On spectral stability of

Aharonov-Bohm operators with moving poles

Joint works with L. Abatangelo, L. Hillairet, C. Léna, B. Noris, M. Nys

Veronica Felli
University of Milano - Bicocca

Variational methods, with applications to problems in mathematical physics and geometry, Venezia, November 30, 2019

Aharonov-Bohm potential

For $\boldsymbol{a}=\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2}$, the Aharonov-Bohm magnetic potential with pole \boldsymbol{a} and circulation $\gamma \in \mathbb{R} \backslash \mathbb{Z}$ is

$$
\mathbf{A}_{\boldsymbol{a}}\left(x_{1}, x_{2}\right)=\gamma\left(\frac{-\left(x_{2}-a_{2}\right)}{\left(x_{1}-a_{1}\right)^{2}+\left(x_{2}-a_{2}\right)^{2}}, \frac{x_{1}-a_{1}}{\left(x_{1}-a_{1}\right)^{2}+\left(x_{2}-a_{2}\right)^{2}}\right) .
$$

$\mathbf{A}_{\boldsymbol{a}}$ generates the Aharonov-Bohm magnetic field in \mathbb{R}^{2} with pole \boldsymbol{a} and circulation γ.

Aharonov-Bohm potential

The $A B$ magnetic field is produced by an infinitely long thin solenoid intersecting perpendicularly the plane $\left(x_{1}, x_{2}\right)$ at the point \boldsymbol{a}, as the radius of the solenoid goes to zero
 and the magnetic flux remains constantly equal to γ.

Negletting the irrelevant coordinate along the solenoid, the problem becomes 2-dimensional.

Aharonov-Bohm effect [Aharonov-Bohm, Phys. Rev. (1959)]

The AB magnetic field is a δ-like magnetic field: a quantum particle moving in $\mathbb{R}^{2} \backslash\{\boldsymbol{a}\}$ is affected by the magnetic potential, despite being confined to a region in which the magnetic field is zero.

Aharonov-Bohm potential

The Schrödinger operators with $A B$ vector potential:

$$
\left(i \nabla+\mathbf{A}_{\mathbf{a}}\right)^{2} u=-\Delta u+2 i \mathbf{A}_{\mathbf{a}} \cdot \nabla u+\left|\mathbf{A}_{\mathbf{a}}\right|^{2} u .
$$

In $\Omega \subset \mathbb{R}^{2}$ bounded, open and simply connected, $\forall \boldsymbol{a} \in \bar{\Omega}$ the eigenvalue problem

$$
\begin{cases}\left(i \nabla+A_{a}\right)^{2} u=\lambda u, & \text { in } \Omega, \\ u=0, & \text { on } \partial \Omega,\end{cases}
$$

admits a sequence of real diverging eigenvalues $\left\{\lambda_{k}(\boldsymbol{a})\right\}_{k \geq 1}$

$$
\lambda_{1}(\boldsymbol{a}) \leq \lambda_{2}(\boldsymbol{a}) \leq \cdots \leq \lambda_{k}(\boldsymbol{a}) \leq \ldots
$$

If $\boldsymbol{a} \in \partial \Omega$, then

$$
\lambda_{k}(\boldsymbol{a})=\lambda_{k}=\text { eigenvalue of the standard Dirichlet Laplacian. }
$$

The case $\gamma=\frac{1}{2}$, half-integer circulation

$\mathbf{A}_{\mathbf{a}}(x)=\mathbf{A}_{\mathbf{0}}(x-\boldsymbol{a}), \quad$ where $\quad \mathbf{A}_{\mathbf{0}}\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(-\frac{x_{2}}{x_{1}^{2}+x_{2}^{2}}, \frac{x_{1}}{x_{1}^{2}+x_{2}^{2}}\right)$.

- Bonnaillie-Noël, Helffer, Hoffmann-Ostenhof [J. Phys. A (2009)] Noris, Terracini [Indiana Univ. Math. J. (2010)]: nodal domains of eigenfunctions are related to spectral minimal partitions of the Dirichlet Laplacian with points of odd multiplicity

The case $\gamma=\frac{1}{2}$, half-integer circulation

$\mathbf{A}_{\mathbf{a}}(x)=\mathbf{A}_{\mathbf{0}}(x-\boldsymbol{a}), \quad$ where $\quad \mathbf{A}_{\mathbf{0}}\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(-\frac{x_{2}}{x_{1}^{2}+x_{2}^{2}}, \frac{x_{1}}{x_{1}^{2}+x_{2}^{2}}\right)$.

- Bonnaillie-Noël, Helffer, Hoffmann-Ostenhof [J. Phys. A (2009)] Noris, Terracini [Indiana Univ. Math. J. (2010)]: nodal domains of eigenfunctions are related to spectral minimal partitions of the Dirichlet Laplacian with points of odd multiplicity
- Bonnaillie-Noël, Noris, Nys, Terracini [Analysis and PDE (2014)] Léna [J. Math. Phys. (2015)], Noris, Nys, Terracini [CMP (2015)] Noris, Terracini [Indiana Univ. Math. J. (2010)]:
a strong connection between nodal properties of eigenfunctions and the critical points of the map $\boldsymbol{a} \mapsto \lambda_{j}(\boldsymbol{a})$.

Properties of the map $a \mapsto \lambda_{j}(a)$

Bonnaillie-Noël, Noris, Nys, Terracini (2014), Léna (2015):

- $\forall j \geq 1$, the map $\boldsymbol{a} \mapsto \lambda_{j}(\boldsymbol{a})$ is continuous in Ω and has a continuous extension on $\bar{\Omega}$ (as $\boldsymbol{a} \rightarrow \partial \Omega, \lambda_{j}(\boldsymbol{a}) \rightarrow j$-th eigenvalue of $-\Delta$ in Ω)

Properties of the map $a \mapsto \lambda_{j}(a)$

Bonnaillie-Noël, Noris, Nys, Terracini (2014), Léna (2015):

- $\forall j \geq 1$, the map $\boldsymbol{a} \mapsto \lambda_{j}(\boldsymbol{a})$ is continuous in Ω and has a continuous extension on $\bar{\Omega}$ (as $\boldsymbol{a} \rightarrow \partial \Omega, \lambda_{j}(\boldsymbol{a}) \rightarrow j$-th eigenvalue of $-\Delta$ in Ω)
- Improved regularity for simple eigenvalues:
if $\boldsymbol{b} \in \Omega$ and $\lambda_{N}(\boldsymbol{b})$ is simple, then the function $\boldsymbol{a} \mapsto \lambda_{N}(\boldsymbol{a})$ is analytic in a neighborhood of \boldsymbol{b}.

Properties of the map $a \mapsto \lambda_{j}(a)$

Bonnaillie-Noël, Noris, Nys, Terracini (2014), Léna (2015):

- $\forall j \geq 1$, the map $\boldsymbol{a} \mapsto \lambda_{j}(\boldsymbol{a})$ is continuous in Ω and has a continuous extension on $\bar{\Omega}$ (as $\boldsymbol{a} \rightarrow \partial \Omega, \lambda_{j}(\boldsymbol{a}) \rightarrow j$-th eigenvalue of $-\Delta$ in Ω)
- Improved regularity for simple eigenvalues:
if $\boldsymbol{b} \in \Omega$ and $\lambda_{N}(\boldsymbol{b})$ is simple, then the function $\boldsymbol{a} \mapsto \lambda_{N}(\boldsymbol{a})$ is analytic in a neighborhood of \boldsymbol{b}.

Bonnaillie-Noël, Noris, Nys, Terracini (2014): the behavior of the eigenvalue $\lambda_{N}(\boldsymbol{a})$ is strongly related to the structure of the nodal lines of the associated eigenfunction:

$$
\left|\lambda_{N}(\boldsymbol{a})-\lambda_{N}(\mathbf{0})\right| \leq C|\boldsymbol{a}|^{\frac{k+1}{2}} \quad \text { as } \boldsymbol{a} \rightarrow \mathbf{0} \in \Omega,
$$

where $k \geq 3$ is the number of nodal lines of the eigenfunction associated to the simple eigenvalue $\lambda_{N}(\mathbf{0})$.

Rate of convergence - Interior point $b=0 \in \Omega$

Let $N \geq 1$ be such that $\lambda_{N}(\mathbf{0})$ is simple. Thus $\lambda_{N}(\mathbf{a}) \underset{\mathrm{a} \rightarrow 0}{\rightarrow} \lambda_{N}(\mathbf{0})$.
Let $\varphi_{N}^{\mathbf{0}}$ be an eigenfunction of $\left(i \nabla+\mathbf{A}_{\mathbf{0}}\right)^{2}$ associated to $\lambda_{N}(\mathbf{0})$

$$
\left\{\begin{array}{ll}
\left(i \nabla+\mathbf{A}_{0}\right)^{2} \varphi_{N}^{0}=\lambda_{N}^{0} \varphi_{N}^{0}, & \text { in } \Omega, \\
\varphi_{N}^{0}=0, & \text { on } \partial \Omega,
\end{array} \quad \text { such that } \int_{\Omega}\left|\varphi_{N}^{0}(x)\right|^{2} d x=1\right.
$$

Rate of convergence - Interior point $b=0 \in \Omega$

Let $N \geq 1$ be such that $\lambda_{N}(\mathbf{0})$ is simple. Thus $\lambda_{N}(\mathbf{a}) \underset{\mathrm{a} \rightarrow 0}{\rightarrow} \lambda_{N}(\mathbf{0})$.
Let $\varphi_{N}^{\mathbf{0}}$ be an eigenfunction of $\left(i \nabla+\mathbf{A}_{\mathbf{0}}\right)^{2}$ associated to $\lambda_{N}(\mathbf{0})$

$$
\left\{\begin{array}{ll}
\left(i \nabla+\mathbf{A}_{0}\right)^{2} \varphi_{N}^{0}=\lambda_{N}^{0} \varphi_{N}^{0}, & \text { in } \Omega, \\
\varphi_{N}^{0}=0, & \text { on } \partial \Omega,
\end{array} \quad \text { such that } \int_{\Omega}\left|\varphi_{N}^{0}(x)\right|^{2} d x=1\right.
$$

- φ_{N}^{0} has at 0 a zero or order $\frac{k}{2}$ for some odd $k \in \mathbb{N}$
- φ_{N}^{0} has got exactly k nodal lines meeting at 0 and dividing the whole angle into k equal parts.

Sharp asymptotics: moving along directions of nodal lines

Theorem [Abatangelo-F., Calc. Var. PDEs 2015]

Let \mathfrak{r} be the half-line tangent to a nodal line of eigenfunction φ_{N}^{0} associated to λ_{N}^{0} ending at $\mathbf{0}$. Then, as $\boldsymbol{a} \rightarrow \mathbf{0}$ with $\boldsymbol{a} \in \mathfrak{r}$,

$$
\frac{\lambda_{N}(\mathbf{0})-\lambda_{N}(\boldsymbol{a})}{|\boldsymbol{a}|^{k}} \rightarrow-4 \frac{\left|\beta_{1}\right|^{2}+\left|\beta_{2}\right|^{2}}{\pi} \mathfrak{m} .
$$

Sharp asymptotics: moving along directions of nodal lines

Theorem [Abatangelo-F., Calc. Var. PDEs 2015]

Let \mathfrak{r} be the half-line tangent to a nodal line of eigenfunction φ_{N}^{0} associated to λ_{N}^{0} ending at $\mathbf{0}$. Then, as $\boldsymbol{a} \rightarrow \mathbf{0}$ with $\boldsymbol{a} \in \mathfrak{r}$,

$$
\frac{\lambda_{N}(\mathbf{0})-\lambda_{N}(\boldsymbol{a})}{|\boldsymbol{a}|^{k}} \rightarrow-4 \frac{\left|\beta_{1}\right|^{2}+\left|\beta_{2}\right|^{2}}{\pi} \mathfrak{m} .
$$

Here

- $\left(\beta_{1}, \beta_{2}\right) \neq(0,0)$ is s.t.
$r^{-\frac{k}{2}} \varphi_{N}^{0}(r(\cos t, \sin t)) \rightarrow \beta_{1} \frac{e^{i \frac{t}{2}}}{\sqrt{\pi}} \cos \left(\frac{k}{2} t\right)+\beta_{2} \frac{e^{i \frac{t}{2}}}{\sqrt{\pi}} \sin \left(\frac{k}{2} t\right)$ as $r \rightarrow 0^{+}$
- $\mathfrak{m}<0$ is a negative constant depending only on k.

The constant \mathfrak{m}

- Abatangelo-F., Calc. Var. PDEs 2015: variational characterization

$$
\mathfrak{m}=-\frac{1}{2} \int_{\mathbb{R}_{+}^{2}}|\nabla w(x)|^{2} d x<0
$$

where w is the unique finite energy weak solution to

$$
\begin{cases}-\Delta w=0, & \text { in } \left.\mathbb{R}_{+}^{2}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{2}>0\right)\right\}, \\ w=0, & \text { on } s:=[1,+\infty) \times\{0\}, \\ \frac{\partial w}{\partial \nu}\left(x_{1}, 0\right)=\frac{k}{2} x_{1}^{\frac{k}{2}-1}, & \text { on } \partial \mathbb{R}_{+}^{2} \backslash s,\end{cases}
$$

- Abatangelo-F.-Léna 2018: $\mathfrak{m}=-\frac{k \pi}{2^{2 k+1}}\binom{k-1}{\left\lfloor\frac{k-1}{2}\right\rfloor}^{2}$

Blow-up

It is not restrictive to assume that $\beta_{1}=0$ (rotate the axes so that the positive x_{1}-axis is tangent to one of the k nodal lines of φ_{N}^{0} ending at $\mathbf{0}$).

Theorem

$$
\frac{\varphi_{N}^{\mathbf{a}}(|\boldsymbol{a}| x)}{|\boldsymbol{a}|^{k / 2}} \rightarrow \frac{\beta_{2}}{\sqrt{\pi}} \Psi \quad \text { as } \boldsymbol{a}=(|\boldsymbol{a}|, 0) \rightarrow 0
$$

in some suitable Sobolev norm, a.e. and in $C_{\text {loc }}^{2}\left(\mathbb{R}^{2} \backslash\{\mathbf{e}\}, \mathbb{C}\right)$, where $\mathbf{e}=(1,0)$.
Ψ is the unique function (with local finite "energy") satisfying

$$
\left\{\begin{array}{l}
\left(i \nabla+A_{\mathbf{e}}\right)^{2} \Psi=0, \quad \text { in } \mathbb{R}^{2} \\
\Psi \sim \psi_{k}(\text { up to suitable phases }) \text { near } \infty
\end{array}\right.
$$

where $\psi_{k}(r \cos t, r \sin t)=r^{k / 2} \sin \left(\frac{k}{2} t\right)$.

Moving along any direction

Theorem [Abatangelo-F. SIAM J. Math.

Anal. (2016)]

If $\alpha \in[0,2 \pi)$, then, as $\boldsymbol{a}=|\boldsymbol{a}|(\cos \alpha, \sin \alpha) \rightarrow \mathbf{0}$,

$$
\frac{\lambda_{N}(\mathbf{0})-\lambda_{N}(\boldsymbol{a})}{|\boldsymbol{a}|^{k}} \rightarrow C_{0} \cos \left(k\left(\alpha-\alpha_{0}\right)\right)
$$

with $C_{0}=-4 \frac{\left|\beta_{1}\right|^{2}+\left|\beta_{2}\right|^{2}}{\pi} \mathfrak{m}$.

Moving along any direction

Theorem [Abatangelo-F. SIAM J. Math.
 Anal. (2016)]

If $\alpha \in[0,2 \pi)$, then, as $\boldsymbol{a}=|\boldsymbol{a}|(\cos \alpha, \sin \alpha) \rightarrow \mathbf{0}$,

$$
\frac{\lambda_{N}(\mathbf{0})-\lambda_{N}(\boldsymbol{a})}{|\boldsymbol{a}|^{k}} \rightarrow C_{0} \cos \left(k\left(\alpha-\alpha_{0}\right)\right)
$$

with $C_{0}=-4 \frac{\left|\beta_{1}\right|^{2}+\left|\beta_{2}\right|^{2}}{\pi} \mathfrak{m}$.

The leading term in the Taylor expansion

$$
\lambda_{N}(\mathbf{0})-\lambda_{N}(\boldsymbol{a})=P(\boldsymbol{a})+o\left(|\boldsymbol{a}|^{k}\right), \quad \text { as }|\boldsymbol{a}| \rightarrow 0^{+},
$$

is then given by $P(|\boldsymbol{a}|(\cos \alpha, \sin \alpha))=C_{0}|\boldsymbol{a}|^{k} \cos \left(k\left(\alpha-\alpha_{0}\right)\right)$.
Hence $P\left(a_{1}, a_{2}\right)=C_{0} \Re\left(e^{-i k \alpha_{0}}\left(a_{1}+i a_{2}\right)^{k}\right)$ and the polynomial P is harmonic.

The importance of being $1 / 2$

The special features of A.-B. operators with circulation $\frac{1}{2}\left(\right.$ or $\left.\gamma \in \frac{\mathbb{Z}}{2}\right)$ played a crucial role in the previous results.

- Local energy estimates for eigenfunctions near the limit pole are performed by studying an Almgren type quotient; for $\gamma=\frac{1}{2}$ this can be estimated using a representation formula by Green's functions for solutions to the corresponding Laplace problem on the twofold covering.
- The limit profile is constructed using the fact that it vanishes on the special directions determined by the nodal lines of limit eigenfunctions \rightsquigarrow sharp relation between the asymptotics of the eigenvalue function and the number of nodal lines (which is strongly related to the order of vanishing of the limit eigenfunction).

The case $\gamma \in \mathbb{R} \backslash \frac{\mathbb{Z}}{2}$

- A reduction to the Laplacian on the twofold covering manifold is no more available.
- Magnetic eigenfunctions vanish at the pole a but they do not have nodal lines ending at a.

To derive sharp energy estimates (through Almgren frequency function) we need to give a detailed description of the behaviour of eigenfunctions at the pole and study the dependence of the coefficients of their asymptotic expansion with respect to the moving pole a.

Non-half-integer circulation

Let us consider the AB vector potential with circulation $\gamma \notin \frac{\mathbb{Z}}{2}$

$$
\mathbf{A}_{\mathbf{a}}\left(x_{1}, x_{2}\right)=\gamma\left(\frac{-\left(x_{2}-a_{2}\right)}{\left(x_{1}-a_{1}\right)^{2}+\left(x_{2}-a_{2}\right)^{2}}, \frac{x_{1}-a_{1}}{\left(x_{1}-a_{1}\right)^{2}+\left(x_{2}-a_{2}\right)^{2}}\right)
$$

Assume that $\exists N \geq 1$ such that $\lambda_{N}(\mathbf{0})$ is simple. Thus $\lambda_{N}(\boldsymbol{a}) \xrightarrow{\boldsymbol{a} \rightarrow^{0}} \lambda_{N}(\mathbf{0})$.
If φ_{N}^{0} is an eigenfunction of $\left(i \nabla+\mathbf{A}_{\mathbf{0}}\right)^{2}$ associated to λ_{N}^{0}, then by [F., Ferrero, Terracini (2011)] we know that
φ_{0}^{N} vanishes at $\mathbf{0}$ with a vanishing order equal to $|\gamma-k|$ for some $k \in \mathbb{Z}$

Theorem [Abatangelo-F.-Noris-Nys, Analysis PDEs (2018)]

$$
\left|\lambda_{N}(\boldsymbol{a})-\lambda_{N}(\mathbf{0})\right|=O\left(|\boldsymbol{a}|^{1+\lfloor 2|\gamma-k|\rfloor}\right) \quad \text { as }|\boldsymbol{a}| \rightarrow 0
$$

Aharonov-Bohm operators with two colliding poles

For $a>0$, let

$$
\boldsymbol{a}^{-}=(-a, 0) \text { and } \boldsymbol{a}^{+}=(a, 0)
$$

be the poles of the $A B$ potential

$$
\begin{aligned}
\mathbf{A}_{\mathbf{a}^{-}, \boldsymbol{a}^{+}}(x) & :=-\mathbf{A}_{\mathbf{a}^{-}}(x)+\mathbf{A}_{\mathbf{a}^{+}}(x) \\
& =-\frac{1}{2} \frac{\left(-x_{2}, x_{1}+a\right)}{\left(x_{1}+a\right)^{2}+x_{2}^{2}}+\frac{1}{2} \frac{\left(-x_{2}, x_{1}-a\right)}{\left(x_{1}-a\right)^{2}+x_{2}^{2}} .
\end{aligned}
$$

Aharonov-Bohm operators with two colliding poles

$$
\mathbf{A}_{\mathbf{a}^{-}, \mathbf{a}^{+}}(x):=-\mathbf{A}_{\mathbf{a}^{-}}(x)+\mathbf{A}_{\mathbf{a}^{+}}(x)
$$

Let $\Omega \subseteq \mathbb{R}^{2}$ be open, bounded and connected with $0 \in \Omega$.
Let $\left\{\lambda_{k}^{a}\right\}_{k \geq 1}$ be the eigenvalues of $\left(i \nabla+\mathbf{A}_{\mathbf{a}^{-}, \mathbf{a}^{+}}\right)^{2}$ in Ω with homogenous Dirichlet boundary conditions.
Let $\left\{\lambda_{k}\right\}_{k \geq 1}$ be the eigenvalues of the Dirichlet Laplacian $-\Delta$ in Ω.

Aharonov-Bohm operators with two colliding poles

$$
\mathbf{A}_{\mathbf{a}^{-}, \mathbf{a}^{+}}(x):=-\mathbf{A}_{\mathbf{a}^{-}}(x)+\mathbf{A}_{\mathbf{a}^{+}}(x)
$$

Let $\Omega \subseteq \mathbb{R}^{2}$ be open, bounded and connected with $0 \in \Omega$.
Let $\left\{\lambda_{k}^{a}\right\}_{k \geq 1}$ be the eigenvalues of $\left(i \nabla+\mathbf{A}_{\mathbf{a}^{-}, \mathbf{a}^{+}}\right)^{2}$ in Ω with homogenous Dirichlet boundary conditions.
Let $\left\{\lambda_{k}\right\}_{k \geq 1}$ be the eigenvalues of the Dirichlet Laplacian $-\Delta$ in Ω.

Theorem [Léna, J. Math. Physics (2015)]

For every $k \geq 1$,

$$
\lim _{a \rightarrow 0} \lambda_{k}^{a}=\lambda_{k}
$$

Problem: sharp asymptotics for the eigenvalue variation $\lambda_{k}^{a}-\lambda_{k}$ as the two poles $\boldsymbol{a}^{-}, \boldsymbol{a}^{+}$coalesce towards a point?

Symmetric case

Let $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \sigma\left(x_{1}, x_{2}\right)=\left(x_{1},-x_{2}\right)$. Let Ω be such that

$$
\sigma(\Omega)=\Omega \quad \text { and } \quad 0 \in \Omega .
$$

Let λ_{N} be a simple eigenvalue of the Dirichlet Laplacian on Ω and φ_{N} be an associated $L^{2}(\Omega)$-normalized eigenfunction

Symmetric case

Let $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \sigma\left(x_{1}, x_{2}\right)=\left(x_{1},-x_{2}\right)$. Let Ω be such that

$$
\sigma(\Omega)=\Omega \quad \text { and } \quad 0 \in \Omega .
$$

Let λ_{N} be a simple eigenvalue of the Dirichlet Laplacian on Ω and φ_{N} be an associated $L^{2}(\Omega)$-normalized eigenfunction

$$
\begin{aligned}
& \rightsquigarrow \exists k \in \mathbb{N}, \beta \neq 0, \alpha \in[0, \pi) \text { s.t. } \\
& \varphi_{N}(r(\cos t, \sin t)) \underset{r \rightarrow 0^{+}}{\sim} \beta r^{k} \sin (\alpha-k t)
\end{aligned}
$$

- If $k=0, \varphi_{N}$ does not vanish near 0 and $\beta \sin \alpha=\varphi_{N}(0)$.
- $k=1: 0$ is a regular point in the nodal set of φ_{N} and $\beta^{2}=\left|\nabla \varphi_{N}(0)\right|^{2}$.
- If $k \geq 1$, the nodal set of φ_{N} near 0 consists of $2 k$ regular half-curves meeting at 0 with equal angles; the minimal slope of half-curves is $\frac{\alpha}{k}$.

Symmetric case

Symmetry (and simplicity of λ_{N}) $\rightsquigarrow \varphi_{N}$ is either even or odd in x_{2}

$$
\alpha=\frac{\pi}{2} \quad \alpha=0
$$

Theorem [Abatangelo-F.-Hillairet-Léna, J. Spectr. T. (2019)]

Let φ_{N} be even in x_{2}. Then

$$
\begin{aligned}
& \text { if } k=0, \quad \lambda_{N}^{a}=\lambda_{N}+\frac{2 \pi\left|\varphi_{N}(0)\right|^{2}}{|\log a|}+o\left(\frac{1}{|\log a|}\right), \quad \text { as } a \rightarrow 0^{+}, \\
& \text {if } k \geq 1, \quad \lambda_{N}^{a}=\lambda_{N}+\frac{k \pi \beta^{2}}{4^{k-1}}\binom{k-1}{\left\lfloor\frac{k-1}{2}\right\rfloor}^{2} a^{2 k}+o\left(a^{2 k}\right), \quad \text { as } a \rightarrow 0^{+} .
\end{aligned}
$$

Theorem [Abatangelo-F.-Léna, ESAIM COCV, to appear]

Let φ_{N} be odd in x_{2}. Then

$$
\lambda_{N}^{a}=\lambda_{N}-\frac{k \pi \beta^{2}}{4^{k-1}}\binom{k-1}{\left\lfloor\frac{k-1}{2}\right\rfloor}^{2} a^{2 k}+o\left(a^{2 k}\right), \quad \text { as } a \rightarrow 0^{+} .
$$

Idea of the proof.

1. Isospectrality. The sequence $\left\{\lambda_{k}^{a}\right\}_{k \geq 1}$ is the union, counted with multiplicities, of sequences $\left\{\lambda_{k}^{N D N}\left(\boldsymbol{a}^{+}, \boldsymbol{a}^{-}\right)\right\}_{k \geq 1},\left\{\lambda_{k}^{D N D}\left(\boldsymbol{a}^{+}, \boldsymbol{a}^{-}\right)\right\}_{k \geq 1}$.
$\left\{\lambda_{k}^{N D N}\left(\boldsymbol{a}^{+}, \boldsymbol{a}^{-}\right)\right\}_{k \geq 1}=\left\{\begin{array}{l}\text { eigenvalues of Neumann-Dirichlet-Neumann } \\ \text { Laplacian }-\Delta^{N D N} \text { on the half domain }\end{array}\right\}$
$\left\{\lambda_{k}^{D N D}\left(\boldsymbol{a}^{+}, \boldsymbol{a}^{-}\right)\right\}_{k \geq 1}=\left\{\begin{array}{l}\text { eigenvalues of Dirichlet-Neumann-Dirichlet } \\ \text { Laplacian }-\Delta^{D N D} \text { on the half domain }\end{array}\right\}$

See [Bonnaillie-Noël-Helffer-Hoffmann-Ostenhof, J. Phys. A (2009)] for isospectrality results for a single pole.

Idea of the proof.

2.

Even case

In the even case, the problem reduces to the study of the asymptotics of

$$
\lambda_{N}\left(\Omega \backslash s_{a}\right) \quad \text { as } a \rightarrow 0^{+} .
$$

- Courtois [J. Funct. Anal., 1995]:

$$
\begin{array}{r}
\quad \lambda_{N}\left(\Omega \backslash s_{a}\right)=\lambda_{N}+\operatorname{Cap}_{\Omega}\left(s_{a}, \varphi_{N}\right)+o\left(\operatorname{Cap}_{\Omega}\left(s_{a}, \varphi_{N}\right)\right), \\
\text { as } a \rightarrow 0^{+}, \text {where } \operatorname{Cap}_{\Omega}\left(s_{a}, \varphi_{N}\right)=\inf _{\substack{f \in H_{0}^{1}(\Omega) \\
f=\varphi_{N} \text { on } s_{a}}} \int_{\Omega}|\nabla f|^{2} .
\end{array}
$$

Even case

In the even case, the problem reduces to the study of the asymptotics of

$$
\lambda_{N}\left(\Omega \backslash s_{a}\right) \quad \text { as } a \rightarrow 0^{+} .
$$

- Courtois [J. Funct. Anal., 1995]:

$$
\begin{array}{r}
\quad \lambda_{N}\left(\Omega \backslash s_{a}\right)=\lambda_{N}+\operatorname{Cap}_{\Omega}\left(s_{a}, \varphi_{N}\right)+o\left(\operatorname{Cap}_{\Omega}\left(s_{a}, \varphi_{N}\right)\right), \\
\text { as } a \rightarrow 0^{+}, \text {where } \operatorname{Cap}_{\Omega}\left(s_{a}, \varphi_{N}\right)=\inf _{\substack{f \in H_{0}^{1}(\Omega) \\
f=\varphi_{N} \text { on } s_{a}}} \int_{\Omega}|\nabla f|^{2} .
\end{array}
$$

- Sharp estimates of $\operatorname{Cap}_{\Omega}\left(s_{a}, \varphi_{N}\right)$ passing to elliptic coordinates

$$
\left\{\begin{array}{l}
x_{1}=\operatorname{acosh}(\xi) \cos (\eta), \\
x_{2}=a \sinh (\xi) \sin (\eta)
\end{array}\right.
$$

Odd case

In the odd case, the problem reduces to the study of the asymptotics of $\left\{\lambda_{k}^{D N D}\left(\boldsymbol{a}^{+}, \boldsymbol{a}^{-}\right)\right\}_{k \geq 1}=\left\{\begin{array}{l}\text { eigenvalues of Dirichlet-Neumann-Dirichlet } \\ \text { Laplacian }-\Delta^{D N D} \text { on the half domain }\end{array}\right\}$

DND problem

Let λ_{N} be simple and let φ_{N} be an associate normalized eigenfunction, i.e.

$$
\begin{cases}-\Delta \varphi_{N}=\lambda_{N} \varphi_{N}, & \text { in } \Omega \\ \varphi_{N}=0, & \text { on } \partial \Omega \\ \int_{\Omega} \varphi_{N}^{2}(x) d x=1 . & \end{cases}
$$

Then there exist $k \in \mathbb{N} \backslash\{0\}$ and $\beta \in \mathbb{R} \backslash\{0\}$ such that

$$
\varphi_{N}(r \cos t, r \sin t) \underset{r \rightarrow 0}{\sim} \beta r^{k} \sin (k t) .
$$

Gadyl'shin (1992), Abatangelo-F.-Léna (2018):

$$
\lim _{a \rightarrow 0^{+}} \frac{\lambda_{N}-\lambda_{N}(a)}{a^{2 k}}=\beta^{2} \frac{k \pi}{2^{2 k-1}}\binom{k-1}{\left\lfloor\frac{k-1}{2}\right\rfloor}^{2}
$$

Non symmetric case

No symmetry assumption on Ω Let us assume the N-th eigenvalue λ_{N} of $-\Delta$ in Ω is simple. Let φ_{N} be a $L^{2}(\Omega)$-normalized eigenfunction associated to λ_{N}.

Theorem [Abatangelo-F.-Léna, Advanced Nonlin. Studies (2017)]
If $\varphi_{N}(0) \neq 0$ (i.e. $k=0$) then

$$
\lambda_{N}^{a}-\lambda_{N}=\frac{2 \pi \varphi_{N}^{2}(0)}{|\log a|}(1+o(1)) \quad \text { as } a \rightarrow 0^{+} .
$$

Idea of the proof.

1. If a is small and φ_{N}^{a} is an eigenfunction associated with λ_{N}^{a}, then, in a neighborhood of 0 , the nodal set of φ_{N}^{a} consists in a single regular curve K_{a} connecting \boldsymbol{a}^{-}and \boldsymbol{a}^{+}and concentrating around 0 .
[Noris-Terracini (2010), Helffer-Hoffmann-Ostenhof-Hoffmann-Ostenhof-Owen (1999), Alziary-Fleckinger-Pellé-Takác̆ (2003)]
2. If a is small and φ_{N}^{a} is an eigenfunction associated with λ_{N}^{a}, then, in a neighborhood of 0 , the nodal set of φ_{N}^{a} consists in a single regular curve K_{a} connecting \boldsymbol{a}^{-}and \boldsymbol{a}^{+}and concentrating around 0 .
[Noris-Terracini (2010), Helffer-Hoffmann-Ostenhof-Hoffmann-Ostenhof-Owen (1999), Alziary-Fleckinger-Pellé-Takác̆ (2003)]
3. For all $a>0$ sufficiently small, $\lambda_{N}^{a}=\lambda_{N}\left(\Omega \backslash K_{a}\right)$ (Gauge invariance).
4. If a is small and φ_{N}^{a} is an eigenfunction associated with λ_{N}^{a}, then, in a neighborhood of 0 , the nodal set of φ_{N}^{a} consists in a single regular curve K_{a} connecting \boldsymbol{a}^{-}and \boldsymbol{a}^{+}and concentrating around 0 .
[Noris-Terracini (2010), Helffer-Hoffmann-Ostenhof-Hoffmann-Ostenhof-Owen (1999), Alziary-Fleckinger-Pellé-Takáč (2003)]
5. For all $a>0$ sufficiently small, $\lambda_{N}^{a}=\lambda_{N}\left(\Omega \backslash K_{a}\right)$ (Gauge invariance).
6. We denote as $d_{a}:=\operatorname{diam} K_{a}$ the diameter of K_{a}. We already know that

$$
\lambda_{N}\left(\Omega \backslash K_{a}\right)-\lambda_{N}=\varphi_{N}^{2}(0) \frac{2 \pi}{\left|\log d_{a}\right|}+o\left(\frac{1}{\left|\log d_{a}\right|}\right), \quad \text { as } a \rightarrow 0^{+}
$$

It remains to estimate d_{a}, i.e. the diameter of nodal lines of magnetic eigenfunctions near the collision point:

$$
\lim _{a \rightarrow 0^{+}} \frac{|\log a|}{\left|\log d_{a}\right|}=1
$$

Reaching a point on the boundary: $\boldsymbol{a} \rightarrow \boldsymbol{b} \in \partial \Omega$

In this case the limit operator is no more singular and the magnetic eigenvalues converge to those of the standard Laplacian: $\lambda_{k}(\boldsymbol{b})=\lambda_{k}$.

Noris, Nys, Terracini (2015):

- if λ_{N} is simple and its eigenfunction φ_{N} has
at $\boldsymbol{b} \in \partial \Omega$ a zero of order $j \geq 2$
($j-1$ nodal lines end at \boldsymbol{b}) then $\exists C>0$ s.t.

$$
\lambda_{N}(\boldsymbol{a})-\lambda_{N} \leq-C|\boldsymbol{a}-\boldsymbol{b}|^{2 j}
$$

for $\boldsymbol{a} \rightarrow \boldsymbol{b}$ along a nodal line.

Reaching a point on the boundary: $\boldsymbol{a} \rightarrow \boldsymbol{b} \in \partial \Omega$

In this case the limit operator is no more singular and the magnetic eigenvalues converge to those of the standard Laplacian: $\lambda_{k}(\boldsymbol{b})=\lambda_{k}$.

Noris, Nys, Terracini (2015):

- if λ_{N} is simple and its eigenfunction φ_{N} has at $\boldsymbol{b} \in \partial \Omega$ a zero of order $j \geq 2$
($j-1$ nodal lines end at \boldsymbol{b}) then $\exists C>0$ s.t.

$$
\lambda_{N}(\boldsymbol{a})-\lambda_{N} \leq-C|\boldsymbol{a}-\boldsymbol{b}|^{2 j}
$$

for $\boldsymbol{a} \rightarrow \boldsymbol{b}$ along a nodal line.

- if λ_{N} is simple and \boldsymbol{a} approaches a boundary point where no nodal lines of φ_{N} end, then $\exists C>0$ s.t.

$$
\lambda_{N}(\boldsymbol{a})-\lambda_{N} \geq C(\operatorname{dist}(\boldsymbol{a}, \partial \Omega))^{2}
$$

Sharp asymptotics at the boundary

Let $\alpha \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and
$p=(\cos \alpha, \sin \alpha) \in \mathbb{S}_{+}^{1}:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2}=1, x_{1}>0\right\}$.

Theorem [Abatangelo-F-Noris-Nys, JFA (2017)]

There exists $\mathfrak{c}_{p} \in \mathbb{R}$ such that

$$
\frac{\lambda_{N}-\lambda_{N}(\boldsymbol{a})}{|\boldsymbol{a}|^{2 j}} \rightarrow|\beta|^{2} \mathfrak{c}_{p}, \quad \text { as } \boldsymbol{a}=|\boldsymbol{a}| p \rightarrow 0 .
$$

- the function $p \mapsto \mathfrak{c}_{p}$ is continuous on \mathbb{S}_{+}^{1} and tends to 0 as $p \rightarrow(0, \pm 1)$;

Sharp asymptotics at the boundary

Let $\alpha \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and
$p=(\cos \alpha, \sin \alpha) \in \mathbb{S}_{+}^{1}:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2}=1, x_{1}>0\right\}$.

Theorem [Abatangelo-F-Noris-Nys, JFA (2017)]

There exists $\mathfrak{c}_{p} \in \mathbb{R}$ such that

$$
\frac{\lambda_{N}-\lambda_{N}(\boldsymbol{a})}{|\boldsymbol{a}|^{2 j}} \rightarrow|\beta|^{2} \mathfrak{c}_{p}, \quad \text { as } \boldsymbol{a}=|\boldsymbol{a}| p \rightarrow 0 .
$$

- the function $p \mapsto \mathfrak{c}_{p}$ is continuous on \mathbb{S}_{+}^{1} and tends to 0 as $p \rightarrow(0, \pm 1)$;
- $\mathfrak{c}_{p}>0$ if the half-line $\{t p: t \geq 0\}$ is tangent to a nodal line of φ_{N} in 0 ;

Sharp asymptotics at the boundary

Let $\alpha \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and
$p=(\cos \alpha, \sin \alpha) \in \mathbb{S}_{+}^{1}:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2}=1, x_{1}>0\right\}$.

Theorem [Abatangelo-F-Noris-Nys, JFA (2017)]

There exists $\mathfrak{c}_{p} \in \mathbb{R}$ such that

$$
\frac{\lambda_{N}-\lambda_{N}(\boldsymbol{a})}{|\boldsymbol{a}|^{2 j}} \rightarrow|\beta|^{2} \mathfrak{c}_{p}, \quad \text { as } \boldsymbol{a}=|\boldsymbol{a}| p \rightarrow 0 .
$$

- the function $p \mapsto \mathfrak{c}_{p}$ is continuous on \mathbb{S}_{+}^{1} and
 tends to 0 as $p \rightarrow(0, \pm 1)$;
- $\mathfrak{c}_{p}>0$ if the half-line $\{t p: t \geq 0\}$ is tangent to a nodal line of φ_{N} in 0 ;
- $\mathfrak{c}_{p}<0$ if the half-line $\{t p: t \geq 0\}$ is the bisector of two nodal lines of φ_{N} or of one nodal line and the boundary.

