

On spectral stability of

Aharonov-Bohm operators with moving poles

Joint works with L. Abatangelo, L. Hillairet, C. Léna, B. Noris, M. Nys

Veronica Felli University of Milano – Bicocca

Variational methods, with applications to problems in mathematical physics and geometry, Venezia, November 30, 2019

For $\mathbf{a} = (a_1, a_2) \in \mathbb{R}^2$, the Aharonov-Bohm magnetic potential with pole \mathbf{a} and circulation $\gamma \in \mathbb{R} \setminus \mathbb{Z}$ is

$$\mathbf{A}_{a}(x_{1}, x_{2}) = \gamma \left(\frac{-(x_{2} - a_{2})}{(x_{1} - a_{1})^{2} + (x_{2} - a_{2})^{2}}, \frac{x_{1} - a_{1}}{(x_{1} - a_{1})^{2} + (x_{2} - a_{2})^{2}} \right)$$

 $\mathbf{A}_{\boldsymbol{a}}$ generates the Aharonov-Bohm magnetic field in \mathbb{R}^2 with pole \boldsymbol{a} and circulation γ .

Aharonov–Bohm potential

The AB magnetic field is produced by an infinitely long thin solenoid intersecting perpendicularly the plane (x_1, x_2) at the point **a**, as the

radius of the solenoid goes to zero and the magnetic flux remains constantly equal to γ .

Negletting the irrelevant coordinate along the solenoid, the problem becomes 2-dimensional.

Aharonov-Bohm effect [Aharonov-Bohm, Phys. Rev. (1959)]

The AB magnetic field is a δ -like magnetic field: a quantum particle moving in $\mathbb{R}^2 \setminus \{a\}$ is affected by the magnetic potential, despite being confined to a region in which the magnetic field is zero.

The Schrödinger operators with AB vector potential:

$$(i\nabla + \mathbf{A}_a)^2 u = -\Delta u + 2i\mathbf{A}_a \cdot \nabla u + |\mathbf{A}_a|^2 u.$$

In $\Omega \subset \mathbb{R}^2$ bounded, open and simply connected, $\forall a \in \overline{\Omega}$ the eigenvalue problem

$$\begin{cases} (i\nabla + A_a)^2 u = \lambda u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega, \end{cases}$$

admits a sequence of real diverging eigenvalues $\{\lambda_k(\boldsymbol{a})\}_{k\geq 1}$

$$\lambda_1(\boldsymbol{a}) \leq \lambda_2(\boldsymbol{a}) \leq \cdots \leq \lambda_k(\boldsymbol{a}) \leq \dots$$

If $\boldsymbol{a} \in \partial \Omega$, then

 $\lambda_k(\mathbf{a}) = \lambda_k$ = eigenvalue of the standard Dirichlet Laplacian.

$$\mathbf{A}_{a}(x) = \mathbf{A}_{0}(x - a), \text{ where } \mathbf{A}_{0}(x_{1}, x_{2}) = \frac{1}{2} \left(-\frac{x_{2}}{x_{1}^{2} + x_{2}^{2}}, \frac{x_{1}}{x_{1}^{2} + x_{2}^{2}} \right).$$

 Bonnaillie-Noël, Helffer, Hoffmann-Ostenhof [J. Phys. A (2009)] Noris, Terracini [Indiana Univ. Math. J. (2010)]: nodal domains of eigenfunctions are related to spectral minimal partitions of the Dirichlet Laplacian with points of odd multiplicity

$$\mathbf{A}_{a}(x) = \mathbf{A}_{0}(x - a), \text{ where } \mathbf{A}_{0}(x_{1}, x_{2}) = \frac{1}{2} \left(-\frac{x_{2}}{x_{1}^{2} + x_{2}^{2}}, \frac{x_{1}}{x_{1}^{2} + x_{2}^{2}} \right).$$

- Bonnaillie-Noël, Helffer, Hoffmann-Ostenhof [J. Phys. A (2009)] Noris, Terracini [Indiana Univ. Math. J. (2010)]: nodal domains of eigenfunctions are related to spectral minimal partitions of the Dirichlet Laplacian with points of odd multiplicity
- Bonnaillie-Noël, Noris, Nys, Terracini [Analysis and PDE (2014)] Léna [J. Math. Phys. (2015)], Noris, Nys, Terracini [CMP (2015)] Noris, Terracini [Indiana Univ. Math. J. (2010)]: a strong connection between nodal properties of eigenfunctions and the critical points of the map **a** → λ_i(**a**).

Bonnaillie-Noël, Noris, Nys, Terracini (2014), Léna (2015):

• $\forall j \geq 1$, the map $\boldsymbol{a} \mapsto \lambda_j(\boldsymbol{a})$ is continuous in Ω and has a continuous extension on $\overline{\Omega}$ (as $\boldsymbol{a} \to \partial \Omega$, $\lambda_j(\boldsymbol{a}) \to j$ -th eigenvalue of $-\Delta$ in Ω)

Bonnaillie-Noël, Noris, Nys, Terracini (2014), Léna (2015):

- $\forall j \geq 1$, the map $\boldsymbol{a} \mapsto \lambda_j(\boldsymbol{a})$ is continuous in Ω and has a continuous extension on $\overline{\Omega}$ (as $\boldsymbol{a} \to \partial \Omega$, $\lambda_j(\boldsymbol{a}) \to j$ -th eigenvalue of $-\Delta$ in Ω)
- Improved regularity for simple eigenvalues:

if $\boldsymbol{b} \in \Omega$ and $\lambda_N(\boldsymbol{b})$ is simple, then the function $\boldsymbol{a} \mapsto \lambda_N(\boldsymbol{a})$ is analytic in a neighborhood of \boldsymbol{b} .

Bonnaillie-Noël, Noris, Nys, Terracini (2014), Léna (2015):

- $\forall j \geq 1$, the map $\boldsymbol{a} \mapsto \lambda_j(\boldsymbol{a})$ is continuous in Ω and has a continuous extension on $\overline{\Omega}$ (as $\boldsymbol{a} \to \partial \Omega$, $\lambda_j(\boldsymbol{a}) \to j$ -th eigenvalue of $-\Delta$ in Ω)
- Improved regularity for simple eigenvalues:

if $\boldsymbol{b} \in \Omega$ and $\lambda_N(\boldsymbol{b})$ is simple, then the function $\boldsymbol{a} \mapsto \lambda_N(\boldsymbol{a})$ is analytic in a neighborhood of \boldsymbol{b} .

Bonnaillie-Noël, Noris, Nys, Terracini (2014): the behavior of the eigenvalue $\lambda_N(a)$ is strongly related to the structure of the nodal lines of the associated eigenfunction:

$$|\lambda_{\mathcal{N}}(\boldsymbol{a}) - \lambda_{\mathcal{N}}(\boldsymbol{0})| \leq C |\boldsymbol{a}|^{rac{k+1}{2}} \quad ext{as } \boldsymbol{a} o \boldsymbol{0} \in \Omega,$$

where $k \ge 3$ is the number of nodal lines of the eigenfunction associated to the **simple** eigenvalue $\lambda_N(\mathbf{0})$.

Rate of convergence - Interior point $\boldsymbol{b} = \boldsymbol{0} \in \Omega$

Let $N \geq 1$ be such that $\lambda_N(\mathbf{0})$ is simple. Thus $\lambda_N(\mathbf{a}) \xrightarrow[\mathbf{a} \to \mathbf{0}]{} \lambda_N(\mathbf{0})$.

Let $\varphi_N^{\mathbf{0}}$ be an eigenfunction of $(i \nabla + \mathbf{A}_{\mathbf{0}})^2$ associated to $\lambda_N(\mathbf{0})$

$$\begin{cases} (i\nabla + \mathbf{A}_0)^2 \varphi_N^{\mathbf{0}} = \lambda_N^{\mathbf{0}} \varphi_N^{\mathbf{0}}, & \text{in } \Omega, \\ \varphi_N^{\mathbf{0}} = 0, & \text{on } \partial\Omega, \end{cases} \quad \text{such that} \quad \int_{\Omega} |\varphi_N^{\mathbf{0}}(x)|^2 \, dx = 1.$$

Rate of convergence - Interior point $\boldsymbol{b} = \boldsymbol{0} \in \Omega$

Let $N \ge 1$ be such that $\lambda_N(\mathbf{0})$ is simple. Thus $\lambda_N(\mathbf{a}) \xrightarrow[\mathbf{a} \to \mathbf{0}]{} \lambda_N(\mathbf{0})$.

Let $\varphi_N^{\mathbf{0}}$ be an eigenfunction of $(i\nabla + \mathbf{A}_{\mathbf{0}})^2$ associated to $\lambda_N(\mathbf{0})$

$$\begin{cases} (i\nabla + \mathbf{A}_0)^2 \varphi_N^{\mathbf{0}} = \lambda_N^{\mathbf{0}} \varphi_N^{\mathbf{0}}, & \text{in } \Omega, \\ \varphi_N^{\mathbf{0}} = 0, & \text{on } \partial\Omega, \end{cases} \quad \text{such that} \quad \int_{\Omega} |\varphi_N^{\mathbf{0}}(x)|^2 \, dx = 1.$$

- $\varphi_N^{\mathbf{0}}$ has at 0 a zero or order $\frac{k}{2}$ for some odd $k \in \mathbb{N}$
- φ⁰_N has got exactly k nodal lines meeting at 0 and dividing the whole angle into k equal parts.

Theorem [Abatangelo-F., Calc. Var. PDEs 2015]

Let \mathfrak{r} be the half-line tangent to a nodal line of eigenfunction φ_N^0 associated to λ_N^0 ending at **0**. Then, as $\boldsymbol{a} \to \boldsymbol{0}$ with $\boldsymbol{a} \in \mathfrak{r}$,

$$\frac{\lambda_{N}(\mathbf{0}) - \lambda_{N}(\mathbf{a})}{|\mathbf{a}|^{k}} \rightarrow -4 \frac{|\beta_{1}|^{2} + |\beta_{2}|^{2}}{\pi} \mathfrak{m}$$

Theorem [Abatangelo-F., Calc. Var. PDEs 2015]

Let \mathfrak{r} be the half-line tangent to a nodal line of eigenfunction φ_N^0 associated to λ_N^0 ending at **0**. Then, as $\boldsymbol{a} \to \boldsymbol{0}$ with $\boldsymbol{a} \in \mathfrak{r}$,

$$rac{\lambda_{N}(\mathbf{0})-\lambda_{N}(\mathbf{a})}{|\mathbf{a}|^{k}}
ightarrow -4rac{|eta_{1}|^{2}+|eta_{2}|^{2}}{\pi}\,\mathfrak{m}.$$

Here

- $(\beta_1, \beta_2) \neq (0, 0)$ is s.t. $r^{-\frac{k}{2}} \varphi_N^0(r(\cos t, \sin t)) \rightarrow \beta_1 \frac{e^{i\frac{t}{2}}}{\sqrt{\pi}} \cos\left(\frac{k}{2}t\right) + \beta_2 \frac{e^{i\frac{t}{2}}}{\sqrt{\pi}} \sin\left(\frac{k}{2}t\right) \text{ as } r \rightarrow 0^+$
- $\mathfrak{m} < 0$ is a negative constant depending only on k.

• Abatangelo-F., Calc. Var. PDEs 2015: variational characterization

$$\mathfrak{m} = -\frac{1}{2} \int_{\mathbb{R}^2_+} |\nabla w(x)|^2 \, dx < \mathbf{0}$$

where w is the unique finite energy weak solution to

$$\begin{cases} -\Delta w = 0, & \text{in } \mathbb{R}^2_+ = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 > 0)\}, \\ w = 0, & \text{on } s := [1, +\infty) \times \{0\}, \\ \frac{\partial w}{\partial \nu}(x_1, 0) = \frac{k}{2} x_1^{\frac{k}{2} - 1}, & \text{on } \partial \mathbb{R}^2_+ \setminus s, \end{cases}$$

• Abatangelo-F.-Léna 2018: $\mathfrak{m} = -\frac{k\pi}{2^{2k+1}} \left(\lfloor \frac{k-1}{2} \rfloor \right)^2$

Blow-up

It is not restrictive to assume that $\beta_1 = 0$ (rotate the axes so that the positive x₁-axis is tangent to one of the k nodal lines of φ_N^0 ending at **0**).

Theorem

$$rac{arphi^{m{a}}_{N}(|m{a}|x)}{|m{a}|^{k/2}}
ightarrowrac{eta_{2}}{\sqrt{\pi}}\Psi \quad ext{as} \ m{a}=(|m{a}|,0)
ightarrow 0,$$

in some suitable Sobolev norm, a.e. and in $C^2_{loc}(\mathbb{R}^2 \setminus \{e\}, \mathbb{C})$, where e = (1, 0).

 Ψ is the unique function (with local finite "energy") satisfying

where $\psi_k(r \cos t, r \sin t) = r^{k/2} \sin \left(\frac{k}{2} t\right)$.

Moving along any direction

Theorem [Abatangelo-F. SIAM J. Math. Anal. (2016)] If $\alpha \in [0, 2\pi)$, then, as $\boldsymbol{a} = |\boldsymbol{a}|(\cos \alpha, \sin \alpha) \rightarrow \boldsymbol{0}$, $\frac{\lambda_N(\boldsymbol{0}) - \lambda_N(\boldsymbol{a})}{|\boldsymbol{a}|^k} \rightarrow C_0 \cos(k(\alpha - \alpha_0))$ with $C_0 = -4 \frac{|\beta_1|^2 + |\beta_2|^2}{\pi}$ m.

Moving along any direction

Theorem [Abatangelo-F. SIAM J. Math. Anal. (2016)] If $\alpha \in [0, 2\pi)$, then, as $\boldsymbol{a} = |\boldsymbol{a}|(\cos \alpha, \sin \alpha) \rightarrow \boldsymbol{0}$, $\frac{\lambda_N(\boldsymbol{0}) - \lambda_N(\boldsymbol{a})}{|\boldsymbol{a}|^k} \rightarrow C_0 \cos(k(\alpha - \alpha_0))$ with $C_0 = -4 \frac{|\beta_1|^2 + |\beta_2|^2}{\pi} \mathfrak{m}$.

The leading term in the Taylor expansion

$$\lambda_N(\mathbf{0}) - \lambda_N(\mathbf{a}) = P(\mathbf{a}) + o(|\mathbf{a}|^k), \text{ as } |\mathbf{a}| \to 0^+,$$

is then given by $P(|\boldsymbol{a}|(\cos\alpha,\sin\alpha)) = C_0|\boldsymbol{a}|^k \cos(k(\alpha - \alpha_0)).$

Hence $P(a_1, a_2) = C_0 \Re (e^{-ik\alpha_0}(a_1 + i a_2)^k)$ and the polynomial P is harmonic.

The special features of A.-B. operators with circulation $\frac{1}{2}$ (or $\gamma \in \frac{\mathbb{Z}}{2}$) played a crucial role in the previous results.

- Local energy estimates for eigenfunctions near the limit pole are performed by studying an Almgren type quotient; for $\gamma = \frac{1}{2}$ this can be estimated using a representation formula by Green's functions for solutions to the corresponding Laplace problem on the twofold covering.
- The limit profile is constructed using the fact that it vanishes on the special directions determined by the nodal lines of limit
 eigenfunctions → sharp relation between the asymptotics of the eigenvalue function and the number of nodal lines (which is strongly related to the order of vanishing of the limit eigenfunction).

- A reduction to the Laplacian on the twofold covering manifold is no more available.
- Magnetic eigenfunctions vanish at the pole *a* but they do not have nodal lines ending at *a*.

To derive sharp energy estimates (through Almgren frequency function) we need to give a detailed description of the behaviour of eigenfunctions at the pole and study the dependence of the coefficients of their asymptotic expansion with respect to the moving pole *a*.

Non-half-integer circulation

Let us consider the AB vector potential with circulation $\gamma \notin \frac{\mathbb{Z}}{2}$

$$\mathbf{A}_{a}(x_{1}, x_{2}) = \gamma \left(\frac{-(x_{2} - a_{2})}{(x_{1} - a_{1})^{2} + (x_{2} - a_{2})^{2}}, \frac{x_{1} - a_{1}}{(x_{1} - a_{1})^{2} + (x_{2} - a_{2})^{2}} \right).$$

Assume that $\exists N \ge 1$ such that $\lambda_N(\mathbf{0})$ is simple. Thus $\lambda_N(\mathbf{a}) \stackrel{\mathbf{a} \to \mathbf{0}}{\to} \lambda_N(\mathbf{0})$.

If φ_N^0 is an eigenfunction of $(i\nabla + \mathbf{A_0})^2$ associated to λ_N^0 , then by [F., Ferrero, Terracini (2011)] we know that

 $arphi_{m 0}^N$ vanishes at m 0 with a vanishing order equal to $|\gamma-k|$ for some $k\in\mathbb{Z}$

Theorem [Abatangelo-F.-Noris-Nys, Analysis PDEs (2018)]

$$|\lambda_N(\boldsymbol{a}) - \lambda_N(\boldsymbol{0})| = O\left(|\boldsymbol{a}|^{1+\left\lfloor 2|\gamma-k|
ight
floor}
ight) \quad ext{ as } |\boldsymbol{a}| o 0.$$

Aharonov-Bohm operators with two colliding poles

For a > 0, let $a^- = (-a, 0)$ and $a^+ = (a, 0)$ be the poles of the AB potential

$$\begin{aligned} \mathbf{A}_{a^-,a^+}(x) &:= -\mathbf{A}_{a^-}(x) + \mathbf{A}_{a^+}(x) \\ &= -\frac{1}{2} \frac{(-x_2, x_1 + a)}{(x_1 + a)^2 + x_2^2} + \frac{1}{2} \frac{(-x_2, x_1 - a)}{(x_1 - a)^2 + x_2^2}. \end{aligned}$$

$$\mathbf{A}_{\boldsymbol{a}^{-},\boldsymbol{a}^{+}}(x) := -\mathbf{A}_{\boldsymbol{a}^{-}}(x) + \mathbf{A}_{\boldsymbol{a}^{+}}(x)$$

Let $\Omega \subseteq \mathbb{R}^2$ be open, bounded and connected with $0 \in \Omega$. Let $\{\lambda_k^a\}_{k \geq 1}$ be the eigenvalues of $(i\nabla + \mathbf{A}_{a^-,a^+})^2$ in Ω with homogenous Dirichlet boundary conditions.

Let $\{\lambda_k\}_{k\geq 1}$ be the eigenvalues of the Dirichlet Laplacian $-\Delta$ in Ω .

$$\mathbf{A}_{\boldsymbol{a}^{-},\boldsymbol{a}^{+}}(x) := -\mathbf{A}_{\boldsymbol{a}^{-}}(x) + \mathbf{A}_{\boldsymbol{a}^{+}}(x)$$

Let $\Omega \subseteq \mathbb{R}^2$ be open, bounded and connected with $0 \in \Omega$.

Let $\{\lambda_k^a\}_{k\geq 1}$ be the eigenvalues of $(i\nabla + \mathbf{A}_{a^-,a^+})^2$ in Ω with homogenous Dirichlet boundary conditions.

Let $\{\lambda_k\}_{k\geq 1}$ be the eigenvalues of the Dirichlet Laplacian $-\Delta$ in Ω .

Theorem [Léna, J. Math. Physics (2015)]
For every
$$k \ge 1$$
,
$$\lim_{a \to 0} \lambda_k^a = \lambda_k.$$

Problem: sharp asymptotics for the eigenvalue variation $\lambda_k^a - \lambda_k$ as the two poles a^-, a^+ coalesce towards a point?

Let $\sigma : \mathbb{R}^2 \to \mathbb{R}^2$, $\sigma(x_1, x_2) = (x_1, -x_2)$. Let Ω be such that

 $\sigma(\Omega) = \Omega$ and $0 \in \Omega$.

Let $\sigma : \mathbb{R}^2 \to \mathbb{R}^2$, $\sigma(x_1, x_2) = (x_1, -x_2)$. Let Ω be such that

 $\sigma(\Omega) = \Omega$ and $0 \in \Omega$.

Let λ_N be a simple eigenvalue of the Dirichlet Laplacian on Ω and φ_N be an associated $L^2(\Omega)$ -normalized eigenfunction

$$ightarrow \exists \textit{k} \in \mathbb{N}$$
, $\pmb{eta}
eq \textsf{0}$, $lpha \in [\textsf{0}, \pi)$ s.t.

 $\varphi_N(r(\cos t, \sin t)) \underset{r \to 0^+}{\sim} \beta r^k \sin(\alpha - kt)$

- If k = 0, φ_N does not vanish near 0 and $\beta \sin \alpha = \varphi_N(0)$.
- k = 1: 0 is a regular point in the nodal set of φ_N and $\beta^2 = |\nabla \varphi_N(0)|^2$.
- If k ≥ 1, the nodal set of φ_N near 0 consists of 2k regular half-curves meeting at 0 with equal angles; the minimal slope of half-curves is α/k.

Symmetry (and simplicity of λ_N) $\rightsquigarrow \varphi_N$ is either even or odd in x_2 $\stackrel{\uparrow}{\underset{\alpha=\frac{\pi}{2}}{\overset{\uparrow}{\underset{\alpha=0}{\overset$

Theorem [Abatangelo-F.-Hillairet-Léna, J. Spectr. T. (2019)] Let φ_N be even in x_2 . Then

$$\text{if } k = 0, \quad \lambda_N^a = \lambda_N + \frac{2\pi |\varphi_N(0)|^2}{|\log a|} + o\left(\frac{1}{|\log a|}\right), \qquad \text{as } a \to 0^+,$$
$$\text{if } k \ge 1, \quad \lambda_N^a = \lambda_N + \frac{k\pi\beta^2}{4^{k-1}} {\binom{k-1}{\lfloor \frac{k-1}{2} \rfloor}}^2 a^{2k} + o\left(a^{2k}\right), \quad \text{as } a \to 0^+.$$

Theorem [Abatangelo-F.-Léna, ESAIM COCV, to appear] Let φ_N be odd in x_2 . Then

$$\lambda_N^a = \lambda_N - \frac{k\pi\beta^2}{4^{k-1}} {\binom{k-1}{\lfloor \frac{k-1}{2} \rfloor}}^2 a^{2k} + o\left(a^{2k}\right), \quad \text{as } a \to 0^+.$$

1. Isospectrality. The sequence $\{\lambda_k^a\}_{k\geq 1}$ is the union, counted with multiplicities, of sequences $\{\lambda_k^{NDN}(\boldsymbol{a}^+, \boldsymbol{a}^-)\}_{k\geq 1}, \{\lambda_k^{DND}(\boldsymbol{a}^+, \boldsymbol{a}^-)\}_{k\geq 1}$.

 $\{\lambda_k^{NDN}(\boldsymbol{a}^+, \boldsymbol{a}^-)\}_{k\geq 1} = \begin{cases} \text{ eigenvalues of Neumann-Dirichlet-Neumann} \\ \text{Laplacian } -\Delta^{NDN} \text{ on the half domain} \end{cases}$

 $\{\lambda_k^{DND}(\boldsymbol{a}^+, \boldsymbol{a}^-)\}_{k \ge 1} = \begin{cases} \text{eigenvalues of Dirichlet-Neumann-Dirichlet} \\ \text{Laplacian } -\Delta^{DND} \text{ on the half domain} \end{cases}$

See [Bonnaillie-Noël-Helffer-Hoffmann-Ostenhof, J. Phys. A (2009)] for isospectrality results for a single pole.

In the even case, the problem reduces to the study of the asymptotics of

 $\lambda_N(\Omega \setminus s_a)$ as $a \to 0^+$.

• Courtois [J. Funct. Anal., 1995]:

$$\lambda_{N}(\Omega \setminus s_{a}) = \lambda_{N} + \operatorname{Cap}_{\Omega}(s_{a}, \varphi_{N}) + o\left(\operatorname{Cap}_{\Omega}(s_{a}, \varphi_{N})\right)$$

as $a \to 0^{+}$, where $\operatorname{Cap}_{\Omega}(s_{a}, \varphi_{N}) = \inf_{\substack{f \in \mathcal{H}_{0}^{1}(\Omega) \\ f = \varphi_{N} \text{ on } s_{a}}} \int_{\Omega} |\nabla f|^{2}.$

,

In the even case, the problem reduces to the study of the asymptotics of

 $\lambda_N(\Omega \setminus s_a)$ as $a \to 0^+$.

• Courtois [J. Funct. Anal., 1995]:

$$\lambda_{N}(\Omega \setminus s_{a}) = \lambda_{N} + \operatorname{Cap}_{\Omega}(s_{a}, \varphi_{N}) + o\left(\operatorname{Cap}_{\Omega}(s_{a}, \varphi_{N})\right)$$

as
$$a \to 0^+$$
, where $\operatorname{Cap}_{\Omega}(s_a, \varphi_N) = \inf_{\substack{f \in H^1_0(\Omega) \\ f = \varphi_N \text{ on } s_a}} \int_{\Omega} |\nabla f|^2$.

• Sharp estimates of $\operatorname{Cap}_{\Omega}(s_a, \varphi_N)$ passing to elliptic coordinates

$$\begin{cases} x_1 = a \cosh(\xi) \cos(\eta), \\ x_2 = a \sinh(\xi) \sin(\eta). \end{cases}$$

In the odd case, the problem reduces to the study of the asymptotics of $\{\lambda_k^{DND}(\boldsymbol{a}^+, \boldsymbol{a}^-)\}_{k\geq 1} = \left\{\begin{array}{l} \text{eigenvalues of Dirichlet-Neumann-Dirichlet}\\ \text{Laplacian } -\Delta^{DND} \text{ on the half domain} \end{array}\right\}$

Let λ_N be simple and let φ_N be an associate normalized eigenfunction, i.e.

$$\begin{cases} -\Delta \varphi_N = \lambda_N \varphi_N, & \text{in } \Omega, \\ \varphi_N = 0, & \text{on } \partial \Omega, \\ \int_{\Omega} \varphi_N^2(x) \, dx = 1. \end{cases}$$

Then there exist $k \in \mathbb{N} \setminus \{0\}$ and $\beta \in \mathbb{R} \setminus \{0\}$ such that

$$\varphi_N(r\cos t, r\sin t) \underset{r \to 0}{\sim} \beta r^k \sin(kt).$$

Gadyl'shin (1992), Abatangelo-F.-Léna (2018):

$$\lim_{a \to 0^+} \frac{\lambda_N - \lambda_N(a)}{a^{2k}} = \beta^2 \frac{k\pi}{2^{2k-1}} \binom{k-1}{\left\lfloor \frac{k-1}{2} \right\rfloor}^2$$

Non symmetric case

No symmetry assumption on Ω Let us assume the *N*-th eigenvalue λ_N of $-\Delta$ in Ω is simple. Let φ_N be a $L^2(\Omega)$ -normalized eigenfunction associated to λ_N .

Theorem [Abatangelo-F.-Léna, Advanced Nonlin. Studies (2017)] If $\varphi_N(0) \neq 0$ (i.e. k = 0) then

$$\lambda_N^a - \lambda_N = rac{2\pi\,arphi_N^2(0)}{|\log a|}(1+o(1)) \quad ext{as } a o 0^+.$$

1. If *a* is small and φ_N^a is an eigenfunction associated with λ_N^a , then, in a neighborhood of 0, the nodal set of φ_N^a consists in a single regular curve K_a connecting a^- and a^+ and concentrating around 0.

[Noris-Terracini (2010), Helffer-Hoffmann-Ostenhof-Hoffmann-Ostenhof-Owen (1999), Alziary-Fleckinger-Pellé-Takáč (2003)]

 If a is small and φ_N^a is an eigenfunction associated with λ_N^a, then, in a neighborhood of 0, the nodal set of φ_N^a consists in a single regular curve K_a connecting a⁻ and a⁺ and concentrating around 0.

[Noris-Terracini (2010), Helffer-Hoffmann-Ostenhof-Hoffmann-Ostenhof-Owen (1999), Alziary-Fleckinger-Pellé-Takáč (2003)]

2. For all a > 0 sufficiently small, $\lambda_N^a = \lambda_N(\Omega \setminus K_a)$ (Gauge invariance).

 If a is small and φ^a_N is an eigenfunction associated with λ^a_N, then, in a neighborhood of 0, the nodal set of φ^a_N consists in a single regular curve K_a connecting a⁻ and a⁺ and concentrating around 0.

[Noris-Terracini (2010), Helffer-Hoffmann-Ostenhof-Hoffmann-Ostenhof-Owen (1999), Alziary-Fleckinger-Pellé-Takáč (2003)]

- 2. For all a > 0 sufficiently small, $\lambda_N^a = \lambda_N(\Omega \setminus K_a)$ (Gauge invariance).
- 3. We denote as $d_a := \operatorname{diam} K_a$ the diameter of K_a . We already know that

$$\lambda_N(\Omega \setminus \mathcal{K}_{\mathsf{a}}) - \lambda_N = arphi_N^2(0) rac{2\pi}{|\log d_{\mathsf{a}}|} + oigg(rac{1}{|\log d_{\mathsf{a}}|}igg), \quad ext{as } \mathsf{a} o 0^+.$$

It remains to estimate d_a , i.e. the diameter of nodal lines of magnetic eigenfunctions near the collision point:

$$\lim_{a\to 0^+}\frac{|\log a|}{|\log d_a|}=1.$$

Reaching a point on the boundary: $a \rightarrow b \in \partial \Omega$

In this case the limit operator is no more singular and the magnetic eigenvalues converge to those of the standard Laplacian: $\lambda_k(\mathbf{b}) = \lambda_k$.

Noris, Nys, Terracini (2015):

• if λ_N is simple and its eigenfunction φ_N has at $\boldsymbol{b} \in \partial \Omega$ a zero of order $j \ge 2$ $(j-1 \text{ nodal lines end at } \boldsymbol{b})$ then $\exists C > 0 \text{ s.t.}$

$$\lambda_N(\boldsymbol{a}) - \lambda_N \leq -C|\boldsymbol{a} - \boldsymbol{b}|^{2j}$$

for $\boldsymbol{a}
ightarrow \boldsymbol{b}$ along a nodal line.

Reaching a point on the boundary: $a \rightarrow b \in \partial \Omega$

In this case the limit operator is no more singular and the magnetic eigenvalues converge to those of the standard Laplacian: $\lambda_k(\mathbf{b}) = \lambda_k$.

Noris, Nys, Terracini (2015):

• if λ_N is simple and its eigenfunction φ_N has at $\boldsymbol{b} \in \partial \Omega$ a zero of order $j \ge 2$ $(j-1 \text{ nodal lines end at } \boldsymbol{b})$ then $\exists C > 0 \text{ s.t.}$

$$\lambda_N(\boldsymbol{a}) - \lambda_N \leq -C|\boldsymbol{a} - \boldsymbol{b}|^{2J}$$

for $\boldsymbol{a}
ightarrow \boldsymbol{b}$ along a nodal line.

if λ_N is simple and *a* approaches a boundary point where no nodal lines of φ_N end, then ∃C > 0 s.t.

$$\lambda_N(\boldsymbol{a}) - \lambda_N \geq C(\operatorname{dist}(\boldsymbol{a},\partial\Omega))^2.$$

Sharp asymptotics at the boundary

Let
$$\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 and
 $p = (\cos \alpha, \sin \alpha) \in \mathbb{S}^1_+ := \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1, x_1 > 0\}.$

Theorem [Abatangelo-F-Noris-Nys, JFA (2017)]

There exists $\mathfrak{c}_p \in \mathbb{R}$ such that

$$rac{\lambda_{\mathcal{N}}-\lambda_{\mathcal{N}}(\pmb{a})}{|\pmb{a}|^{2j}}
ightarrow |\pmb{eta}|^2\,\mathfrak{c}_p, \quad ext{as } \pmb{a}=|\pmb{a}|p
ightarrow 0.$$

• the function $p \mapsto c_p$ is continuous on \mathbb{S}^1_+ and tends to 0 as $p \to (0, \pm 1)$;

Sharp asymptotics at the boundary

Let
$$\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 and
 $p = (\cos \alpha, \sin \alpha) \in \mathbb{S}^1_+ := \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1, x_1 > 0\}.$

Theorem [Abatangelo-F-Noris-Nys, JFA (2017)]

There exists $\mathfrak{c}_p \in \mathbb{R}$ such that

$$rac{\lambda_{\mathcal{N}}-\lambda_{\mathcal{N}}({\pmb{a}})}{|{\pmb{a}}|^{2j}}
ightarrow |eta|^2\,\mathfrak{c}_p, \quad ext{as } {\pmb{a}}=|{\pmb{a}}|p
ightarrow 0.$$

- the function p → c_p is continuous on S¹₊ and tends to 0 as p → (0,±1);
- c_p > 0 if the half-line {tp : t ≥ 0} is tangent to a nodal line of φ_N in 0;

Sharp asymptotics at the boundary

Let
$$\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 and
 $p = (\cos \alpha, \sin \alpha) \in \mathbb{S}^1_+ := \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1, x_1 > 0\}.$

Theorem [Abatangelo-F-Noris-Nys, JFA (2017)]

There exists $\mathfrak{c}_p \in \mathbb{R}$ such that

$$rac{\lambda_{\mathcal{N}}-\lambda_{\mathcal{N}}(\pmb{a})}{|\pmb{a}|^{2j}}
ightarrow |\pmb{eta}|^2\,\mathfrak{c}_p, \hspace{1em} ext{as} \; \pmb{a}=|\pmb{a}|p
ightarrow 0.$$

- the function $p \mapsto \mathfrak{c}_p$ is continuous on \mathbb{S}^1_+ and tends to 0 as $p \to (0, \pm 1)$;
- c_p > 0 if the half-line {tp : t ≥ 0} is tangent to a nodal line of φ_N in 0;
- c_p < 0 if the half-line {tp : t ≥ 0} is the bisector of two nodal lines of φ_N or of one nodal line and the boundary.