Ground state for the relativistic one electron atom

Margherita Nolasco

DISIM - Università dell'Aquila

Variational methods, with applications to problems in mathematical physics and geometry;
a celebration of Antonio Ambrosetti's 75th birthday
30/11-1/12 (2019) Venezia
[joint work with Vittorio Coti Zelati - Università di Napoli "Federico II"]

The QED Lagrangian

The Lagrangian for a charged, spin- $\frac{1}{2}$ relativistic particle is

$$
\mathcal{L}=\bar{\Psi}\left(i \gamma^{\mu} D_{\mu}-1\right) \Psi-\frac{1}{16 \pi} F_{\mu \nu} F^{\mu \nu}
$$

here $\hbar=c=m=1$ and we use the four-vector notations ($\mu=0,1,2,3$) $x^{\mu}=(c t, \underline{x}) \in \mathbb{R}^{4}$, with metric tensor $g_{\mu \nu}=\operatorname{diag}\{1,-1-1,-1\}$ used to lower or raise the Lorentz indices,

- ψ is the Dirac spinor and $\bar{\psi}=\Psi^{\dagger} \gamma^{0}$ is the Dirac adjoint ;
- γ^{μ} are the 4×4 Dirac matrices;
- $D_{\mu}=\partial_{\mu}+i e\left(A_{\mu}+A_{\mu}^{\text {ext }}\right)$ is the gauge covariant derivative ;
- e is the charge (coupling constant);
- A_{μ} is the electromagnetic 4-vector potential generated by the electron itself ;
- $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ is the electromagnetic tensor field ;
- $A_{\mu}^{\text {ext }}$ is the external electromagnetic potential.

The Euler-Lagrange equations: Maxwell-Dirac system
The Euler-Lagrange equations in the Lorenz gauge: $\partial_{\mu} A^{\mu}=0$ are given by the following Maxwell-Dirac system

$$
\left\{\begin{array}{l}
\left(i \gamma^{\mu} \partial_{\mu}-1\right) \Psi=e \gamma^{\mu}\left(A_{\mu}+A_{\mu}^{e x t}\right) \Psi \\
\square A^{\mu}=4 \pi j^{\mu}
\end{array}\right.
$$

where $j^{\mu}=e \bar{\psi} \gamma^{\mu} \psi$ is the conserved Dirac current $\Rightarrow \partial_{\mu} j^{\mu}=0$.

- External source: (not relativistic) nucleus of atomic number Z

$$
A_{0}^{e x t}=\frac{Z|e|}{|x|} ; \quad A_{k}^{\text {ext }}=0 \quad(k=1,2,3)
$$

- Ground state: We look for a bound state of lowest positive energy, a stationary solution

$$
\Psi(t, x)=\mathrm{e}^{-i E t} \psi(x) ; \quad \text { with } \quad|\psi|_{L^{2}}=1
$$

and $E=E_{\text {min }}>0$.

The Maxwell-Dirac eigenvalue problem

We are lead to consider the following eigenvalue problem

$$
\left\{\begin{array}{l}
(-i \underline{\boldsymbol{\alpha}} \cdot \nabla+\boldsymbol{\beta}) \psi-\frac{Z e^{2}}{|x|} \psi+e A_{0} \psi-e \underline{\boldsymbol{\alpha}} \cdot \underline{A} \psi=E \psi \\
-\Delta A_{0}=4 \pi e|\psi|^{2} \\
-\Delta \underline{A}=4 \pi e(\psi, \underline{\boldsymbol{\alpha}} \psi)_{\mathbb{C}^{4}} \\
|\psi|_{L^{2}}=1
\end{array}\right.
$$

here $\boldsymbol{\beta}=\gamma^{0}, \underline{\boldsymbol{\alpha}}=\gamma^{0}\left(\gamma^{1}, \gamma^{2}, \gamma^{3}\right)$ are hermitian, unitary matrices,

$$
\Rightarrow\left\{\begin{array}{l}
A_{0}=e|\psi|^{2} * \frac{1}{|x|} \\
\underline{A}=e(\psi, \underline{\boldsymbol{\alpha}} \psi)_{\mathbb{C}^{4}} * \frac{1}{|x|} .
\end{array}\right.
$$

The nonlinear eigenvalue problem
The problem reduces to the nonlinear eigenvalue problem:

$$
(P)\left\{\begin{array}{l}
\left(H_{D}+V_{e x t}\right) \psi+V_{i n t}(\psi) \psi=E \psi \\
|\psi|_{L^{2}}=1
\end{array}\right.
$$

here $H_{D}=-i \underline{\boldsymbol{\alpha}} \cdot \nabla+\boldsymbol{\beta}$ is the is the (free) Dirac operator, $V_{\text {ext }}=-\frac{Z e^{2}}{|x|} \mathbb{I}_{4}$ is the Coulomb potential, and

$$
V_{\text {int }}(\psi)=e^{2}|\psi|^{2} * \frac{1}{|x|} \mathbb{I}_{4}-e^{2} \underline{\boldsymbol{\alpha}} \cdot(\psi, \underline{\boldsymbol{\alpha}} \psi)_{\mathbb{C}^{4}} * \frac{1}{|x|}
$$

is the nonlinear term, note that $\left|(\psi, \underline{\boldsymbol{\alpha}} \psi)_{\mathbb{C}^{4}}\right|(x) \leq|\psi|^{2}(x)$.

The free Dirac operator

The (free) Dirac operator $H_{D}=-i \underline{\alpha} \cdot \nabla+\beta$ is a first order, self-adjoint operator on $H^{1}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$ with purely absolutely continuous spectrum given by $\sigma\left(H_{D}\right)=(-\infty,-1] \cup[1,+\infty)$. In Fourier space H_{D} becomes a multiplication operator with eigenvalues $\left\{ \pm \sqrt{|p|^{2}+1}\right\}$.

Let $\Lambda_{ \pm}$the two infinite rank orthogonal projectors on the positive/negative energies subspaces, then

$$
H_{D} \Lambda_{ \pm}=\Lambda_{ \pm} H_{D}= \pm \sqrt{-\Delta+1} \Lambda_{ \pm}= \pm \Lambda_{ \pm} \sqrt{-\Delta+1}
$$

For any $\psi, \phi \in H^{1 / 2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$ the Dirac- operator form is given by

$$
\left\langle\psi \mid H_{D} \phi\right\rangle=\left\langle\Lambda_{+} \psi, \Lambda_{+} \phi\right\rangle_{H^{1 / 2}}-\left\langle\Lambda_{-} \psi, \Lambda_{-} \phi\right\rangle_{H^{1 / 2}}
$$

and we denote $X_{ \pm}=\Lambda_{ \pm} H^{1 / 2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$.

Some useful estimates:
For all $\psi \in H^{1 / 2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$

$$
-\int_{\mathbb{R}^{3}} \frac{|\psi|^{2}}{|x|} d x \leq \frac{\pi}{2}\left|(-\Delta)^{1 / 4} \psi\right|_{L^{2}}^{2} \leq \frac{\pi}{2}\|\psi\|_{H^{1 / 2}}^{2}
$$

[Kato]

$$
\begin{aligned}
& \quad \int_{\mathbb{R}^{3}} \frac{\left|\Lambda_{ \pm} \psi\right|^{2}}{|x|} d x \leq \gamma_{T}\left\|\Lambda_{ \pm} \psi\right\|_{H^{1 / 2}}^{2} \quad[\text { Tix] } \\
& \quad \text { with } \gamma_{T}=\frac{1}{2}\left(\frac{\pi}{2}+\frac{2}{\pi}\right)<\frac{\pi}{2}, \text { and } Z e^{2} \gamma_{T}<1 \text { for } Z \leq 124 .
\end{aligned}
$$

Theorem. (Coti Zelati - N. ; SIMA (2019))
For any $4<Z<124$, there exist $E_{0} \in \mathbb{R}_{+} \backslash \sigma\left(H_{D}\right)$ and $\psi_{0} \in H^{1 / 2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$ a (weak) solution of

$$
(P)\left\{\begin{array}{l}
\left(H_{D}+V_{\text {ext }}\right) \psi+V_{\text {int }}(\psi) \psi=E \psi \\
|\psi|_{L^{2}}=1 .
\end{array}\right.
$$

The lowest positive critical value of the energy functional

$$
\left.\left.\mathcal{E}(\psi)=\left\langle\psi \mid\left(H_{D}+V_{e x t}\right) \psi\right\rangle+\frac{1}{2}\langle\psi| V_{i n t}(\psi)\right) \psi\right\rangle
$$

is attained and it is given by

$$
\lambda=\inf _{\substack{F \subset X_{+} \\ \operatorname{dim} F=1}} \sup _{\substack{\psi \in F \oplus X_{-} \\|\psi|_{L^{2}}=1}} \mathcal{E}(\psi)=\mathcal{E}\left(\psi_{0}\right) .
$$

where $X_{ \pm}=\Lambda_{ \pm} H^{1 / 2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$ are the positive/negative (free) energies subspaces, and E_{0} is the Lagrange multiplier.

Related results

- Minimax characterization for the positive eigenvalues in the spectral gap for the Dirac-Coulomb operator $H_{D}+V_{\text {ext }}$:
[Dolbeaut-Esteban-Sere Calc.Var. PDE (2000); Morozov-Muller Math.Z. (2015) ;]

$$
\begin{aligned}
\lambda_{k}=\inf _{\substack{\mathcal{F} X_{+} \\
\operatorname{dimF=k}}}^{\sup _{\substack{\left.\psi \in F \oplus X_{-} \\
|\psi|\right|_{L^{2}}=1}}\left\langle\psi \mid\left(H_{D}+V_{\text {ext }}\right) \psi\right\rangle \quad k \in \mathbb{N}} \\
\Longrightarrow \lambda_{k} \in \sigma_{\text {disc }} \cap(0,1) \text { and } 0<\lambda_{1} \leq \cdots \leq \lambda_{k} \rightarrow 1
\end{aligned}
$$

- Existence for Maxwell-Dirac system $H_{D} \psi+V_{i n t}(\psi) \psi=E \psi$
[Esteban-Georgiev-Sere Calc. Var. PDE (1996), Abenda Ann.IHP (1998)]

The variational problem

We look for solutions of the nonlinear eigenvalue problem (P) as the critical points of the energy functional

$$
\begin{aligned}
\mathcal{E}(\psi)= & \left\|\Lambda_{+} \psi\right\|_{H^{1 / 2}}^{2}-\left\|\Lambda_{-} \psi\right\|_{H^{1 / 2}}^{2}-Z e^{2} \int_{\mathbb{R}^{3}} \frac{\rho_{\psi}(x)}{|x|} d x \\
& +\frac{e^{2}}{2} \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{\rho_{\psi}(x) \rho_{\psi}(y)-J_{\psi}(x) \cdot J_{\psi}(y)}{|x-y|} d x d y
\end{aligned}
$$

where $\rho_{\psi}=|\psi|^{2}$ and $J_{\psi}=(\psi, \underline{\boldsymbol{\alpha}} \psi)_{\mathbb{C}^{4}}$, constrained to the set

$$
\Sigma=\left\{\psi \in H^{1 / 2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right):|\psi|_{L^{2}}^{2}=1\right\}
$$

The (nonlinear) eigenvalue E is the Lagrange multiplier:
$(P) \Longleftrightarrow d \mathcal{E}(\psi)[h]=2 E \operatorname{Re}\langle\psi \mid h\rangle_{L^{2}} \quad \forall h \in H^{1 / 2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$

- Positive eigenvalues: $E>0 \Longleftrightarrow\left|\Lambda_{-} \psi\right|_{L^{2}}^{2}<\left|\Lambda_{+} \psi\right|_{L^{2}}^{2}$.

Some useful estimates

- since $\left|J_{\psi}(y)\right| \leq \rho_{\psi}(y)$ for any $y \in \mathbb{R}^{3}$, for any $\psi, \phi \in H^{1 / 2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$

$$
\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{\rho_{\psi}(y) \rho_{\phi}(z)-J_{\psi}(y) \cdot J_{\phi}(z)}{|y-z|} d y d z \geq 0 .
$$

- since $J_{\psi} \in L^{1}\left(\mathbb{R}^{3}\right)^{3} \cap L^{3 / 2}\left(\mathbb{R}^{3}\right)^{3}$ for any $\psi \in H^{1 / 2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$

$$
\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{J_{\psi}(y) \cdot J_{\psi}(z)}{|y-z|} d y d z=\frac{1}{\pi} \int_{\mathbb{R}^{3}} \frac{\left|\hat{J}_{\psi}(p)\right|^{2}}{|p|^{2}} \geq 0 .
$$

- Estimates on commutators:

Let $\chi \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$ and $\chi_{R}(y)=\chi\left(R^{-1} y\right)$ then

$$
\left\|\left[\chi_{R}, \Lambda_{ \pm}\right]\right\|_{H^{1 / 2} \rightarrow H^{1 / 2}}=O\left(R^{-1}\right) \quad \text { as } \quad R \rightarrow+\infty .
$$

Idea of the proof
Define the min-max

$$
\lambda=\inf _{w \in \Sigma_{+}} \sup _{\psi \in \Sigma(w)} \mathcal{E}(\psi)
$$

where

$$
\begin{aligned}
& \Sigma_{+}=\left\{w \in X_{+}:|w|_{L^{2}}^{2}=1\right\} \\
& \begin{array}{l}
\Sigma(w) \\
\\
\quad=\left\{\psi \in \Sigma:\left|\psi_{+}\right|_{L^{2}}^{-1} \psi_{+}=w\right\} \\
\quad=\left\{\psi=a\left(\psi_{-}\right) w+\psi_{-} ; \psi_{-} \in X_{-}\right\}
\end{array}
\end{aligned}
$$

and $a\left(\psi_{-}\right)=\sqrt{1-\left|\psi_{-}\right|_{L^{2}}^{2}}$, with $\psi_{ \pm}=\Lambda_{ \pm} \psi \in X_{ \pm}$.

To prove that λ is a critical value we show that for any $w \in \Sigma_{+}$ there exists, unique, $\psi=\psi(w) \in \Sigma(w)$ such that

$$
\mathcal{E}(\psi(w))=\sup _{\psi \in \Sigma(w)} \mathcal{E}(\psi)
$$

and that $\mathcal{E}(\psi(w))$ depends smoothly on w.
Then we proceed with the minimization

$$
\lambda=\inf _{w \in \Sigma_{+}} \mathcal{E}(\psi(w))
$$

Remark that the uniqueness is required since the gradient flow is nonlinear and hence deformations do not preserve the linear subspaces structure.

Maximization problem

Proposition.
For any $w \in \Sigma_{+}$there exists, unique, $\psi=\psi(w) \in \Sigma(w)$:

- $\mathcal{E}(\psi(w))=\sup _{\psi \in \Sigma(w)} \mathcal{E}(\psi) \geq\left(1-Z e^{2} \gamma_{T}\right)>0$;
- the map $w \rightarrow \mathcal{E}(\psi(w))$ is smooth;
- For any $h \in \operatorname{span}\{w\} \oplus X_{-}$

$$
d \mathcal{E}(\psi(w))[h]-\mu(\psi(w)) 2 \operatorname{Re}\langle\psi(w), h\rangle_{L^{2}}=0
$$

where $\mu(\psi(w))>0$ is the Lagrange multiplier.

Remark: If ψ is a critical point for \mathcal{E} on $\Sigma(w)$, then

$$
\mu(\psi)>0 \Longleftrightarrow\left|\Lambda_{-} \psi\right|_{L^{2}}^{2}<\frac{1}{2} .
$$

Lemma.
Let $B_{1 / 2}=\left\{\psi \in \Sigma(w):\left|\Lambda_{-} \psi\right|_{L^{2}}^{2}<\frac{1}{2}\right\}$ we have

- $\mathcal{E}_{\left.\right|_{\Sigma(w)}}$ satisfies the Palais Smale condition on $B_{1 / 2}$:
$\left\|\nabla_{\Sigma(w)} \mathcal{E}\left(\psi_{n}\right)\right\| \rightarrow 0, \mathcal{E}\left(\psi_{n}\right)$ bdd $\Rightarrow \psi_{n}$ is precompact in $B_{1 / 2}$.
- If ψ is a critical point for $\mathcal{E}_{\left.\right|_{\Sigma(w)}}$ in $B_{1 / 2}$

$$
d^{2} \mathcal{E}(\psi)[h ; h]-2 \mu(\psi)|h|_{L^{2}}^{2} \leq-\delta\|h\|_{H^{1 / 2}}^{2} \quad \forall h \in T_{\psi} \Sigma(w)
$$

- All critical points of $\mathcal{E}_{\left.\right|_{\Sigma(w)}}$ in $B_{1 / 2}$ are strict local maxima.

Sketch of the proof: Existence

- if $\left\{\psi_{n}\right\}$ is a maximizing (PS)-sequence for $\mathcal{E}_{\left.\right|_{\Sigma(\omega)}}$ then

$$
\psi_{n} \in B_{1 / 2} \text {, definitely. }
$$

- $\mathcal{E}_{\left.\right|_{\Sigma(w)}}$ satisfies the Palais Smale condition on $B_{1 / 2}$:
- By Ekeland's variational principle there exists a maximizing (PS)-sequence $\left\{\psi_{n}\right\}$ for $\mathcal{E}_{\Sigma(w)}$. Then $\left\{\psi_{n}\right\} \subset B_{1 / 2}$ and hence $\left\{\psi_{n}\right\}$ converge to a maximizer $\psi \in B_{1 / 2}$.

Sketch of the proof: Uniqueness

Suppose we have two maximizer $\psi_{1} \neq \psi_{2}$, clearly $\psi_{1}, \psi_{2} \in B_{1 / 2}$. Since

- $B_{1 / 2}$ is invariant for the gradient flow of $\mathcal{E}_{\Sigma(w)}$ then the set

$$
\Gamma=\left\{\gamma:[0,1] \rightarrow B_{1 / 2} \mid \gamma(0)=\psi_{1}, \gamma(1)=\psi_{2}\right\} \neq \emptyset \text { is invariant. }
$$

We can then apply the Mountain Pass theorem and since the (PS)-condition holds in $B_{1 / 2}$ there exists at the min-max level

$$
c=\sup _{\gamma \in \Gamma} \min _{t \in[0,1]} \mathcal{E}(\gamma(t))
$$

a critical point of MP-type. We reach a contradiction since

- all critical points of $\mathcal{E}_{\left.\right|_{\Sigma(w)}}$ in $B_{1 / 2}$ are strict local maxima.

Sketch of the proof: Smoothness
To prove that $w \rightarrow \mathcal{E}(\psi(w))$ is smooth we use the Implicit function theorem. Let $F: \Sigma_{+} \times X_{-} \rightarrow H^{-1 / 2}$

$$
F\left(w, \psi_{-}\right)=d \mathcal{E}(\psi)[\cdot]-\mu(\psi) 2 \operatorname{Re}\langle\psi, \cdot\rangle_{L^{2}}
$$

with $\psi=a\left(\psi_{-}\right) w+\psi_{-}$.

- $F\left(w, \psi_{-}(w)\right)_{\left.\right|_{T_{\psi} \Sigma(w)}}=0$ if $\psi \in X(w)$ is the maximizer.
- the quadratic form $Q: T_{\psi} \Sigma(w) \times T_{\psi} \Sigma(w) \rightarrow \mathbb{R}$ given by

$$
\begin{aligned}
Q(h, k) & =-\left\langle d_{\psi_{-}} F\left(w, \psi_{-}(w)\right)[h] \mid k\right\rangle \\
& =-\left(d^{2} \mathcal{E}(\psi(w))[h, k]-\mu(\psi(w)) 2 \operatorname{Re}\langle h, k\rangle_{L^{2}}\right)
\end{aligned}
$$

is coercive, hence $d_{\psi_{-}} F\left(w, \psi_{-}(w)\right)$ is invertible.

- by IFT and uniqueness, the map $w \rightarrow \psi_{-}(w)$ is smooth.

Minimization problem

$$
\lambda=\inf _{w \in \Sigma_{+}} \sup _{\psi \in \Sigma(w)} \mathcal{E}(\psi)=\inf _{w \in \Sigma_{+}} \mathcal{E}(\psi(w))
$$

Proposition.
There exists $w_{0} \in \Sigma_{+}$such that $\psi_{0}=\psi\left(w_{0}\right)$ satisfies

- $\lambda=\mathcal{E}\left(\psi_{0}\right)=\inf _{w \in \Sigma_{+}} \mathcal{E}(\psi(w))$
- $E_{0}=\mu\left(\psi_{0}\right) \in \mathbb{R}_{+} \backslash \sigma\left(H_{D}\right)$ satisfies

$$
\left\{\begin{array}{l}
d \mathcal{E}\left(\psi_{0}\right)[h]=2 E_{0} \operatorname{Re}\left\langle\psi_{0}, h\right\rangle_{L^{2}} \quad \forall h \in H^{1 / 2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right) \\
\left|\psi_{0}\right|_{L^{2}}=1 .
\end{array}\right.
$$

Sketch of the proof

- By the Ekeland's variational principle there exists a minimizing (PS)- sequence $\left\{w_{n}\right\} \subset \Sigma_{+}$:

Hence $\psi_{n}=\psi\left(w_{n}\right) \rightharpoonup \psi_{0}$ (weakly), $\mu\left(\psi_{n}\right) \rightarrow \mu_{0}$ and

$$
d \mathcal{E}\left(\psi_{0}\right)[h]-\mu_{0} 2 \operatorname{Re}\left\langle\psi_{0} \mid h\right\rangle_{L^{2}}=0, \quad \forall h \in H^{1 / 2}
$$

- But we do not know if $\left|\psi_{0}\right|_{L^{2}}=1$ (not even if $\psi_{0} \neq 0$).

Remark.

Since the potential term of the energy functional is weakly continuous, we get strong convergence if the (nonlinear) eigenvalue (here the Lagrange multiplier μ_{0}) is in the spectral gap of H_{D} (exactly as in the linear case $H_{D}+V_{\text {ext }}$).

Lemma.

If $Z>4$ then $\mu_{0}<1$.

- By the smooth variational principle of Borwein-Preiss there exists a minimizing $(P S)$ - sequence $\left\{w_{n}\right\} \subset \Sigma_{+}$that satisfies

$$
d_{w}^{2} \mathcal{E}\left(\psi\left(w_{n}\right)\right)\left[h_{n}, h_{n}\right]-\mu\left(\psi_{n}\right) 2 a_{n}^{2}\left|h_{n}\right|_{L^{2}}^{2} \geq o_{n}(1)
$$

for all $h_{n} \in T_{w_{n}} \Sigma_{+}$, with $\psi_{n}=\psi\left(w_{n}\right)$ and $a_{n}=\left|\Lambda_{+} \psi_{n}\right|_{L^{2}}$.

- for any $\varepsilon>0$ there exists $h_{n}^{(\varepsilon)} \in T_{w_{n}} \Sigma_{+}$such that

$$
\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{\left|\psi_{n}\right|^{2}(x)\left|h_{n}^{(\varepsilon)}\right|^{2}(y)}{|x-y|} \leq \int_{\mathbb{R}^{3}} \frac{\left.| |_{n}^{(\varepsilon)}\right|^{2}(y)}{|y|}+o_{\varepsilon}(\varepsilon)+o_{n}(1)
$$

and we derive

$$
d_{w}^{2} \mathcal{E}\left(\psi_{n}\right)\left[h_{n}^{(\varepsilon)}, h_{n}^{(\varepsilon)}\right]-2 a_{n}^{2}\left|h_{n}^{(\varepsilon)}\right|_{L^{2}}^{2} \leq C(4-Z) \varepsilon+o_{\varepsilon}(\varepsilon)+o_{n}(1) .
$$

- Work in progress: The Maxwell-Dirac-Fock equations.

Hartree-Fock: E.H.Lieb, B.Simon CMP (1977); P.L.Lions CMP (1987)
Dirac-Fock: M.J. Esteban, E. Séré CMP (1999)

- N - relativistic electrons represented by a Slater determinant of $\psi_{j}(j=1, \ldots, N)$ such that $\left\langle\psi_{j}, \psi_{k}\right\rangle_{L^{2}}=\delta_{j k}$.

Interactions:

- nucleus - electron: $V_{\text {ext }}(x)=-\frac{Z e^{2}}{|x|}$
- between electrons : the electromagnetic potential $A_{\mu}^{(j)}$ is generated by the static Dirac-current of the N -electrons wave function.

$$
\left\{\begin{array}{l}
-\Delta A_{0}^{(j)}=4 \pi e \rho_{\Psi} \\
-\Delta \underline{A}^{(j)}=4 \pi e \underline{J}_{\Psi}
\end{array}\right.
$$

where $\rho_{\Psi}=\sum_{k=1}^{N}\left|\psi_{k}\right|^{2}$ and $J_{\Psi}=\sum_{k=1}^{N}\left(\psi_{k}, \underline{\boldsymbol{\alpha}} \psi_{k}\right)_{\mathbb{C}^{4}}$.

The nonlinear eigenvalue problem
We have a nonlinear, constrained system of equations

$$
(P)\left\{\begin{array}{l}
\left(H_{D}+V_{e x t}\right) \psi_{j}+V_{i n t}(\Psi) \psi_{j}=\varepsilon_{j} \psi_{j} \\
\left\langle\psi_{j}, \psi_{k}\right\rangle_{L^{2}}=\delta_{j k} \quad j, k=1, \ldots, N
\end{array}\right.
$$

where

$$
V_{i n t}(\Psi)=e^{2} \rho_{\Psi} * \frac{1}{|x|} \mathbb{I}_{4}-e^{2} \underline{\boldsymbol{\alpha}} \cdot J_{\Psi} * \frac{1}{|x|}
$$

By the $U(N)$-invariance, the system (P) is equivalent to

$$
\left\{\begin{array}{l}
\left(H_{D}+V_{e x t}\right) \psi_{j}+V_{i n t}(\Psi) \psi_{j}=\sum_{k=1}^{N} \mu_{j k} \psi_{k} \\
\left\langle\psi_{j}, \psi_{k}\right\rangle_{L^{2}}=\delta_{j k} \quad j, k=1, \ldots, N
\end{array}\right.
$$

for any $M=\left\{\mu_{j k}\right\}_{j k}, M=M^{*}$ with eigenvalues ε_{j}.

The variational problem
Setting $\Psi^{t}=\left(\psi_{1}, \ldots, \psi_{N}\right) \in H^{1 / 2}\left(\mathbb{R}^{3}, \mathbb{C}^{4 N}\right)$ and
$\operatorname{Gram}_{L^{2}} \Psi=\left\{\left\langle\psi_{k}, \psi_{j}\right\rangle_{L^{2}}\right\}_{j k}$ we look for (Ψ, M) solutions of

$$
\left\{\begin{array}{l}
d \mathcal{E}(\Psi)[h]=\operatorname{Tr}\left(M d\left(\operatorname{Gram}_{L^{2}} \Psi\right)[h]\right) \quad \forall h \in H^{1 / 2}\left(\mathbb{R}^{3}, \mathbb{C}^{4 N}\right) \\
\operatorname{Gram}_{L^{2}} \Psi=\mathbb{I}
\end{array}\right.
$$

where $M=\left\{\mu_{j k}\right\}$ is the matrix of Lagrange multipliers and

$$
\begin{aligned}
& \mathcal{E}(\Psi)=\left\|\Psi_{+}\right\|_{H^{1 / 2}}^{2}-\left\|\Psi_{-}\right\|_{H^{1 / 2}}^{2}-Z e^{2} \int_{\mathbb{R}^{3}} \frac{\rho_{\Psi}(x)}{|x|} d x \\
&+\frac{e^{2}}{2} \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{\rho_{\Psi}(x) \rho_{\Psi}(y)-J_{\Psi}(x) \cdot J_{\Psi}(y)}{|x-y|} d x d y
\end{aligned}
$$

with $\left\|\Psi_{ \pm}\right\|_{H^{1 / 2}}^{2}=\sum_{k=1}^{N}\left\|\Lambda_{ \pm} \psi_{k}\right\|_{H^{1 / 2}}^{2}$, constrained to the set

$$
\triangleright \Sigma=\left\{\Psi \in H^{1 / 2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4 N}\right): \operatorname{Gram}_{L^{2}} \Psi=\mathbb{I}\right\} .
$$

Note that $\mathcal{E}(\Psi)$ and Σ are invariant by the $U(N)$ - action.

- Positive eigenvalues:

Lemma.
If Ψ is a critical point for \mathcal{E} on Σ, then

$$
M=M(\Psi)>0 \Longleftrightarrow \mathbb{I}-2 \operatorname{Gram}_{\mathrm{L}^{2}} \Psi_{-}>0
$$

- $(N=1) \lambda>0 \Rightarrow E>0$ and $E>0 \Longleftrightarrow\left|\Lambda_{-} \psi\right|_{L^{2}}^{2}<\frac{1}{2}$.

$$
\Rightarrow \lambda=\inf _{\substack{w \in X_{+} \\|w|_{L^{2}}=1}} \sup _{\psi \in \Sigma(w)} \mathcal{E}(\psi)=\inf _{w \in \Sigma_{+}} \sup _{\psi \in B_{1 / 2}} \mathcal{E}(\psi)
$$

where

$$
\begin{aligned}
& \Sigma_{+}=\left\{w \in X_{+}:|w|_{L^{2}}^{2}=1\right\} \\
& \Sigma(w)=\left\{\psi \in \Sigma:\left|\psi_{+}\right|_{L^{2}}^{-1} \psi_{+}=w\right\} \\
& B_{1 / 2}=\left\{\psi \in \Sigma(w): \left\lvert\, \Lambda_{-} \psi_{L^{2}}^{2}<\frac{1}{2}\right.\right\}
\end{aligned}
$$

- Min-max:

For any $N \in \mathbb{N}$, we define

$$
\lambda_{N}=\inf _{w \in \Sigma_{+}} \sup _{\Psi \in B_{1 / 2}} \mathcal{E}(\Psi)
$$

where

$$
\begin{aligned}
& \Sigma_{+}=\left\{w \in X_{+}^{N} \mid \operatorname{Gram}_{L^{2}} w=\mathbb{I}\right\} \\
& \Sigma(w)=\left\{\Psi \in \Sigma \mid\left(\operatorname{Gram}_{L^{2}} \Psi_{+}\right)^{-1 / 2} \Psi_{+}=U w ; U \in U(N)\right\} \\
& B_{1 / 2}=\left\{\Psi \in \Sigma(w): \mathbb{I}-2 \operatorname{Gram}_{L^{2}} \Psi_{-}>0\right\}
\end{aligned}
$$

Note that $\Sigma_{+}, \Sigma(w), B_{1 / 2}$ are invariant by the $U(N)$ - action.

- $\mathcal{E}_{\left.\right|_{\Sigma(w)}}$ satisfies the Palais Smale condition on $B_{1 / 2}$.

Proposition. (Maximization problem)

For any $w \in \Sigma_{+}$there exists $\Psi(w) \in B_{1 / 2}$:

- $\mathcal{E}(\Psi(w))=\sup _{\psi \in B_{1 / 2}} \mathcal{E}(\Psi) \geq\left(1-Z \alpha_{f_{s}} \gamma_{T}\right)>0 ;$
- For any $h \in\left(W \oplus X_{-}\right)^{N}$, where $W=\operatorname{span}\left\{w_{1}, \cdots, w_{n}\right\}$

$$
d \mathcal{E}(\Psi(w))[h]-\operatorname{Tr}\left(M(\Psi(w)) d\left(\operatorname{Gram}_{L^{2}} \Psi\right)[h]\right)=0
$$

and the Lagrange multipliers matrix $M(\Psi(w))$ is positive definite.

- In progress: If Ψ is a critical point for $\mathcal{E}_{\left.\right|_{\Sigma(w)}}$ in $B_{1 / 2}$ then

$$
d^{2} \mathcal{E}(\Psi)[h ; h]-2 \operatorname{Tr}\left(M(\Psi) \operatorname{Gram}_{L^{2}} h\right) \leq-\delta\|h\|_{H^{1 / 2}}^{2}
$$

for any $h \in T_{\Psi} \Sigma(w)$.

- Open question: Uniqueness for the maximizer $\Psi(w)$ and the smoothness of $w \rightarrow \mathcal{E}(\psi(w))$.

Proposition. (Minimization problem)

- Suppose that the map $w \rightarrow \mathcal{E}(\psi(w))$ is smooth then

$$
\lambda=\inf _{w \in \Sigma_{+}} \sup _{\psi \in \Sigma(w)} \mathcal{E}(\psi)=\inf _{w \in \Sigma_{+}} \mathcal{E}(\psi(w))
$$

There exists $w_{0} \in \Sigma_{+}$such that $\Psi_{0}=\Psi\left(w_{0}\right)$ satisfies

- $\lambda=\mathcal{E}\left(\Psi_{0}\right)=\inf _{w \in \Sigma_{+}} \mathcal{E}(\psi(w))$
- $M\left(\Psi_{0}\right)>0$ and $\mathbb{I}-M\left(\Psi_{0}\right)>0$,

$$
\Rightarrow \varepsilon_{j} \in \mathbb{R}_{+} \backslash \sigma\left(H_{D}\right) ;
$$

and

$$
\left\{\begin{aligned}
d \mathcal{E}\left(\Psi_{0}\right)[h] & =\operatorname{Tr}\left(M\left(\Psi_{0}\right) d \operatorname{Gram}_{L^{2}} \Psi_{0}[h]\right) \\
\operatorname{Gram}_{L^{2}} \Psi_{0} & =\mathbb{I} .
\end{aligned}\right.
$$

for any $h \in H^{1 / 2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4 N}\right)$.

Thanks for the attention!

