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Initial Remarks

e The study of the dynamics of n-point masses interacting ac-
cording to Newtonian gravitational potential 1s usually called

the n-body problem

e From a geomeftrical point of view a key point consists in trying
to understand the structure of the phase space looking for the
equilibrium points, periodic orbits, invariant tori and in partic-
ular their stability properties
The stable and unstable manifolds associated to these objects
form a kind of network of connections (actually homoclinic,
heteroclinic and halfclinic connections), which all together con-
stifute a big part of the essential skeleton of the system



Outline of the talk

In the first part of the talk we introduce the problem and we briefly discuss
the existence of colliding and non-colliding periodic solutions
of the n-body problem. (Lagrange relative equilibria and choreographies).

-

> In the second part of the talk we discuss the Morse index
and stability properties of the two-body problem
through the Conley-Zehnder index.




n-point interacting systems

We consider n > 2 point particles with masses my, ..., m,, and coordinates ¢;(), ..., ¢,(t)
moving in R* under the force field induced by a potential function

U: X —

where X = R"\ A is the configuration space and

A — U {qg € R"™|q; = q; for some i # j}

1,7=1

is the collision set (actually an arrangements of hyperplanes).




A class of singular potentials

We focus on the following class of potential functions

e a-homogeneous (gravitational case: a=1):

;T ;
Ua(q) = ) ” _q‘?‘&, a € (0,2)
ij=1 """
1<)

By the conservation laws of the system, we fix the centre of mass
at the origin: > "  muz; = 0 and we define I(x) := ||z||5, = (Mz,z)
called (moment of inertia). We denote by £ the unit sphere in the
mass norm (namely the inertia ellipsoid).



Equations of motion

e Newton's Equations:
(NE) — Mi(t) = VU(q(t))

where M :=diaq(mil4,...,m,1;) 1s the mass mafrix.

General Remarks The singular set plays a fundamental role in the
phase portrait and strongly influence the global orbit structure,
being responsible, of the presence of chaotic motions and of mo-
flons becoming unbounded in a finite fime (Diacu, Devaney, Gerver,
Gutzwiller, Mather, Saari, Simé, Xia). Morevore, singularifies are
intimately linked to the variafional strucfture of periodic trajectories.



Orbits of the (classical) n-body problem

An orbit of the system Is a vector valued function (qi(t),...,qn(t))
of twice differentiable functions which verify the (NE) at each time

t € (a,b). To be meaningful, we have to require ¢;(t) # ¢;(t) for every
t € (a,b). This requirement prevents collisions among the bodies.

e The two body problem Is integrable.

e The three body problem cannot be solved and cannotf be seen,

in its full generality, as a perturbation of a simple integrable
problem.



Orbit experiencing a total collapse

Some related papers adopting a variational approach. Ambrosetti,
Bahri, Barutello, Bessi, Chenciner, Chen, Coti Zelati, Desolneux, Fer-

rario, Gordon, Long, Marchal, Montgomery, Offin, P., Rabinowitz,
Riahi, Serra, Tanaka, Terracini,Verzini.




Homographic motions and relative equilibria

The simplest periodic solutions are associated with central con-
figurations and called homographic orbits.

Main properties

They keep a constant shape (up to rotations and dilations). In such
particular motions, each body moves under the effect of one single
centre of atfraction, located in the barycenter, hence describing an

ellipse (or a parabola, or a hyperbola).




The Morse index of the Lagrange circular orbit

Theorem B The Morse index of L,g3, as a critical point of the La-
grangian action functional, is

e

2 ________________________________

B

Reference: Barutello, Vivina; Jadanza Riccardo D.; P.A. Morse in-
dex and linear stability of the Lagrangian circular orbit in a three-
body-type problem via index theory Arch. Ration. Mech. Anal. 219
(RO £ no. 1, WF—-444 .



Fi ight orbit
In recent years, many new periodic orbits orbits have been dis-
covered, using the symmetries (in space and time) and the least
action principle. In 2000, two mathematicians Alain Chenciner and

Richard Montgomery used the least action principle (Lagrange) with
symmefries fo find a surprising periodic orbif for the three bodies
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Keplerian ellipses in Calculus of Variations

[Gordon, 1977] the infimum of the Lagrangian action on the loop space of
R“\{0} and having non-vanishing winding number about the origin is realized
by the Keplerian orbits (ellipses), including the limiting case of the elliptic
collision-eyection orbit which passes through the origin.

The proof Is based on the Tonelli Direct Method in Calculus of Variations. The
main difficulties are due to the lack of compactness:

e non-compactness due to the unboundedness of the configuration space (cured
by minimizing the action on the path connected components of the loop space
of R*\{0} having winding number +1)

e presence of the singularity at the origin (required an ad-hoc asymptotic
analysis)




Classification of the Keplerian Ellipses
via

Conley-Zehnder index

The talk is based on a recent joint paper with Kavle and Offin (preprint
available at https://arxiv.org/abs/1908.00075). In this paper we provide

e a new (symplectic) proof of Gordon results through the use of the Conley-
/ehnder index

e Gordon's theorem breaks down it the dimension of the configuration space
Is bigger than 2, contrary to what happens with our approach.



Main Results

Theorem. Let v be a Keplerian ellipses with prime period T and let 4% the k-th
iteration. Then, we have

Lvror (YY) = 2(k — 1).
In particular
Lvior(7Y) = 0.

Theorem. Let v be a Keplerian ellipse. Then it is elliptic, meaning that all the
eigenvalues belongs to the unit circle of the complex plane. Moreover it is
spectrally stable and




Linear and specfral stability

The study of the stability properties of a Keplerian ellipses corresponds to locate
the spectrum of the associated monodromy matrix

Since the monodromy matrix M of a Hamiltonian system is a symplectic matrix,
in particular we get that

3(2),
e Nea(M)= AL AN €a(M) A §
A Keplerian ellipses is o . ot
N4
o specfrally stable if o(M) C U (unitary circle); ;

o linearly stable if it I1s spectrally stable and diagonalizable
e degenerate It 1 € o(M).




Reduction of the two body problem

to the
1-center problem

Two point particles in the Euclidean plane having masses m;, my € R" is math-
ematically equivalent to the motion of a single body with a reduced mass equal

fo

11

S My + Mo

X =R*\{0}. Lagrangian function L: TX —

L(qg,v) = K(v)+U(q) where K(v)=

R defined by
1 5 om
§M|U‘ ) and U(Q) o |q‘

m = Gmyms and G € R" is the gravitational constant.







Strategy for computing the Morse Index

For calculating the Morse Index

e we compute the Conley-Zehnder index (““(¢y) (a symplectic invariant asso-
ciated to the fundamental solution ¢, of the linearized Hamiltonian system)

e we use an index theorem that compares these two objects; more precisely

Lor () = LCZ(%)-

Remark. Index theorems has a long history that can be traced back to the classical
Sturm oscillation theorem and the Morse Index Theorem in Riemannian geometry.




Polar coordinates in the state space

o Polar coordinates (r,7) on X. The Lagrangian is

%,u(fz 7“2192) U(r).

L(T‘,Q?,?.“,Qé) —

o Euler-Lagrange Equation

d a

i — prd? 4 T —0 on 0,7
df(,urzﬁ) = 0.




An explicit parametrization

All solutions can be written in ferms of the orbital elements; in the particular case
of non-zero angular momentum and negative energy, such solutions are ellipses
given by given by

T0 ]CQ
where ry ;= —

V) = .
r(v) 1l —ecos?d um

o 1o Is called the semi-latus rectum and it is related to the eccentricity and
the semi-major axis a of the ellipses by a =1r,/(1 —£?)).

: 2hk? :
o kiIs the angular momentum and ¢ = \/1 I ~ (In the circular case € =0).
Lm




| inearization along a circular orbit
The Hamiltonian function is given by

I - Lp:  ps| m
i,u(rQ—H“QﬁQ) —U(T) = — P =Y

H(r,ﬁ,f“,ﬁ‘) =

where (p,,py) = (,w“ ,ur219)

Setting w = (yr,yﬁ,xr,xﬁ) , then the linearized Hamiltonian system at the circular
solution r(t) = re™* I1s w = Lw where L is the Hamiltonian matrix

_O 2py 2m  3ps O_
prs Lt ot 0 A C O
0 0 0 0
7~ | _ O O 0 0O
— 0 0 0 D 0 0 0O
oy 2y 0 B —A 0
0 — 0
U 31 _




The infinitesimal phase flow

The matrix L 1s a time independent Hamiltonian matrix. The fundamental (matrix)
Ce . 21
solution is given by ¢y(t) = ™" where ¢ € |0, il
W

Since the determinant of L — Ald, is A>(\? +w?), there exists a symplectic matrix

P € Sp(4) such that
B 0 s(r)| [0 —w _q
L_P(O 0 1|, O)P .

Advantages
o Computation of the Conley-Zehnder index in Sp(2) instead of Sp(4)

o The Conley-Zehnder index is additive with respect to the symplectic sum ©




Cylindrical representation of Sp(2)

The symplectic group Sp(2) captured the attention of I. Gelrand and V. Lidskil
first, who in 1958 described a toric representation of it. The R’-cylindrical
coordinate representation of Sp(2) was introduced by Y. Long in 1991.

Through the polar decomposition, every mafrix M € Sp(2) can be wriften as

r oz cosf —sing
M= (z 1+22>(sin9 cos@)’

T

where (1,0, z) € (0,+00) x [0,27) x R. Viewing (r,0,z) as cylindrical coordinates in
R’ \{z-axis} we obtain a smooth global diffeomorphism W : Sp(2) — R’\{z-axis}.
We shall henceforth identify elements in Sp(2) with their image under V.




Conley-Zehnder index in Sp(2)

Roughly, the Conley-Zehnder index of a symplectic path in Sp(2) starting from
the identity counts the algebraic (signed) intersections of the path with the
surface

Sp°(2) = {M € Sp(2)|det(M — I5) = 0}

It we 1magine projecting the symplectic path into the horizontal plane {2 =0} a
simple way to think about this index is an algebraic count of intersection with
the curve depicted in Figure of a continuous path (which is the projection of the

original one) on the zOy-plane.

—
Y 0
o
Y
I
SP(Q)?,— Sp(2)(1)’_|_
. \J
Arnol’d-Maslov cycle in Sp(2
Y P(2) Intersection between the Arnol’d-Maslov cycle and

the plane
A path having CZ-index =2 z=0



Homotopy arguments
and
symplectic phase flow invariant decomposition

e [he linearized Hamiltonian vector field i1s constant

e Up to a symplectic change of coordinates, we get that L ~ K; ¢ Ky where

1 0 —w
Kl — O_ and KQ — W 0 _

0
0

o We let ¢y :[0,7] — Sp(4) the fundamental solution of the Hamiltonian system

w = Lw

e For i = 1,2, we let ¢; : [0,7] — Sp(2) be the fundamental solutions of the
Hamiltonian systems w = K;w




Fundamental solutions and monodromy
By a direct integration, we gef that

o O(t) = _(1) S(I)t_ t € (0,27 /w]

cos(wt) —sin(wt)

sin(wt)  cos(wt) tel02mfw

o Oo(t) =

where s(r) = 3/r* > 0

The monodromy matrix is

1 1] [t o0
M=o 1|l 1




Stability of circular motions

Thus, we get that

e 0(M)={1} € U and the algebraic multiplicity of its (unique) Floquet multi-
plier i1s 4.

e M is not diagonalizable (having a non-trivial Jordan block); thus in partic-

ular v Is spectrally and not linearly stable. We also observe that its nullity
Is 3 =dimker(M —I).

Remark. We observe that the 2 x 2

e Jordan block relative to the eigenvalue 1 is the symplectic normal form
corresponding to the energy conservation law

e identity matrix is the symplectic normal form corresponding to the angular
momentum conservation law




Conley-Zehnder index of the path ¢,

Sp(2)(1)’_ Sp(z)(1)7_|_

L

Vanishing CZ-index for the path on the left
L CZ-index= -1 for the path on the right

The path in red and its deformation in blue. On the left corresponding to a
negative upper right entry (respectively right corresponding to a positive upper
right entry), the first path starts at the matrix D(2) direct towards the identity,
then goes downwards left. The second path (corresponding to the e-perturbed
one) follows the same frajectory, just rotated clockwise by an angle e. The ““-

index of both paths on the left is 0. The :““-index of both paths on the right is
—1.




Conley-Zehnder index of circular motion

5 LCZ(¢0(t)7t C [OaT]) =LCZ(¢1(t)7t S [OvT]) T LCZ(¢2(t)7t = [OvT]

T . )
o (C7(hy(t),t €[0,T] =2 ;’W 1ifT e SZ

o (““(¢1(t),t €10,T]) = —1 (independent on T)

Summing up we get

T >
“’ J—ZforT€ "7

27T % 0,

CZ (po(t),t € [0,T]) = 2 {




Conley-Zehnder index for a Keplerian ellipses

Given a periodic Kepler orbit z,,(t) having energy hg, there exists § > 0 and
a smooth one-parameter family of periodic orbits z,(¢t) with H(z,(t) = h for all
h & (h()—é,h()—Fé).
Let T}, be the period of z,, ¢, be the corresponding fundamental solution, M, =
on(1y) be the monodromy matrix and M := M,

M 1s symplectically conjugated to Ni(1,a) o Idy where a =0,£1. In particular
o If dd%‘h:ho > 0, then a =1

Since T}, = (27Y27)(—h)=3/2, we end-up precisely as in the circular case.

Remark. Analogous result in a different context was used by Long and Ekeland
in the study of closed characteristics.




New perspectives and working progress

o [Working progress with D. Offin]Compute the Morse index and
the stability properties tor the 3D Kepler problem

e [Working progress with S. Terracini] How the presence of to-
tal /partial collision can contribute to the Morse index

o [Working progress with A. Abbondandolo] Can holomorphic curve

techniques be applied to the three-body problem? Try to develop
a suitable Floer-Rabinowitz theory!

e How can the reqularization of collisions affect the Morse index?
[ Try to establish a precise relation between the Maslov index

of a colliding trajectory and its reqularized (in the sense of
Levi-Civita, Moser, etfc.)]
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