Strong Sobolev instability of quasi-periodic solutions of the 2D cubic Schrödinger equation

Emanuele Haus (Università di Roma Tre)

joint work with Marcel Guardia (Universitat Politècnica de Catalunya) Zaher Hani (University of Michigan) Alberto Maspero (SISSA – Trieste) Michela Procesi (Università di Roma Tre)

"Variational methods, with applications to problems in mathematical physics and geometry" Istituto Canossiano San Trovaso, Venezia, November 30, 2019

The defocusing cubic NLS

• Consider the equation

$$-iu_t + \Delta u = |u|^2 u$$

where $x \in \mathbb{T}^2 = \mathbb{R}^2/(2\pi\mathbb{Z})^2$, $t \in \mathbb{R}$ and $u : \mathbb{R} \times \mathbb{T}^2 \to \mathbb{C}$.

Conserved quantities: the Hamiltonian and the mass

$$E[u] = \int_{\mathbb{T}^2} \left(\frac{1}{2}|\nabla u|^2 + \frac{1}{4}|u|^4\right) dx$$
$$\mathcal{M}[u] = \left(\int_{\mathbb{T}^2} |u|^2 dx\right)^{\frac{1}{2}}.$$

< 日 > < 同 > < 三 > < 三 >

- 3

Two very related problems

• Transfer of energy.

• Lyapunov (in)stability of invariant objects of the dynamical system.

Emanuele Haus

Sobolev instability of QP solutions V

 > < ⊡</td>
 > < ≡</td>
 > ≡

 Venezia, 30 November 2019

Transfer of energy

• Fourier series of *u*,

$$u(x,t) = \sum_{n \in \mathbb{Z}^2} a_n(t) e^{inx}$$

- Can we have transfer of energy to high modes as $t \to +\infty?$
- We measure it with the growth of s-Sobolev norms (s > 1)

$$\|u(t)\|_{H^{s}(\mathbb{T}^{2})} := \|u(t,\cdot)\|_{H^{s}(\mathbb{T}^{2})} := \left(\sum_{n\in\mathbb{Z}^{2}} \langle n \rangle^{2s} |a_{n}(t)|^{2}\right)^{1/2},$$

where $\langle n \rangle = (1 + |n|^2)^{1/2}$.

• Thanks to mass and energy conservation,

$$\|u(t)\|_{H^1(\mathbb{T}^2)} \leq C \|u(0)\|_{H^1(\mathbb{T}^2)}$$
 for all $t \geq 0$.

Growth of Sobolev norms for $-iu_t + \Delta u = |u|^2 u$

- Cubic defocusing NLS on $\mathbb T$ (Zakharov-Shabat eq) is integrable: no growth of Sobolev norms.
- Kuksin (1997): growth of Sobolev norms starting from an already large initial data for NLS on \mathbb{T}^2 .

Theorem (I-team: Colliander, Keel, Staffilani, Takaoka, Tao (2010)) Fix s > 1, $K \gg 1$ and $\delta \ll 1$. Then there exists a global solution u of NLS on \mathbb{T}^2 and T satisfying that

 $\|u(0)\|_{H^s} \leq \delta, \qquad \|u(T)\|_{H^s} \geq K.$

• The result also applies to $s \in (0,1)$ (backward energy cascade)

イロト 不得 とうせい かほとう ほ

More results

- M. Guardia and V. Kaloshin: $T \sim e^{\left(\frac{K}{\delta}\right)^{\beta}}$ for some $\beta > 1$.
- M. Guardia, E. H. and M. Procesi: generalization to

$$-iu_t + \Delta u = |u|^{2p}u$$
 with $p \in \mathbb{N}$.

• Bourgain conjecture: Take s > 1. There exists a solution such that

$$\limsup_{t\to+\infty} \|u(t)\|_{H^s} = +\infty.$$

- Z. Hani, B. Pausader, N. Tzvetkov, N. Visciglia: unbounded growth for the cubic NLS with x ∈ ℝ × T².
- The conjecture remains open in all compact manifolds.

Emanuele Haus

高 とう きょう うまん

Dynamical systems point of view

$$-iu_t + \Delta u = |u|^2 u$$

- u = 0 is an elliptic critical point: linearly stable in any H^s topology
- It is Lyapunov stable or unstable? It depends on the topology.
- Stability in L^2 and H^1 topology.
- I-team result \Rightarrow Instability in the H^s topology, s > 0, $s \neq 1$.

イロト 不得 とくほ とくほ とうほう

Instability of other invariant objects?

• What about the stability/instability of other invariant objects of the cubic NLS?

• For which time ranges?

• Can we attain Sobolev norm explosion starting arbitrarily close to an invariant object?

Hani approach towards the proof of Bourgain conjecture

• Bourgain conjecture: There exists a solution such that

 $\limsup_{t\to+\infty}\|u(t)\|_{H^s}=+\infty$

- Long-time strong instability: Let (X, || · ||) be a Banach space and Φ^t a flow on it. We say Φ^t exhibits long-time strong instability near u ∈ X if for every δ ∈ (0, 1) and K > 1, there exists u' ∈ B_δ(u) such that sup_{t>0} ||Φ^t(u')|| > K.
- Assume there exists $\emptyset \neq \mathcal{D} \subset \mathcal{F} \subset X$ with
 - \mathcal{F} closed in X
 - \mathcal{D} dense in \mathcal{F} .
 - All u in $\mathcal D$ have long-time strong instability within $\mathcal F$ (i.e. $u' \in \mathcal F$)
- Then, there exists $u^* \in \mathcal{F}$ such that $\limsup_{t \to +\infty} \|\Phi^t(u^*)\| = +\infty$.
- I-team result: long-time strong instability of the solution $u \equiv 0$ in H^s for all $s \in (0,1) \cup (1,\infty)$

Stability/Instability of invariant objects: plane waves

- Plane waves (periodic orbits): $u(t,x) = Ae^{i(mx-\omega t)}$ with $\omega = m^2 + A^2$.
- Stability result (Faou, Gauckler and Lubich 2013): Fix N > 1. There exists $s_0 > 0$ such that "many" plane waves satisfy the following:

For any $s \ge s_0$, $\delta \ll 1$ and any initial condition $u_0(x)$ satisfying $||u_0(x) - Ae^{imx}||_{H^s} \le \delta$, its orbit satisfies

$$\|u(t,x) - Ae^{i(mx-\omega t)}\|_{H^s} \lesssim \delta$$
 for $t \lesssim \delta^{-N}$.

• Many: For any *m* and a full measure set of *A*

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Stability/Instability of invariant objects: plane waves

$$u(t,x) = Ae^{i(mx-\omega t)}, \qquad \omega = m^2 + A^2$$

 Instability result (Hani 2011): Fix s ∈ (0, 1), K ≫ 1 and δ ≪ 1. Then there exists a global solution u of NLS on T² and T satisfying that

$$\|u(0)-Ae^{imx}\|_{H^s}\leq \delta, \qquad \|u(T)\|_{H^s}\geq K.$$

• Remark: Instabilities are only proved for $s \in (0, 1)$.

Transfer of energy close to invariant tori

- Goal: Transfer of energy close to invariant (quasiperiodic) tori.
- We look at the "simplest" tori: 1D tori (finite gap solutions).
- 1D Cubic NLS $i\partial_t q = -\partial_{xx}q + |q|^2 q, x \in \mathbb{T}$, is integrable.
- It admits global Birkhoff coordinates:

$$\begin{array}{rcl} \Phi: L^2(\mathbb{T}) &\longrightarrow & \ell^2 \times \ell^2 \\ q &\longmapsto & (z_m, \overline{z}_m)_{m \in \mathbb{Z}}, \end{array}$$

such that 1D cubic NLS becomes $i\dot{z}_m = \alpha_m(I)z_m$ where $I_m = |z_m|^2$ are the actions.

• All solutions are periodic/quasi-periodic/almost-periodic.

Emanuele Haus

1D invariant tori

- Consider one of the d-dimensional quasiperiodic tori:
 - Excited "modes" $\mathcal{S}_0 = (m_1, \dots m_d) \subset \mathbb{Z}$.
 - Actions vector $\mathit{I}_{\mathtt{m}} = (\mathit{I}_{\mathtt{m}_1}, \ldots, \mathit{I}_{\mathtt{m}_d}) \in \mathbb{R}^d_+.$

Define

$$\mathtt{T}^\mathtt{d} = \left\{ (z_m)_{m \in \mathbb{Z}} : |z_{\mathtt{m}_i}|^2 = I_{\mathtt{m}_i}, i = 1, \dots, \mathtt{d}, \ z_m = 0 \ \mathrm{if} \ m
ot\in \mathcal{S}_0
ight\}.$$

- Lyapunov stable as invariant objects of 1D cubic NLS.
- Consider them as invariant objects for the 2D equation.
- For what time scales is this torus Lyapunov stable/unstable?
- H^s norm explosion from a small neighborhood of it?

Theorem (A. Maspero – M. Procesi)

Fix s > 0. For a generic choice of support sites S_0 there exists ε_0 such that for all $\varepsilon \in (0, \varepsilon_0)$, there exists a positive measure set $\mathcal{I} \subset (0, \varepsilon)^d$ such that the following holds true for any torus $T^d = T^d(S_0, I_m)$ with $I_m \in \mathcal{I}$:

Fix any $\delta \ll 1$. Then, any solution of cubic defocusing NLS u(t) such that

dist_{*H^s*}
$$(u(0), \mathbb{T}^d) \leq \delta$$
 and $||z_m|^2 - I_m^0| \leq \delta^2$ for all $m \in S_0$

satisfies

$$\operatorname{dist}_{H^{s}}\left(u(t), \operatorname{T}^{d}\right) \lesssim \delta$$
 for all $|t| \lesssim \delta^{-2}$.

- ε is small \Rightarrow the tori are small.
- Generic choice of S_0 : The modes in S_0 cannot satisfy a finite number of relations (number of relations only depending on d).
- The set of "good" actions $\mathcal{I} \subset (0, \varepsilon)^d$ has positive relative measure (but not asymptotically full).
- For actions in some positive measure set in (0, ε)^d the tori become hyperbolic and for another positive measure set they are elliptic.

イロト 不得 とうせい かほとう ほ

Main result

Theorem (M. Guardia – Z. Hani – E. H. – A. Maspero – M. Procesi) Fix $s \in (0, 1)$. For a generic choice of support sites S_0 there exists ε_0 , such that for all $\varepsilon \in (0, \varepsilon_0)$, there exists an asymptotically full measure set $\mathcal{I}' \subset (0, \varepsilon)^d$ such that the following holds true for any torus $T^d = T^d(S_0, I_m)$ with $I_m \in \mathcal{I}'$: For any $\delta \ll 1$ and $K \gg 1$ there exists an orbit of cubic defocusing NLS and a time T such that

- $\operatorname{dist}_{H^s}(u(0), \mathbb{T}^d) \leq \delta$
- $||u(T)||_{H^s} \geq K$.

• $|T| \leq e^{\left(\frac{K}{\delta}\right)^{\beta}}$ for some $\beta > 1$ independent of K, δ .

Theorem (M. Guardia – Z. Hani – E. H. – A. Maspero – M. Procesi) Choose S_0 and I_m as before. Fix s > 1. For any $K \gg 1$ there exists an orbit of cubic defocusing NLS and a time T such that

•
$$\operatorname{dist}_{L^2}(u(0), \mathbb{T}^d) \leq K^{-\sigma}$$

• $||u(T)||_{H^s} \ge K ||u(0)||_{H^s}$.

• $|T| \lesssim e^{K^{\sigma'}}$.

 $(\sigma, \sigma' > 1$ are independent of K)

Comments

- s ∈ (0, 1) implies that the obtained solution has very small mass but very large energy. (inverse cascade of energy)
- Transversal instability: these tori are stable as solutions of 1D NLS but there are 2D solutions arbitrarily close to the torus which attain large Sobolev norms.
- Same result is valid for NLS on \mathbb{T}^N with $N \geq 2$.
- *I* ⊂ *I*': all tori satisfying Maspero-Procesi result (elliptic tori) are unstable after longer time scales.
- \mathcal{I}' has relative measure as close to 1 as desired.

イロト 不得 トイヨト イヨト 二日

 We can achieve such growth for both elliptic and partially hyperbolic tori.

- Even if this hyperbolicity is in principle "good" for instabilities, it is not clear how to use it to achieve growth of Sobolev norms (it only involves few Fourier modes).
- To carry on our process, we need to kill the hyperbolic directions.
- We restrict to invariant subspaces (invariant sublattices of \mathbb{Z}^2) where the torus is elliptic.

イロト 不得 とうせい かほとう ほ

Sketch of the proof: Analysis of the linearization

- Express 1D NLS in Birkhoff coordinates
- Asymptotic estimates for the 1D eigenvalues of the linearization around the torus as $|m| \rightarrow \infty$.
- Procesi-Maspero: Reduce the linearization of 2D NLS around T^d to constant coefficients (KAM scheme).
- Asymptotic estimates for the 2D eigenvalues of the linearization around the torus: For $n = (n_1, n_2) \in \mathbb{Z}^2$,

$$\Omega_n = \left(n_1^2 + n_2^2 + \mathcal{M}^2 + \frac{\mathcal{O}(\varepsilon^2)}{\langle n_1 \rangle^2}\right)$$

for $n_2 \neq 0$

• Eigenvalues are very close to resonance for $|n_1| \gg 1$.

Sketch of the proof: Birkhoff normal form

• Procesi-Maspero: Birkhoff normal form to eliminate completely the quadratic terms in the equation.

• Birkhoff normal form to eliminate cubic non-resonant terms.

• I-team approach: Use cubic resonant terms to achieve instabilities.

4 B K 4 B K

The I-team approach for solutions close to u = 0

$$-iu_t + \Delta u = |u|^2 u$$

• Cubic NLS as an ODE (of infinite dimension) for the Fourier coefficients of *u*:

$$-i\dot{a}_n = |n|^2 a_n + \sum_{\substack{n_1, n_2, n_3 \in \mathbb{Z}^2\\n_1 - n_2 + n_3 = n}} a_{n_1} \overline{a_{n_2}} a_{n_3}, \qquad n \in \mathbb{Z}^2.$$

- Drift through resonances.
- Resonant monomial

 $n_1 - n_2 + n_3 - n = 0$ and $|n_1|^2 - |n_2|^2 + |n_3|^2 - |n|^2 = 0$

• Non-degenerate resonances form a rectangle in \mathbb{Z}^2 .

The l-team approach for solutions close to u = 0

 \bullet Select (cleverly) a finite set of modes $\Lambda \subset \mathbb{Z}^2$ such that

$$U_{\Lambda} = \{a_n = 0 : n \notin \Lambda\}$$

is invariant under the (degree 4) Birkhoff normal form of NLS.

$$-i\dot{a}_n = |n|^2 a_n + \sum_{n_1,n_2,n_3,n \text{ form a rectangle}} a_{n_1} \overline{a_{n_2}} a_{n_3}, \qquad n \in \mathbb{Z}^2.$$

- Size of Λ depends on the desired growth of Sobolev norms.
- Use combinatorics to choose the modes in Λ such that the dynamics on U_Λ is "easy" to analyze.

The I-team approach for the cubic case

 Choosing well Λ and after several reductions (taking advantage strongly of the particular form of NLS):

Finite dimensional (toy) model

$$\dot{b}_j = -ib_j^2\overline{b}_j + 2i\overline{b}_j\left(b_{j-1}^2 + b_{j+1}^2
ight), \ j = 1,\dots N.$$

gives the dynamics on Λ .

- Each b_i represents "many" modes in Λ .
- Hamiltonian system on a lattice \mathbb{Z} with nearest neighbor interactions.
- Growth of Sobolev norms \equiv Pushing energy from b_1 to b_N .

イロト 不得 トイヨト イヨト 二日

The toy model

$$\dot{b}_j = -ib_j^2\overline{b}_j + 2i\overline{b}_j\left(b_{j-1}^2 + b_{j+1}^2\right), \ j = 0, \dots N,$$

- It possesses a sequence of periodic orbits connected through non-transversal heteroclinic orbits.
- First periodic orbit $b_1 \neq 0$, $b_j = 0$ for $j \neq 1$.
- Last periodic orbit $b_N \neq 0$, $b_j = 0$ for $j \neq N$.
- I-team: Shadowing these objects gives the desired orbits.

Adapting the I-team approach for solutions close a 1D torus

- After normal form we have an eq. "similar" to the Birkhoff normal form of the original NLS around u = 0.
- I-team model on Λ:

$$-i\dot{a}_{n} = |n|^{2}a_{n} + \sum_{\substack{n_{1},n_{2},n_{3} \in \Lambda \text{ form a rectangle with } n}} a_{n_{1}}\overline{a_{n_{2}}}a_{n_{3}}, \quad n \in \Lambda.$$

Model on a (well chosen) Λ in our setting:
$$-i\dot{a}_{n} = \Omega_{n}a_{n} + \sum_{\substack{n_{1},n_{2},n_{3} \in \Lambda \text{ form a rectangle with } n}} C_{n_{1},n_{2},n_{3},n}a_{n_{1}}\overline{a_{n_{2}}}a_{n_{3}}, \quad n \in \Lambda.$$

• N

A B M A B M

Adapting the I-team approach for solutions close to a 1D torus

$$-i\dot{a}_n = |n|^2 a_n + \sum_{\substack{n_1, n_2, n_3 \in \Lambda \text{ form a rectangle with } n}} a_{n_1} \overline{a_{n_2}} a_{n_3}, \quad n \in \Lambda.$$

$$-i\dot{a}_n = \Omega_n a_n + \sum_{\substack{n_1, n_2, n_3 \in \Lambda \text{ form a rectangle with } n}} C_{n_1, n_2, n_3, n} a_{n_1} \overline{a_{n_2}} a_{n_3}, \quad n \in \Lambda.$$

Differences:

- Eigenvalues Ω_n are not $|n|^2$, but close to it for modes in Λ .
- Coefficients $C_{n_1,n_2,n_3,n}$ are not $\equiv 1$.
- We drift along almost-resonances.
- This creates extra error terms that blow up for large times.

≣▶∢≣▶ ≣ ∽۹0

Adapting the I-team approach

$$-i\dot{a}_n = |n|^2 a_n + \sum_{\substack{n_1, n_2, n_3 \in \Lambda \text{ form a rectangle with } n}} a_{n_1} \overline{a_{n_2}} a_{n_3}, \quad n \in \Lambda.$$

$$-i\dot{a}_n = \Omega_n a_n + \sum_{\substack{n_1, n_2, n_3 \in \Lambda \text{ form a rectangle with } n}} C_{n_1, n_2, n_3, n} a_{n_1} \overline{a_{n_2}} a_{n_3}, \quad n \in \Lambda.$$

- Crucial point for the reduction to the toy model in I-team result: Coefficient of all monomials = 1.
- Now: coefficients $\neq 1$ (they depend on the modes).
- This comes from interaction between torus modes/modes in Λ.
- \bullet Goal: Choose $\Lambda \subset \mathbb{Z}^2$ to "minimize" this interaction.
- For a well chosen $\Lambda \subset N\mathbb{Z} \times N\mathbb{Z}$, the coefficients of the monomials are $C_{n_1,n_2,n_3,n} = 1 + \mathcal{O}(N^{-1})$ thanks to:
 - Smoothing properties of the reducibility transf. (on $N\mathbb{Z} \times N\mathbb{Z}$).
 - Combinatorial analysis of the Birkhoff NF changes of coord.

Adapting the I-team approach for solutions close a 1D torus

- Treating the extra terms as errors:
 - One can carry on the I-team approach.
 - Estimate the time of diffusion by applying toy model results by M. Guardia V. Kaloshin.
- This leads to growth of Sobolev norms after incorporating the errors and undoing all the changes of coordinates.

Why $s \in (0,1)$?

- The resonances corresponding to rectangles $\subset \mathbb{Z}^2$ are only approximate, not exact
- $\Omega_n = |n|^2 + \mathcal{M}^2 + \frac{\mathcal{O}(\varepsilon^2)}{\langle n_1 \rangle^2}$
- Scaling the set Λ by a factor $J \gg 1$ one has on rectangles

$$\Gamma := \Omega_{n_1} - \Omega_{n_2} + \Omega_{n_3} - \Omega_{n_4} = \mathcal{O}(J^{-2})$$

- Essentially, we approximate $e^{it\Gamma} \sim 1$, which requires $J^{-2}T \ll 1$
- Toy model scaling $b(t) \rightsquigarrow \nu b(\nu^2 t) \Rightarrow T = \mathcal{O}(\nu^{-2}) \Longrightarrow J\nu \gg 1$
- Small initial Sobolev norm $J^{s} \nu \ll 1$
- This is possible ONLY IF s < 1

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 うの()

Attempt of generalization to 2D tori (work in progress with A. Maspero and M. Procesi)

- 1D finite-gap tori are very special
- What about instability of more general 2D tori?
- Main difference: recall the asymptotic expansion for the finite-gap eigenvalues

$$\Omega_n = \left(n_1^2 + n_2^2 + \mathcal{M}^2 + \frac{\mathcal{O}(\varepsilon^2)}{\langle n_1 \rangle^2}\right)$$

- For more general tori, the decay in the constant direction n_1 has to be replaced by decay in a direction that varies with n
- Related to quasi-Töplitz matrices and to Bourgain's cluster decomposition of the spectrum of -Δ on the torus (recently, Bambusi-Langella-Montalto: spectrum of (-Δ)^α + V on the torus)

Thank you for your attention!

Emanuele Haus

Sobolev instability of QP solutions

Venezia, 30 November 2019

< A >

9 32 / 32

3