lambda \to 0$

4 D b 4 A

Properties of $u_{max,\lambda}$

- * $u_{max,\lambda}$ is radial
- * $u_{max,\lambda} \to +\infty$ as $\lambda \to 0$

$$* \ \lambda^2 e^{u_{max,\lambda}} \to \begin{cases} 0 \quad r \neq \sqrt{r_1 r_2} \\ +\infty \quad r = \sqrt{r_1 r_2} \end{cases} \text{ as } \lambda \to 0$$

4 D b 4 A

Properties of $u_{max,\lambda}$

- * $u_{max,\lambda}$ is radial
- * $u_{max,\lambda} \to +\infty$ as $\lambda \to 0$

*
$$\lambda^2 e^{u_{max,\lambda}} \rightarrow \begin{cases} 0 \quad r \neq \sqrt{r_1 r_2} \\ +\infty \quad r = \sqrt{r_1 r_2} \end{cases}$$
 as $\lambda \rightarrow 0$
* $\lambda^2 \int_{\Omega} e^{u_{max,\lambda}} \rightarrow +\infty$ as $\lambda \rightarrow 0$

Nagasaki, Suzuki, J. of Diff. Eqs. (1990)

An accurate asymptotic analysis in the annulus $\mathcal{A} := \{x \in \mathbb{R}^2 : r_1 < |x| < r_2\}.$ As $\lambda \to 0$

$$u_{max,\lambda} \sim \left(2\ln \frac{1}{\lambda}\right) \mathcal{W} \text{ in } C^0_{loc}(r_1,r_2) \setminus r_0$$

where $r_0 := \sqrt{r_1 r_2}$ and W is the capacity potential of the curve $\gamma := \{|x| = r_0\}$, i.e. solves the elliptic problem

$$egin{cases} \mathcal{W}''+rac{1}{r}\mathcal{W}'=0\ r\in(r_1,r_2)\setminus r_0\ \mathcal{W}(r_1)=\mathcal{W}(r_2)=0\ \mathcal{W}(r_0)=1 \end{cases}$$

and satisfies the free-boundary condition

$$\mathcal{W}'_+(r_0) = -\mathcal{W}'_-(r_0)$$

If r_{λ} is the maximum of the solution $u_{max,\lambda}(r_{\lambda}) := ||u_{max,\lambda}||_{\infty}$ then

$$\begin{split} \bar{u}_{\lambda}(t) &:= u_{max,\lambda}(\varepsilon_{\lambda}t + r_{\lambda}) - u_{max,\lambda}(r_{\lambda}t) \\ t &\in \mathcal{A}_{\lambda} := \left(\frac{r_{1} - r_{\lambda}}{\varepsilon_{\lambda}}, \frac{r_{2} - r_{\lambda}}{\varepsilon_{\lambda}}\right) \\ \text{As } \lambda &\to 0 \\ \bullet & r_{\lambda} \to r_{0} := \sqrt{r_{1}r_{2}} \\ \bullet & \varepsilon_{\lambda}^{2} := \frac{1}{\lambda^{2}e^{\parallel u_{max,\lambda}\parallel_{\infty}}} \to 0 \\ \bullet & \bar{u}_{\lambda} \to \mathcal{U} \text{ in } C_{loc}^{1}(\mathbb{R}) \text{ where} \\ \mathcal{U}(t) := \ln 4 \frac{e^{\sqrt{2}t}}{(1 + e^{\sqrt{2}t})^{2}} \end{split}$$

is the unique solution to

$$\begin{cases} \mathcal{U}'' + e^{\mathcal{U}} = 0 \text{ in } \mathbb{R} \\ \mathcal{U}(0) = \mathcal{U}'(0) = 0 \end{cases}$$

In a convex bounded domain there are only two solutions

- the minimal solution;
- the solution blowing up at the minimum point of the Robin's function $\mathcal{H}(x) := H(x, x)$.
- Weston, Siam J. Math. Anal. (1978)
- Moseley, SIAM J. of Math. Anal. (1983)
- Suzuki, Annales de l'I.H.P. (1992)

In a convex bounded domain there are only two solutions

- the minimal solution;
- the solution blowing up at the minimum point of the Robin's function $\mathcal{H}(x) := H(x, x)$.
- Weston, Siam J. Math. Anal. (1978)
- Moseley, SIAM J. of Math. Anal. (1983)
- Suzuki, Annales de l'I.H.P. (1992)

In a not simply-connected domain there are

- the minimal solutions;
- the solution blowing up at the C^1 stable critical point of the Kirchoff-Routh path function $\mathcal{H}(x)$.

- the minimal solution;
- the solution blowing up at the minimum point of the Robin's function $\mathcal{H}(x) := H(x, x)$.
- Weston, Siam J. Math. Anal. (1978)
- Moseley, SIAM J. of Math. Anal. (1983)
- Suzuki, Annales de l'I.H.P. (1992)

In a not simply-connected domain there are

- the minimal solutions;
- the solution blowing up at the C^1 stable critical point of the Kirchoff-Routh path function $\mathcal{H}(x)$.

In an annulus there are

- the minimal solutions;
- the solution blowing up at the C^1 stable critical point of the Kirchoff-Routh path function $\mathcal{H}(x)$.
- the maximal solutions.

-

イロト イポト イヨト

Open problem

Is it possible to find a maximal solution with infinite mass, i. e.

$$\int_{\Omega} \lambda^2 e^{u_{\lambda}} \to +\infty \qquad \text{as } \lambda \to 0$$

in a general domain?

Open problem

Is it possible to find a maximal solution with infinite mass, i. e.

$$\int_{\Omega} \lambda^2 e^{u_{\lambda}} \to +\infty \qquad \text{as } \lambda \to 0$$

in a general domain?

Remark

A maximal solution cannot concentrate on a finite set of points

The main ingredient: the curve

Let Ω be a bounded domain. Find $\gamma \subset \Omega$ a simple and closed curve whose capacity potential $W_{\gamma} \in C^2(\Omega \setminus \gamma) \cap C^0(\Omega)$

$\Delta W_{\gamma} = 0$	in $\Omega \setminus \gamma$
$W_{\gamma}=0$	on $\partial \Omega$
$W_{\gamma} = 1$	on γ .

```
satisfies the free boundary condition
```

 $\partial_{\nu^+} W_{\gamma} = \partial_{\nu^-} W_{\gamma}$ on γ

We call (\mathcal{FB}) this problem!

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The main ingredient: the curve

Let Ω be a bounded domain. Find $\gamma \subset \Omega$ a simple and closed curve whose capacity potential $W_{\gamma} \in C^2(\Omega \setminus \gamma) \cap C^0(\Omega)$

$\Delta W_{\gamma} = 0$	in $\Omega \setminus \gamma$
$W_{\gamma}=0$	on $\partial \Omega$
$W_{\gamma} = 1$	on γ .

```
satisfies the free boundary condition
```

 $\partial_{\nu^+} W_{\gamma} = \partial_{\nu^-} W_{\gamma}$ on γ

We call (\mathcal{FB}) this problem!

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

About (\mathcal{FB})

In the Annulus $\gamma := \{ |x| = \sqrt{r_1 r_2} = r_0 \}$ is the solution of the free boundary problem

$$\begin{cases} \mathcal{W}'' + \frac{1}{r}\mathcal{W}' = 0 \text{ if } r \in (r_1, r_2) \setminus r_0 \\ \mathcal{W}(r_1) = \mathcal{W}(r_2) = 0 \\ \mathcal{W}(r_0) = 1 \\ \mathcal{W}'_+(r_0) = -\mathcal{W}'_-(r_0) \end{cases}$$

< 🗇

About (\mathcal{FB})

ł

In the Annulus $\gamma := \{ |x| = \sqrt{r_1 r_2} = r_0 \}$ is the solution of the free boundary problem

$$\begin{cases} \mathcal{W}'' + \frac{1}{r}\mathcal{W}' = 0 \text{ if } r \in (r_1, r_2) \setminus r_0 \\ \mathcal{W}(r_1) = \mathcal{W}(r_2) = 0 \\ \mathcal{W}(r_0) = 1 \\ \mathcal{W}'_+(r_0) = -\mathcal{W}'_-(r_0) \end{cases}$$

In a multiply connected domain There exists γ solutions of (\mathcal{FB}) ?

About (\mathcal{FB}) in a doubly connected domain

Lemma

Let $\Omega \subset \mathbb{R}^2$ be a doubly connected set, bounded such that the bounded component of $\mathbb{R}^2 \setminus \Omega$ is not a point. There exists a simple, closed and smooth curve $\gamma \subset \Omega$ such that W_{γ} satisfies (*FB*). Additionally, γ is unique.

About (\mathcal{FB}) in a doubly connected domain

Lemma

Let $\Omega \subset \mathbb{R}^2$ be a doubly connected set, bounded such that the bounded component of $\mathbb{R}^2 \setminus \Omega$ is not a point. There exists a simple, closed and smooth curve $\gamma \subset \Omega$ such that W_{γ} satisfies (FB). Additionally, γ is unique.

Remark

We rely here on a generalization of the Riemann mapping theorem which says that any doubly connected domain is conformally equivalent to an annulus, i.e. there exists a holomorphic, bijective map $\psi : \Omega \to B_{r_1} \setminus B_{r_2}$ with some $r_1 > r_2 > 0$. Moreover we have that

$$\psi(\gamma) = \gamma_{r_0} \quad r_0 = \sqrt{r_1 r_2}.$$

In honour of Prof. Ambrosetti

イロト イロト イヨト イヨト 二日

Theorem

Let Ω be a doubly connected, bounded domain such that the bounded component of $\mathbb{R}^2 \setminus \Omega$ is not a point. There exist a sequence $\lambda_n \to 0$, and a sequence of maximal solutions u_{λ_n} of the Liouville problem (\mathcal{P}_{λ}) with the following properties:

It holds

$$\frac{u_{\lambda_n}}{2\log\frac{1}{\lambda_n}} \to W_\gamma, \qquad \text{as } \lambda_n \to 0$$

over compact subsets of $\Omega \setminus \gamma$.

We have

$$\frac{\lambda_n^2}{2\log\frac{1}{\lambda_n}}\int_{\Omega}e^{u_{\lambda_n}}\,dx\to \frac{4\pi}{\log\frac{r_1}{r_2}},\quad \text{as }\lambda_n\to 0.$$

Theorem

Let Ω be a doubly connected, bounded domain such that the bounded component of $\mathbb{R}^2 \setminus \Omega$ is not a point. There exist a sequence $\lambda_n \to 0$, and a sequence of maximal solutions u_{λ_n} of the Liouville problem (\mathcal{P}_{λ}) with the following properties:

It holds

$$\frac{u_{\lambda_n}}{2\log\frac{1}{\lambda_n}} \to W_{\gamma}, \qquad \text{as } \lambda_n \to 0$$

over compact subsets of $\Omega \setminus \gamma$.

We have

$$\frac{\lambda_n^2}{2\log\frac{1}{\lambda_n}}\int_\Omega e^{u_{\lambda_n}}\,dx\to \frac{4\pi}{\log\frac{r_1}{r_2}},\quad \text{as $\lambda_n\to 0$}.$$

Theorem

Let Ω be a doubly connected, bounded domain such that the bounded component of $\mathbb{R}^2 \setminus \Omega$ is not a point. There exist a sequence $\lambda_n \to 0$, and a sequence of maximal solutions u_{λ_n} of the Liouville problem (\mathcal{P}_{λ}) with the following properties:

It holds

$$\frac{u_{\lambda_n}}{2\log\frac{1}{\lambda_n}} \to W_\gamma, \qquad \text{as } \lambda_n \to 0$$

over compact subsets of $\Omega \setminus \gamma$.

We have

$$\frac{\lambda_n^2}{2\log\frac{1}{\lambda_n}}\int_{\Omega}e^{u_{\lambda_n}}\,dx\to \frac{4\pi}{\log\frac{r_1}{r_2}},\quad \text{as }\lambda_n\to 0.$$

Some remarks

- The mass of the maximal solution depends only on the conformal class of Ω .
- In the general case we can only prove existence of the maximal solution for an open set of λ such that 0 is its limit point, while in the radially symmetric case the analogous theorem holds for the interval $\overline{\lambda \in (0, \lambda_0)}$ for some λ_0 .
- The Morse index of the maximal solution grows to $+\infty$ as $\lambda \to 0$.

How to build the solution

Glue the two profiles founded by Gladiali and Grossi

Scheme for the annulus

Far from the curve $\gamma := \{ |x| = \sqrt{r_1 r_2} \}$

$$u_{\lambda} \sim 2 \ln \frac{1}{\lambda} \mathcal{W}$$

where

$$\begin{cases} \mathcal{W}'' + \frac{1}{r}\mathcal{W}' = 0 \text{ if } r \in (r_1, r_2) \setminus r_0 \\ \mathcal{W}(r_1) = \mathcal{W}(r_2) = 0 \\ \mathcal{W}(r_0) = 1 \\ \mathcal{W}'_+(r_0) = -\mathcal{W}'_-(r_0) \end{cases}$$

Close to the curve $\gamma := \{|x| = \sqrt{r_1 r_2}\}$ the solutions looks like

$$u_{\lambda} \to \mathcal{U}$$

 $\mathcal{U}(t) := \ln 4 \frac{e^{\sqrt{2}t}}{(1 + e^{\sqrt{2}t})^2}$

is the unique solution to

$$\begin{cases} \mathcal{U}'' + e^{\mathcal{U}} = 0 \text{ in } \mathbb{R} \\ \mathcal{U}(0) = \mathcal{U}'(0) = 0. \end{cases}$$

4 D b 4 A

In honour of Prof. Ambrosetti

≣ ▶ = ≣

< • • • • • • •

In honour of Prof. Ambrosetti

-

< ∃⇒

э

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Giusi Vaira

In honour of Prof. Ambrosetti

표 🕨 🗉 🖻

< • • • • • • •

In honour of Prof. Ambrosetti

-

< ∃→

э

We parametrize a neighborhood of γ by $x \mapsto (s, t)$ where *s* is the arc length parameter on and *t* is the signed distance. Near γ the solution should be of the form

 $v_0(s,t) = \mathcal{U}(\lambda \mu_\lambda(s)t) + 2\log \mu_\lambda(s)$

where
$$\frac{1}{\lambda\mu\lambda} \to 0$$
 as $\lambda \to 0$ and

$$\mathcal{U}(t) = \ln 4 \frac{e^{\sqrt{2}t}}{(1+e^{\sqrt{2}t})^2}$$

and

 $\delta_{\lambda} \rightarrow 0 \quad \text{as } \lambda \rightarrow 0$

Far from γ the function u is essentially harmonic and the outer approximation of u is given by

$$*) \begin{cases} \Delta w_0^{\pm} = 0 & \text{ in } \Omega^{\pm} \\ w_0^{\pm} = 0 & \text{ in } \partial \Omega \cap \partial \Omega^{\pm} \end{cases}$$

No information on γ so far.

Figure: Outer approximation

Figure: Inner approximation

In honour of Prof. Ambrosetti

In honour of Prof. Ambrosetti

ъ

э

The matching conditions

In honour of Prof. Ambrosetti

The matching conditions

In honour of Prof. Ambrosetti

The matching conditions

It holds:

$$v_0(s,t) = b_0 + 2\log \mu_\lambda -a_0\lambda\mu_\lambda |t| + O\left(e^{-a_0\lambda\mu_\lambda |t|}\right)$$
and

$$w_0^{\pm}(s,t) = w_0^{\pm}(s,0) + t\partial_n w_0^{\pm}(s,0) + \dots$$

$$(**)\begin{cases} w_0^+ = b_0 + 2\log\mu_{\lambda} \\ \partial_n w_0^+ = -a_0\lambda\mu_{\lambda}. \end{cases} \begin{cases} w_0^- = b_0 + 2\log\mu_{\lambda} \\ \partial_n w_0^- = a_0\lambda\mu_{\lambda}. \end{cases}$$

(*) and (**) give one overdetermined, nonlinear problem for μ_{λ} .

A ID > A ID > A

At this point we solve (*)+(**) only with a certain precision. Hence we find

 $w_0^{\pm} \approx (\beta + \log \beta) W_{\gamma}^{\pm}$

where

$$\beta := 2\log\frac{1}{a_0\lambda} + b_0 \qquad \mu_\lambda = -\frac{\beta + \log\beta}{a_0\lambda}\partial_n W_\gamma^+ = \frac{\beta + \log\beta}{a_0\lambda}\partial_n W_\gamma^-$$

프 🕨 🗉 프

At this point we solve (*)+(**) only with a certain precision. Hence we find

 $w_0^{\pm} \approx (\beta + \log \beta) W_{\gamma}^{\pm}$

where

$$\beta := 2\log\frac{1}{a_0\lambda} + b_0 \qquad \mu_\lambda = -\frac{\beta + \log\beta}{a_0\lambda}\partial_n W_\gamma^+ = \frac{\beta + \log\beta}{a_0\lambda}\partial_n W_\gamma^-$$

Then with this choice:

• $\partial_n w_0^{\pm} \pm a_0 \lambda \mu_{\lambda} = O(1) \text{ on } \gamma;$

э

At this point we solve (*)+(**) only with a certain precision. Hence we find

 $w_0^{\pm} \approx (\beta + \log \beta) W_{\gamma}^{\pm}$

where

$$\beta := 2\log\frac{1}{a_0\lambda} + b_0 \qquad \mu_\lambda = -\frac{\beta + \log\beta}{a_0\lambda}\partial_n W_\gamma^+ = \frac{\beta + \log\beta}{a_0\lambda}\partial_n W_\gamma^-$$

Then with this choice:

• $\partial_n w_0^{\pm} \pm a_0 \lambda \mu_{\lambda} = O(1) \text{ on } \gamma;$

•
$$w_0^{\pm} - b_0 - 2\log \mu_{\lambda} = O\left(\frac{\log\log\frac{1}{\lambda}}{\log\frac{1}{\lambda}}\right);$$

At this point we solve (*)+(**) only with a certain precision. Hence we find

 $w_0^{\pm} \approx (\beta + \log \beta) W_{\gamma}^{\pm}$

where

$$\beta := 2\log\frac{1}{a_0\lambda} + b_0 \qquad \mu_\lambda = -\frac{\beta + \log\beta}{a_0\lambda}\partial_n W_\gamma^+ = \frac{\beta + \log\beta}{a_0\lambda}\partial_n W_\gamma^-$$

Then with this choice:

• $\partial_n w_0^{\pm} \pm a_0 \lambda \mu_{\lambda} = O(1) \text{ on } \gamma;$

•
$$w_0^{\pm} - b_0 - 2\log \mu_{\lambda} = O\left(\frac{\log\log\frac{1}{\lambda}}{\log\frac{1}{\lambda}}\right);$$

A fixed point argument

We define the first approximation:

$$u_0 = \chi_0 v_0 + \chi_0^+ w_0^+ + \chi_0^- w_0^-$$

where χ_0 and χ_0^{\pm} are some cutoff functions overlapping at the distance $O(\delta_{\lambda})$ of γ .

A fixed point argument

We define the first approximation:

$$u_0 = \chi_0 v_0 + \chi_0^+ w_0^+ + \chi_0^- w_0^-$$

where χ_0 and χ_0^{\pm} are some cutoff functions overlapping at the distance $O(\delta_{\lambda})$ of γ .We want to set up a fixed point scheme to find a function $\psi \in H_0^1(\Omega)$ such that

$$\Delta(u_0+\psi)+\lambda^2 e^{u_0+\psi}=0$$

i.e.

$$\underbrace{\Delta\psi + \lambda^2 e^{u_0}\psi}_{\mathcal{L}_{u_0}(\psi)} = -\underbrace{(\Delta u_0 + \lambda^2 e^{u_0})}_{\mathcal{E}_{u_0}} - \underbrace{\lambda^2 e^{u_0}(e^{\psi} - 1 - \psi)}_{\mathcal{Q}(\psi)}$$

linear operator at u_0 error quadratic in ψ
The error

The error of the first order approximation close to the curve is still quite large and not even bounded!

The error

The error of the first order approximation close to the curve is still quite large and not even bounded!

Indeed, we use stretched variables $\eta = \lambda \mu_{\lambda} t$ and we get

$$\mathcal{E}_{u_0} \sim \underbrace{\partial^2_{\eta\eta}\mathcal{U} + e^\mathcal{U}}_{:=0} + \log rac{1}{\lambda}\mathcal{U}' = O\left(\log rac{1}{\lambda}
ight)$$

In honour of Prof. Ambrosetti

Improvement of the solution

We look for a solution of (\mathcal{P}_{λ}) in the form

$$u = u_0 + u_1 + u_2$$

where

$$u_{0} = \chi_{0}v_{0} + \chi_{0}^{+}w_{0}^{+} + \chi_{0}^{-}w_{0}^{-}$$
$$u_{1} = \chi_{1}\bar{v}_{1} + \chi_{1}^{+}w_{1}^{+} + \chi_{1}^{-}w_{1}^{-}$$
$$u_{2} = \chi_{2}v_{2}$$

where

- χ_0 and χ_0^{\pm} are some cutoff functions overlapping at the distance $O(\delta_{\lambda})$ of γ ;
- χ_1 and χ_1^{\pm} are some cutoff functions overlapping at the distance $O(m_1\delta_{\lambda})$ of γ with $m_1 > 2$;
- **③** χ_2 is a cutoff function supported in $|t| < 2m_2\delta_\lambda$ with $m_2 > m_1$

Improvement of the solution

We look for a solution of (\mathcal{P}_{λ}) in the form

$$u = u_0 + u_1 + u_2$$

where

$$u_{0} = \chi_{0}v_{0} + \chi_{0}^{+}w_{0}^{+} + \chi_{0}^{-}w_{0}^{-}$$
$$u_{1} = \chi_{1}\bar{v}_{1} + \chi_{1}^{+}w_{1}^{+} + \chi_{1}^{-}w_{1}^{-}$$
$$u_{2} = \chi_{2}v_{2}$$

where

- \bar{v}_1 is an "almost" affine function so that the error of $v_0 + \bar{v}_1$ is small in the inner region;
- w_1^{\pm} is an "almost" harmonic function in the domain (up to the curve) which matches with \bar{v}_1 close to the curve
- v_2 is an exponentially decaying function

How to build \bar{v}_1 : the linear theory close to the curve

In the inner region we let the linear operator

$$\mathcal{L}_{u_0} = \partial_\eta^2 + e^{U(\eta)}$$
.

where $\eta = \lambda \mu_{\lambda} t$ is a stretched variable. The fundamental set \mathcal{K} of \mathcal{L}_{u_0} is given by

$$\mathcal{K} = \operatorname{span} \left\{ \varphi_1, \varphi_2 \right\} \tag{1}$$

where

$$\varphi_1 = U' = -2\frac{\eta}{|\eta|} + O(e^{-2|\eta|})$$
 and $\varphi_2 = \eta U' + 2 = -2|\eta| + 2 + O(e^{-2|\eta|})$

In honour of Prof. Ambrosetti

 $\bar{v}_1(s,\eta)$ solves

$$\begin{cases} \mathcal{L}_{u_0} v = g & \text{in } [0, \ell(\gamma)] \times \mathbb{R} \\ \int_{\mathbb{R}} g(\eta) \varphi_1(\eta) \, d\eta = 0 = \int_{\mathbb{R}} g(\eta) \varphi_2(\eta) \, d\eta. \end{cases}$$

In honour of Prof. Ambrosetti

æ

ヘロト ヘロト ヘヨト ヘヨト

 $\bar{v}_1(s,\eta)$ solves

$$\begin{cases} \mathcal{L}_{u_0} v = g & \text{in } [0, \ell(\gamma)] \times \mathbb{R} \\ \int_{\mathbb{R}} g(\eta) \varphi_1(\eta) \, d\eta = 0 = \int_{\mathbb{R}} g(\eta) \varphi_2(\eta) \, d\eta. \end{cases}$$

namely

æ

イロト イロト イヨト イヨト

 $\bar{v}_1(s,\eta)$ solves

$$\begin{cases} \mathcal{L}_{u_0} v = g & \text{in } [0, \ell(\gamma)] \times \mathbb{R} \\ \int_{\mathbb{R}} g(\eta) \varphi_1(\eta) \, d\eta = 0 = \int_{\mathbb{R}} g(\eta) \varphi_2(\eta) \, d\eta. \end{cases}$$

namely

$$\bar{v}_1(s,\eta) = \bar{h}_1(s)\varphi_1(\eta) + \bar{h}_2(s)\varphi_2(\eta) = \underbrace{\bar{h}_1^{\pm}(s)}_{free} + \underbrace{\bar{h}_2^{\pm}(s)}_{free} \eta + \tilde{v}_1$$

as $\eta \to \pm \infty$.

★ E > ★ E > In honour of Prof. Ambrosetti

æ

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

How to build w_1^{\pm} : the linear theory associated to the free boundary problem

The right matching problem

We look for functions w^{\pm} such that

$$\begin{aligned} -\Delta w^{\pm} &= g^{\pm}, & \text{in } \Omega^{\pm}, \\ w^{\pm} &= 0, & \text{on } \partial \Omega^{\pm} \cap \partial \Omega. \\ w^{\pm} &= h_1^{\pm}, & \text{on } \gamma, \\ \partial_n w^{\pm} &= \lambda \mu_{\lambda} h_2^{\pm}, & \text{on } \gamma. \end{aligned}$$

the matching problem is overdetermined and its solution are the functions w^{\pm} together with the function *h*.

A result for solving the matching problem

Proposition

There exists a sequence $\lambda_n \to 0$ such that for any $g^{\pm} \in L^2(\Omega^{\pm})$ the matching problem has a solution $w^{\pm} \in H^2(\Omega^{\pm})$ and $h \in H^1(\gamma)$.

Other idea for solving the problem: suggested by S. Terracini

The function $W := \min\{u, 2 - u\}$ and the curve $\gamma := \{u = 1\}$ solves the problem

$\Delta W = 0$	$\text{ in } \Omega \setminus \gamma$
$\mathcal{W} = 0$	on $\partial \Omega$
$\mathcal{W} = 1$	on γ
$\partial_{\nu^+} \mathcal{W} = \partial_{\nu^-} \mathcal{W}$	on γ .

One can obtain the same result by making some changes (technical changes) in the proof and by means of the Dirichlet to Neumann map!

Giusi Vaira

In honour of Prof. Ambrosetti

The function $\mathcal{W} := \min\{u, 2 - u\}$ and the curve $\gamma := \{u = 1\}$ solves the problem

1	$\Delta W = 0$	$\text{ in } \Omega \setminus \gamma$
J	$\mathcal{W}=0$	on $\partial \Omega$
١	$\mathcal{W}=1$	on γ
	$\partial_{\nu^+}\mathcal{W} = \partial_{\nu^-}\mathcal{W}$	on γ .

The function $\mathcal{W} := \min\{u, 2 - u\}$ and the curve $\gamma := \{u = 1\}$ solves the problem

1	$\Delta W = 0$	$\text{ in } \Omega \setminus \gamma$
J	$\mathcal{W}=0$	on $\partial \Omega$
	$\mathcal{W}=1$	on γ
	$\partial_{ u^+}\mathcal{W}=\partial_{ u^-}\mathcal{W}$	on γ .

The function $W := \min\{u, 2 - u\}$ and the curve $\gamma := \{u = 1\}$ solves the problem

1	$\Delta \mathcal{W} = 0$	$\text{ in } \Omega \setminus \gamma$
J	$\mathcal{W}=0$	on $\partial \Omega$
١	$\mathcal{W}=1$	on γ
	$\partial_{\nu^+}\mathcal{W} = \partial_{\nu^-}\mathcal{W}$	on γ .

Related results

Let

$$(\mathcal{KS}) \qquad \begin{cases} \Delta u + u + \lambda e^u = 0 & \text{ in } \Omega\\ \partial_n u = 0 & \text{ on } \partial \Omega \end{cases}$$

which comes up as a stationary equation for the Keller-Segel model.

4 D b 4 A

Related results

Let

$$(\mathcal{KS}) \qquad \begin{cases} \Delta u + u + \lambda e^u = 0 & \text{ in } \Omega \\ \partial_n u = 0 & \text{ on } \partial \Omega \end{cases}$$

which comes up as a stationary equation for the Keller-Segel model.

• (\mathcal{KS}) has bubbling solutions, including bubbles on $\partial\Omega$

del Pino, Wei Nonlinearity (2006);

Related results

Let

$$(\mathcal{KS}) \qquad \begin{cases} \Delta u + u + \lambda e^u = 0 & \text{in } \Omega \\ \partial_n u = 0 & \text{on } \partial \Omega \end{cases}$$

which comes up as a stationary equation for the Keller-Segel model.

• (\mathcal{KS}) has bubbling solutions, including bubbles on $\partial\Omega$

- It has solutions that blow up along the whole boundary.
 - del Pino, Pistoia, V. J. of Diff. Eqs (2016); Pistoia, V. Proc. of the Royal Soc. of Ed. Sec A (2015);

References

M. Kowalczyk, A. Pistoia, G. Vaira, *Maximal solution of the Liouville equation in doubly connected domain*, Journal of Functional Analysis Vol. 277, Issue 9, Pages 2997-3050

M. Kowalczyk, A. Pistoia, P. Rybka, G. Vaira, Free boundary problems arising in the theory of maximal solutions of equations with exponential nonlinearities, preprint

M. Kowalczyk, A. Pistoia, G. Vaira, *Maximal solution of the Liouville equation in a not simply connected domain,* in preparation.

Thank you for the attention!

In honour of Prof. Ambrosetti