The idea of infinity in Mathematics between Science and Philosophy

Variational methods, with applications to problems in mathematical physics and geometry.
Dedicated to Antonio for its 75th birthday.

Vieri Benci
Università di Pisa

November 26, 2019

For Bertrand Russell (B. Russell, Mysticism and Logic, 1901) the main problems of the Philosophy of Mathematics are three and all of them are related to the idea of infinity:

For Bertrand Russell (B. Russell, Mysticism and Logic, 1901) the main problems of the Philosophy of Mathematics are three and all of them are related to the idea of infinity:
(1) The problem of infinite numbers;

For Bertrand Russell (B. Russell, Mysticism and Logic, 1901) the main problems of the Philosophy of Mathematics are three and all of them are related to the idea of infinity:
(1) The problem of infinite numbers;
(2) the problem of the continuum;

For Bertrand Russell (B. Russell, Mysticism and Logic, 1901) the main problems of the Philosophy of Mathematics are three and all of them are related to the idea of infinity:
(1) The problem of infinite numbers;
(2) the problem of the continuum;
(3) the problem of the infinitesimal quantities.

According to our philosopher all these problems have been completely solved:

According to our philosopher all these problems have been completely solved:
(1) the first has been solved by Cantor introducing the cardinal numbers;

According to our philosopher all these problems have been completely solved:
(1) the first has been solved by Cantor introducing the cardinal numbers;
(2) the second has been solved by Dedekind by identifying the geometric continuum with the real line (with the Dedekind axiom);

According to our philosopher all these problems have been completely solved:
(1) the first has been solved by Cantor introducing the cardinal numbers;
(2) the second has been solved by Dedekind by identifying the geometric continuum with the real line (with the Dedekind axiom);
(3) the third has been solved by Weierstrass expelling the infinitesimals from the Kingdom of Mathematics.

A century has passed since Russell wrote this.

A century has passed since Russell wrote this.
Are we sure that this is the right point of view?

A century has passed since Russell wrote this.
Are we sure that this is the right point of view?
Actually I think that these ideas [to day] are too restrictive and I will try to argue for a different view of infinity and the related problems.

A century has passed since Russell wrote this.
Are we sure that this is the right point of view?
Actually I think that these ideas [to day] are too restrictive and I will try to argue for a different view of infinity and the related problems.

In particular I will try to convince you that the use of infinitesimals:

A century has passed since Russell wrote this.
Are we sure that this is the right point of view?
Actually I think that these ideas [to day] are too restrictive and I will try to argue for a different view of infinity and the related problems.

In particular I will try to convince you that the use of infinitesimals:

- - simplifies computations;

A century has passed since Russell wrote this.
Are we sure that this is the right point of view?
Actually I think that these ideas [to day] are too restrictive and I will try to argue for a different view of infinity and the related problems.

In particular I will try to convince you that the use of infinitesimals:

- - simplifies computations;
- - allows to build richer models of reality;

A century has passed since Russell wrote this.
Are we sure that this is the right point of view?
Actually I think that these ideas [to day] are too restrictive and I will try to argue for a different view of infinity and the related problems.

In particular I will try to convince you that the use of infinitesimals:

- - simplifies computations;
- - allows to build richer models of reality;
- - gives a deeper understanding of the cardinal and ordinal numbers;

A century has passed since Russell wrote this.
Are we sure that this is the right point of view?
Actually I think that these ideas [to day] are too restrictive and I will try to argue for a different view of infinity and the related problems.

In particular I will try to convince you that the use of infinitesimals:

- - simplifies computations;
- - allows to build richer models of reality;
- - gives a deeper understanding of the cardinal and ordinal numbers;
- - expands the epistemological horizon of the foundations of Mathematics.

Let start our discussion with the first problem namely the possibility of "counting" the elements of infinite sets.

How to count infinite sets

Hume

Euclides

Let us recall the two fundamental principles which rule the operation of "counting".

How to count infinite sets

Hume

Euclides

Let us recall the two fundamental principles which rule the operation of "counting".

- The Hume principle - Two sets have the same number of elements if and only if there exists a biunique correspondence between them.

How to count infinite sets

Hume

Euclides

Let us recall the two fundamental principles which rule the operation of "counting".

- The Hume principle - Two sets have the same number of elements if and only if there exists a biunique correspondence between them.
- The Euclides principle (5° common notion) - The whole is greater than the part.

Galileo

These two principles appear quite natural and are true when applied to finite set. However they are contradictory when applied to infinite set.

Galileo

These two principles appear quite natural and are true when applied to finite set. However they are contradictory when applied to infinite set.

Galileo is one among the natural philosophers who emphasized this point.
The square numbers are a part of all the numbers, but there is a biunique correspondence with all the numbers.

Galileo's law

1	\longleftrightarrow	1
2	\longleftrightarrow	4
3	\longleftrightarrow	9
4	\longleftrightarrow	16
5	\longleftrightarrow	25
6	\longleftrightarrow	36
7	\longleftrightarrow	49
8	\longleftrightarrow	64
9	\longleftrightarrow	81
10	\longleftrightarrow	100
\ldots	\longleftrightarrow	\ldots

$$
s=\frac{1}{2} g t^{2}
$$

Cantor

Cantor has been the first to understand that eliminating one of the two principle (namely the Euclides Principle) it is possible to get a strange but consistent theory

Infinite cardinals

Figure: Infinite cardinals

The "quirk" of cardinal numbers is their arithmetic: if \mathfrak{a} and \mathfrak{b} are infinite cardinal numbers, then

$$
\mathfrak{a}+\mathfrak{b}=\mathfrak{a} \times \mathfrak{b}=\max (\mathfrak{a}, \mathfrak{b})
$$

The ordinal numbers

Cantor also understood that it is possible to use a different strategy to count sets. And changing strategy with infinite sets, not only you get different results, but also different numbers.

The ordinal numbers

Cantor also understood that it is possible to use a different strategy to count sets. And changing strategy with infinite sets, not only you get different results, but also different numbers.
In any case, the ordinal numbers are as weird as the cardinal numbers:

$$
\omega+1>1+\omega=\omega
$$

Numerosities

There exist an alternative way to count infinite sets in such a way to save Euclides' principle?

Numerosities

There exist an alternative way to count infinite sets in such a way to save Euclides' principle?
Of course, we have to give up Hume's Principle.

Numerosities

There exist an alternative way to count infinite sets in such a way to save Euclides' principle? Of course, we have to give up Hume's Principle.

The answer is "yes".

Three ways to count

There exist (at least) three ways to count the elements of a set:

Three ways to count

There exist (at least) three ways to count the elements of a set:
(1) Child three years old: biunique correspondence.

Three ways to count

There exist (at least) three ways to count the elements of a set:
(1) Child three years old: biunique correspondence.
(2) Child five years old: put the items to be counted in a row and then "one, two, three,..."

Three ways to count

There exist (at least) three ways to count the elements of a set:
(1) Child three years old: biunique correspondence.
(2) Child five years old: put the items to be counted in a row and then "one, two, three,..."
(3) Child ten years old: organize the items to be counted in groups.

Three ways to count

Obviously these three methods give the same results whenever we count finite sets, but this is not true with infinite sets:

Three ways to count

Obviously these three methods give the same results whenever we count finite sets, but this is not true with infinite sets:

Thus, there exists [at least] three kinds of infinite numbers:

Three ways to count

Obviously these three methods give the same results whenever we count finite sets, but this is not true with infinite sets:

Thus, there exists [at least] three kinds of infinite numbers:
(1) Cardinal numbers

Three ways to count

Obviously these three methods give the same results whenever we count finite sets, but this is not true with infinite sets:

Thus, there exists [at least] three kinds of infinite numbers:
(1) Cardinal numbers
(2) Ordinal numbers

Three ways to count

Obviously these three methods give the same results whenever we count finite sets, but this is not true with infinite sets:

Thus, there exists [at least] three kinds of infinite numbers:
(1) Cardinal numbers
(2) Ordinal numbers
(3) Numerosities

Infinite sums

The third way to count leads inevitably to consider infinite sums.

Infinite sums

The third way to count leads inevitably to consider infinite sums. The idea of an infinite sum is somewhat natural and has no major philosophical problems,

Infinite sums

The third way to count leads inevitably to consider infinite sums. The idea of an infinite sum is somewhat natural and has no major philosophical problems, but has technical problems.

Infinite sums

The third way to count leads inevitably to consider infinite sums. The idea of an infinite sum is somewhat natural and has no major philosophical problems, but has technical problems.

For example, let us consider

$$
\sum_{k}(-1)^{k}=1-1+1-1+1-1+1-1+\ldots \ldots
$$

Infinite sums

The third way to count leads inevitably to consider infinite sums. The idea of an infinite sum is somewhat natural and has no major philosophical problems, but has technical problems.

For example, let us consider

$$
\sum_{k}(-1)^{k}=1-1+1-1+1-1+1-1+\ldots \ldots
$$

By applying the associative property you have:

$$
(1-1)+(1-1)+(1-1)+(1-1)+\ldots \ldots=0+0+0+0+\ldots \ldots=0
$$

Infinite sums

The third way to count leads inevitably to consider infinite sums. The idea of an infinite sum is somewhat natural and has no major philosophical problems, but has technical problems.

For example, let us consider

$$
\sum_{k}(-1)^{k}=1-1+1-1+1-1+1-1+\ldots \ldots
$$

By applying the associative property you have:

$$
(1-1)+(1-1)+(1-1)+(1-1)+\ldots \ldots=0+0+0+0+\ldots \ldots=0
$$

but by applying the same property in a different way, you also have

$$
1+(-1+1)+(-1+1)+(-1+1)+\ldots \ldots=1+0+0+0+\ldots .=1
$$

The transfinite sum

Therefore, if we want to deal numerically with certain problems it seems natural to introduce a new algorithm called transfinite sum.

The transfinite sum

Therefore, if we want to deal numerically with certain problems it seems natural to introduce a new algorithm called transfinite sum.

This algorithm formalizes the generic notion of infinite sum by precise rules (or Axioms).

The transfinite sum

The transfinite sum will be denoted in the following way:

$$
\begin{equation*}
\sum_{k \in \mathbb{N}} a_{k} . \tag{1}
\end{equation*}
$$

$\mathbb{N}=\{0,1,2,3, \ldots\}$ is the set of natural numbers. The notion of a transfinite sum does not coincide with the notion of series;

The transfinite sum

The transfinite sum will be denoted in the following way:

$$
\begin{equation*}
\sum_{k \in \mathbb{N}} a_{k} \tag{1}
\end{equation*}
$$

$\mathbb{N}=\{0,1,2,3, \ldots\}$ is the set of natural numbers. The notion of a transfinite sum does not coincide with the notion of series; to highlight their difference we will use different symbols:

$$
\sum_{k \in \mathbb{N}} a_{k}
$$

denotes a transfinite sum;

$$
\sum_{k=0}^{\infty} a_{k}
$$

denotes a usual series.

The transfinite sum

The "transfinite sum" is governed by the following rules:

The transfinite sum

The "transfinite sum" is governed by the following rules:
(1) (Existence rule) Each transfinite sum $\sum_{k \in \mathbb{N}} a_{k}$ denotes a number (namely an element of an ordered field).

The transfinite sum

The "transfinite sum" is governed by the following rules:
(1) (Existence rule) Each transfinite sum $\sum_{k \in \mathbb{N}} a_{k}$ denotes a number (namely an element of an ordered field).
(2) (Finite sum rule) If $a_{k}=0$ except a finite number of terms then the transfinite sum coincides with the usual sum.

The transfinite sum

The "transfinite sum" is governed by the following rules:
(1) (Existence rule) Each transfinite sum $\sum_{k \in \mathbb{N}} a_{k}$ denotes a number (namely an element of an ordered field).
(2) (Finite sum rule) If $a_{k}=0$ except a finite number of terms then the transfinite sum coincides with the usual sum.
(3) (Sum rule) $\left(\sum_{k \in \mathbb{N}} a_{k}\right)+\left(\sum_{k \in \mathbb{N}} b_{k}\right)=\sum_{k \in \mathbb{N}}\left(a_{k}+b_{k}\right)$

The transfinite sum

The "transfinite sum" is governed by the following rules:
(1) (Existence rule) Each transfinite sum $\sum_{k \in \mathbb{N}} a_{k}$ denotes a number (namely an element of an ordered field).
(2) (Finite sum rule) If $a_{k}=0$ except a finite number of terms then the transfinite sum coincides with the usual sum.
(3) (Sum rule) $\left(\sum_{k \in \mathbb{N}} a_{k}\right)+\left(\sum_{k \in \mathbb{N}} b_{k}\right)=\sum_{k \in \mathbb{N}}\left(a_{k}+b_{k}\right)$
(9) (Product rule) $\left(\sum_{k \in \mathbb{N}} a_{k}\right) \cdot\left(\sum_{k \in \mathbb{N}} b_{k}\right)=\sum_{k \in \mathbb{N}} c_{k}$

The transfinite sum

The "transfinite sum" is governed by the following rules:
(1) (Existence rule) Each transfinite sum $\sum_{k \in \mathbb{N}} a_{k}$ denotes a number (namely an element of an ordered field).
(2) (Finite sum rule) If $a_{k}=0$ except a finite number of terms then the transfinite sum coincides with the usual sum.
(3) (Sum rule) $\left(\sum_{k \in \mathbb{N}} a_{k}\right)+\left(\sum_{k \in \mathbb{N}} b_{k}\right)=\sum_{k \in \mathbb{N}}\left(a_{k}+b_{k}\right)$
(9) (Product rule) $\left(\sum_{k \in \mathbb{N}} a_{k}\right) \cdot\left(\sum_{k \in \mathbb{N}} b_{k}\right)=\sum_{k \in \mathbb{N}} c_{k}$

The transfinite sum

The "transfinite sum" is governed by the following rules:
(1) (Existence rule) Each transfinite sum $\sum_{k \in \mathbb{N}} a_{k}$ denotes a number (namely an element of an ordered field).
(2) (Finite sum rule) If $a_{k}=0$ except a finite number of terms then the transfinite sum coincides with the usual sum.
3 (Sum rule) $\left(\sum_{k \in \mathbb{N}} a_{k}\right)+\left(\sum_{k \in \mathbb{N}} b_{k}\right)=\sum_{k \in \mathbb{N}}\left(a_{k}+b_{k}\right)$
(9) (Product rule) $\left(\sum_{k \in \mathbb{N}} a_{k}\right) \cdot\left(\sum_{k \in \mathbb{N}} b_{k}\right)=\sum_{k \in \mathbb{N}} c_{k}$ where

$$
c_{k}=\sum_{\max (l, m)=k} a_{l} b_{m}
$$

The transfinite sum

The "transfinite sum" is governed by the following rules:
(1) (Existence rule) Each transfinite sum $\sum_{k \in \mathbb{N}} a_{k}$ denotes a number (namely an element of an ordered field).
(2) (Finite sum rule) If $a_{k}=0$ except a finite number of terms then the transfinite sum coincides with the usual sum.
3 (Sum rule) $\left(\sum_{k \in \mathbb{N}} a_{k}\right)+\left(\sum_{k \in \mathbb{N}} b_{k}\right)=\sum_{k \in \mathbb{N}}\left(a_{k}+b_{k}\right)$
(9) (Product rule) $\left(\sum_{k \in \mathbb{N}} a_{k}\right) \cdot\left(\sum_{k \in \mathbb{N}} b_{k}\right)=\sum_{k \in \mathbb{N}} c_{k}$ where

$$
c_{k}=\sum_{\max (l, m)=k} a_{l} b_{m}
$$

(3) (Comparison rule) If for m large enough

$$
\sum_{k=0}^{m!} a_{k} \geq \sum_{k=0}^{m!} b_{k}
$$

then

$$
\sum_{k \in \mathbb{N}} a_{k} \geq \sum_{k \in \mathbb{N}} b_{k}
$$

Let's now get acquainted with the idea of transfinite sums. The simplest thing that can come to mind is to add a bit of " 1 's" and " 0 's".

Let's now get acquainted with the idea of transfinite sums. The simplest thing that can come to mind is to add a bit of " 1 's" and "0's".

To formalize this fact, it is useful to define the indicator function of $E \subseteq \mathbb{N}$:

$$
\chi_{E}(k)=\left\{\begin{array}{lll}
1 & \text { se } & k \in E \\
0 & \text { se } & k \notin E .
\end{array}\right.
$$

The numerosity of a subset of natural numbers

For every $E \subset \mathbb{N}$ we can define the number

$$
\mathfrak{n}(E)=\sum_{k \in \mathbb{N}} \chi_{E}(k)
$$

which will be called numerosity of E. If E is a finite set, its numerosity corresponds to a natural number.

The numerosity of a subset of natural numbers

For every $E \subset \mathbb{N}$ we can define the number

$$
\mathfrak{n}(E)=\sum_{k \in \mathbb{N}} \chi_{E}(k)
$$

which will be called numerosity of E. If E is a finite set, its numerosity corresponds to a natural number. Otherwise, the number $\mathfrak{n}(E)$ is an infinite number that "generalizes" the previous notion.

The number omega

The most meaningful number is

$$
\omega:=\sum_{k \in \mathbb{N}} \chi_{\mathbb{N}}(k)
$$

which you get by summing up as many "one's" as are the natural numbers.

The number omega

The most meaningful number is

$$
\omega:=\sum_{k \in \mathbb{N}} \chi_{\mathbb{N}}(k)
$$

which you get by summing up as many "one's" as are the natural numbers.
The ω symbol is the same as it is used to denote the ordinal number relative to the order type of \mathbb{N}. This fact is desirable, since the two notions, proceeding in theory, can be identified.

The result of an infinite sum

But you have to be careful; in general an infinite sum does not give an ordinal number:

The result of an infinite sum

But you have to be careful; in general an infinite sum does not give an ordinal number: for example, from the rules of the sum it is deduced that

$$
\sum_{k \in \mathbb{N}^{+}} \chi_{\mathbb{N}}(k)=\omega-1
$$

where $\mathbb{N}^{+}=\{1,2,3, \ldots\}$.

The result of an infinite sum

But you have to be careful; in general an infinite sum does not give an ordinal number: for example, from the rules of the sum it is deduced that

$$
\sum_{k \in \mathbb{N}^{+}} \chi_{\mathbb{N}}(k)=\omega-1
$$

where $\mathbb{N}^{+}=\{1,2,3, \ldots\}$.
Notice that

$$
\operatorname{ord}\left(\mathbb{N}^{+}\right)=\operatorname{ord}(\mathbb{N})=\omega
$$

and

$$
\operatorname{card}\left(\mathbb{N}^{+}\right)=\operatorname{card}(\mathbb{N})=\aleph_{0}
$$

The result of an infinite sum

Similarly, you have the following results:

$$
\mathfrak{n}(\mathfrak{E})=\frac{\omega+1}{2}
$$

where $\mathfrak{E}=\{0,2,4,6,8, \ldots\}$ is the set of the even numbers .

The result of an infinite sum

Similarly, you have the following results:

$$
\mathfrak{n}(\mathfrak{E})=\frac{\omega+1}{2}
$$

where $\mathfrak{E}=\{0,2,4,6,8, \ldots\}$ is the set of the even numbers .

$$
\mathfrak{n}(\mathfrak{O})=\frac{\omega-1}{2}
$$

where $\mathfrak{O}=\{1,3,5,7, \ldots\}$ is the set of the odd numbers.

The result of an infinite sum

Similarly, you have the following results:

$$
\mathfrak{n}(\mathfrak{E})=\frac{\omega+1}{2}
$$

where $\mathfrak{E}=\{0,2,4,6,8, \ldots\}$ is the set of the even numbers .

$$
\mathfrak{n}(\mathfrak{O})=\frac{\omega-1}{2}
$$

where $\mathfrak{O}=\{1,3,5,7, \ldots\}$ is the set of the odd numbers.

$$
\mathfrak{n}(\mathfrak{Q})=\sqrt{\omega-1}
$$

where $\mathfrak{Q}=\{1,4,9,16, \ldots\}$ is the set of the square numbers.

The result of an infinite sum

Similarly, you have the following results:

$$
\mathfrak{n}(\mathfrak{E})=\frac{\omega+1}{2}
$$

where $\mathfrak{E}=\{0,2,4,6,8, \ldots\}$ is the set of the even numbers .

$$
\mathfrak{n}(\mathfrak{O})=\frac{\omega-1}{2}
$$

where $\mathfrak{O}=\{1,3,5,7, \ldots\}$ is the set of the odd numbers.

$$
\mathfrak{n}(\mathfrak{Q})=\sqrt{\omega-1}
$$

where $\mathfrak{Q}=\{1,4,9,16, \ldots\}$ is the set of the square numbers.

$$
\mathfrak{n}(\mathbb{N} \times \mathbb{N})=\omega^{2}
$$

Some bibliography

围 V. Benci - I numeri e gli insiemi etichettati, in Conferenze del seminario di matematica dell' Universita‘ di Bari, vol. 261, Laterza, Bari (1995), p. 29.
V. Benci, M. Di Nasso - Numerosities of labelled sets: a new way of counting, Adv. Math. 21 (2003), 505-67.
(V. Benci, M. Di Nasso, M. Forti - An Aristotelian notion of size, Ann. Pure Appl. Logic 143 (2006), 43-53.

Benci, V., Forti. M., The Euclidean numbers, to appear, arXiv:1702.04163.
Sylvia Wenmackers - 12 3... Infinity! You Tube, https://youtu.be/QJuuKQBhenY

Second philosophical problem: the nature of the continuum

In classical Euclidean geometry, lines and segments are not considered as sets of points;

Second philosophical problem: the nature of the continuum

In classical Euclidean geometry, lines and segments are not considered as sets of points; conversely, in the last two centuries, the reductionist attitude of modern mathematics has described Euclidean geometry by means of a set theoretical interpretation.

Second philosophical problem: the nature of the continuum

In classical Euclidean geometry, lines and segments are not considered as sets of points; conversely, in the last two centuries, the reductionist attitude of modern mathematics has described Euclidean geometry by means of a set theoretical interpretation.

So the Euclidean continuum has been identified with Dedekind's continuum and the Euclidean straight line has been identified with the set of real numbers (once the origin O and a the unit segment $O U$ have been fixed).

Second philosophical problem: the nature of the continuum

In classical Euclidean geometry, lines and segments are not considered as sets of points; conversely, in the last two centuries, the reductionist attitude of modern mathematics has described Euclidean geometry by means of a set theoretical interpretation.

So the Euclidean continuum has been identified with Dedekind's continuum and the Euclidean straight line has been identified with the set of real numbers (once the origin O and a the unit segment $O U$ have been fixed).
Although this identification is almost universally accepted today, it is still unsatisfactory (not to say wrong) as it contradicts some theorems of Euclidean geometry.

Dedekind's continuum does not model the Euclidean continuum

As an example we consider the following Euclidean statement:

> a segment $A B$ can be divided into two congruent segments $A M$ and $M B$.

If $A B$ is identified with Dedekind continuum (e.g $[A, B] \subset \mathbb{R}$), then $A M$ has a maximum point or $M B$ has a minimum point.

Dedekind's continuum does not model the Euclidean continuum

As an example we consider the following Euclidean statement:

> a segment $A B$ can be divided into two congruent segments $A M$ and $M B$.

If $A B$ is identified with Dedekind continuum (e.g $[A, B] \subset \mathbb{R}$), then $A M$ has a maximum point or $M B$ has a minimum point.

Then $A M$ and $M B$ are not congruent, so Dedekind's continuum is not a proper model of the Euclidean continuum.

How to model the Euclidean continuum?

To build a consistent model, we are obliged to assume that points A, B and M do not belong to the $A B$ segment.

How to model the Euclidean continuum?

To build a consistent model, we are obliged to assume that points A, B and M do not belong to the $A B$ segment.
Then the image of the Euclidean straight line that comes out is that of a linearly ordered set \mathfrak{E} and the segment $A B$ is a subset of \mathfrak{E} that can not be identified with the set theoretical segment

$$
S(A, B):=\{X \in \mathfrak{E} \mid A<X<B\}
$$

since

$$
M \in S(A, B)
$$

How to model the Euclidean continuum?

To build a consistent model, we are obliged to assume that points A, B and M do not belong to the $A B$ segment.
Then the image of the Euclidean straight line that comes out is that of a linearly ordered set \mathfrak{E} and the segment $A B$ is a subset of \mathfrak{E} that can not be identified with the set theoretical segment

$$
S(A, B):=\{X \in \mathfrak{E} \mid A<X<B\}
$$

since

$$
M \in S(A, B)
$$

So we need to represent segment $A B$ as a set of atoms interspersed by empty spaces.

How to model the Euclidean continuum?

To build a consistent model, we are obliged to assume that points A, B and M do not belong to the $A B$ segment.
Then the image of the Euclidean straight line that comes out is that of a linearly ordered set \mathfrak{E} and the segment $A B$ is a subset of \mathfrak{E} that can not be identified with the set theoretical segment

$$
S(A, B):=\{X \in \mathfrak{E} \mid A<X<B\}
$$

since

$$
M \in S(A, B)
$$

So we need to represent segment $A B$ as a set of atoms interspersed by empty spaces.

In this model, empty spaces correspond to real numbers.

How to model the Euclidean continuum?

To build a consistent model, we are obliged to assume that points A, B and M do not belong to the $A B$ segment.
Then the image of the Euclidean straight line that comes out is that of a linearly ordered set \mathfrak{E} and the segment $A B$ is a subset of \mathfrak{E} that can not be identified with the set theoretical segment

$$
S(A, B):=\{X \in \mathfrak{E} \mid A<X<B\}
$$

since

$$
M \in S(A, B)
$$

So we need to represent segment $A B$ as a set of atoms interspersed by empty spaces.

In this model, empty spaces correspond to real numbers.
In this model, empty spaces correspond to real numbers.

The Dedekind continuum has holes

The Dedekind continuum has holes

We expect the Euclidean point points to represent all magnitudes.

The Dedekind continuum has holes

We expect the Euclidean point points to represent all magnitudes.
On the other hand, there are magnitudes which are not Archimedean and cannot be represented by points of \mathbb{R}.

Definition

A set of magnitudes G is said to be Archimedean if given two non-null magnitudes $a, b \in G$, there exists $n \in \mathbb{N}$ such that

$$
n a>b
$$

The Dedekind continuum has holes

We expect the Euclidean point points to represent all magnitudes.
On the other hand, there are magnitudes which are not Archimedean and cannot be represented by points of \mathbb{R}.

Definition

A set of magnitudes G is said to be Archimedean if given two non-null magnitudes $a, b \in G$, there exists $n \in \mathbb{N}$ such that

$$
n a>b
$$

Between 0 and the set of positive numbers, \mathbb{R} has a hole that contradicts our idea of continuum.

Non-Archimedean Geometry and Non-Archimedean Mathematics

Thus, a coherent idea of Euclidean continuum leads us directly to the Non-Archimedean geometry as was conceived by Giuseppe Veronese at the end of the nineteenth century.

Non-Archimedean Geometry and Non-Archimedean Mathematics

Thus, a coherent idea of Euclidean continuum leads us directly to the Non-Archimedean geometry as was conceived by Giuseppe Veronese at the end of the nineteenth century.

Levi-Civita developed the geometric ideas of Veronese in the direction of the analysis (Levi-Civita's field, 1892)

Non-Archimedean Mathematics and Nonstandard Analysis

Non-Archimedean Mathematics and Nonstandard Analysis

A more modern approach to Non-Archimedean mathematics is given by the Non-Standard Analysis (ANS) (Robinson 1961) and its variants (e.g. Nelson, 1977, Hrbacek, 2001)

Nonstandard Analysis and Euclidean numbers

The theory of Euclidean numbers (which was developed for these needs) is an evolution of the ANS in line with Veronese and Levi-Civita's spirit (B., Forti, 2017).

Nonstandard Analysis and Euclidean numbers

The theory of Euclidean numbers (which was developed for these needs) is an evolution of the ANS in line with Veronese and Levi-Civita's spirit (B., Forti, 2017).

Roughly speaking, an Euclidean number is defined as the transfinite sum of any arbitrary set of real numbers:

$$
\xi=\sum_{k \in E} a_{k}
$$

Some bibliography

Veronese G., II continuo rettilineo e l'assioma V di Archimede," Memorie della Reale Accademia dei Lincei, Atti della Classe di scienze naturali, fisiche e matematiche 4, (1889), 603-624.
Levi-Civita T., Sugli infiniti ed infinitesimi attuali quali elementi analitici, Atti del R. Istituto Veneto di Scienze Lettere ed Arti, Venezia (Serie 7), (1892-93), 1765-1815.ripubblicato in: Opere, v. 1, p. 1-39.
Robinson A., Non-standard Analysis, Princeton University Press, (1966), ISBN 0-691-04490-2.

目 Benci V., Freguglia P. La matematica e l'infinito, Carocci, (2019), ISBN: 8843095250.

The third problem: infinitesimal numbers

All previous arguments lead us to consider infinitesimals.

The third problem: infinitesimal numbers

All previous arguments lead us to consider infinitesimals.
The Non-Archimedean Geometry leads us to infinitesimals.

The third problem: infinitesimal numbers

All previous arguments lead us to consider infinitesimals.
The Non-Archimedean Geometry leads us to infinitesimals.
But even the notion of transfinite sums leads us to the notion of infinitesimal.

The third problem: infinitesimal numbers

All previous arguments lead us to consider infinitesimals.
The Non-Archimedean Geometry leads us to infinitesimals.
But even the notion of transfinite sums leads us to the notion of infinitesimal.

In fact, by transfinite sums you can get not only infinite but also infinitesimal numbers. Consider, for example, the transfinite sum

$$
1-\sum_{k \in \mathbb{N}^{+}} \frac{1}{2^{k}}
$$

where $\mathbb{N}^{+}=\{1,2,3, \ldots\}$ is the set of positive natural numbers.

Third problem: the infinitesimals

Let us remember the words of Russell:

Third problem: the infinitesimals

Let us remember the words of Russell:
Infinitesimals as explaining continuity must be regarded as unnecessary, erroneous, and self-contradictory.
B. Russell, The Principles of Mathematics, (1903).

Third problem: the infinitesimals

Let us remember the words of Russell:
Infinitesimals as explaining continuity must be regarded as unnecessary, erroneous, and self-contradictory.
B. Russell, The Principles of Mathematics, (1903).

Strange that Russel took this position, because he also wrote:

Third problem: the infinitesimals

Let us remember the words of Russell:
Infinitesimals as explaining continuity must be regarded as unnecessary, erroneous, and self-contradictory.
B. Russell, The Principles of Mathematics, (1903).

Strange that Russel took this position, because he also wrote:

Thus mathematics may be defined as the subject in which we never know what we are talking about, nor whether what we are saying is true.
B. Russell, Mysticism and Logic, 1901.

The existence infinitesimals

Following the ideas of Russell, the word existence is synonymous with consistence.

The existence infinitesimals

Following the ideas of Russell, the word existence is synonymous with consistence. Everything that does not lead to contradiction has the right of citizenship in the realm of mathematics.

The existence infinitesimals

Following the ideas of Russell, the word existence is synonymous with consistence. Everything that does not lead to contradiction has the right of citizenship in the realm of mathematics.

So the correct question is not:

Do infinitesimals exist?

The existence infinitesimals

Following the ideas of Russell, the word existence is synonymous with consistence. Everything that does not lead to contradiction has the right of citizenship in the realm of mathematics.

So the correct question is not:

Do infinitesimals exist?

But rather

It is convenient to use infinitesimals.

First application: rounding up the numbers

Consider the number $\frac{1}{3}$. Its decimal form is given by

$$
0,33333 \ldots . .
$$

First application: rounding up the numbers

Consider the number $\frac{1}{3}$. Its decimal form is given by

$$
0,33333 \ldots . .
$$

i.e., the number $\frac{1}{3}$ can be approximated by the transfinite sum

$$
\frac{1}{3} \cong \sum_{k \in \mathbb{N}^{+}} \frac{3}{10^{k}}
$$

First application: rounding up the numbers

Consider the number $\frac{1}{3}$. Its decimal form is given by

$$
0,33333 \ldots . .
$$

i.e., the number $\frac{1}{3}$ can be approximated by the transfinite sum

$$
\frac{1}{3} \cong \sum_{k \in \mathbb{N}^{+}} \frac{3}{10^{k}}
$$

But these two quantities are exactly the same?

Rounding a number

If we add the first n terms, we have that

$$
\sum_{k=1}^{n} \frac{3}{10^{k}}=0, \underbrace{333 \ldots . \ldots 3}_{n \text { digits }}<\frac{1}{3}
$$

and therefore for the property 4 of the transfinite sum it follows that

$$
\sum_{k \in \mathbb{N}^{+}} \frac{3}{10^{k}}<\frac{1}{3}
$$

Rounding a number

If we add the first n terms, we have that

$$
\sum_{k=1}^{n} \frac{3}{10^{k}}=0, \underbrace{333 \ldots . \ldots 3}_{n \text { digits }}<\frac{1}{3}
$$

and therefore for the property 4 of the transfinite sum it follows that

$$
\sum_{k \in \mathbb{N}^{+}} \frac{3}{10^{k}}<\frac{1}{3}
$$

Thus

$$
\sum_{k \in \mathbb{N}^{+}} \frac{3}{10^{k}}=\frac{1}{3}-\varepsilon
$$

where ε is a suitable infinitesimal.

Rounding a number

If we add the first n terms, we have that

$$
\sum_{k=1}^{n} \frac{3}{10^{k}}=0, \underbrace{333 \ldots . \ldots 3}_{n \text { digits }}<\frac{1}{3}
$$

and therefore for the property 4 of the transfinite sum it follows that

$$
\sum_{k \in \mathbb{N}^{+}} \frac{3}{10^{k}}<\frac{1}{3}
$$

Thus

$$
\sum_{k \in \mathbb{N}^{+}} \frac{3}{10^{k}}=\frac{1}{3}-\varepsilon
$$

where ε is a suitable infinitesimal.
Conclusion

$$
0,33333 \ldots .=s t\left(\sum_{k \in \mathbb{N}^{+}} \frac{3}{10^{k}}\right):=\sum_{k=1}^{\infty} \frac{3}{10^{k}}
$$

The real numbers

This reasoning leads us to a new definition of real number.

Definition

A real number is the "rounding" (standard part) of a transfinite sum of rational numbers (provided this sum is bounded).

Meaning of the Decimal Representation of Real Number

$$
x=a_{0}, a_{1} a_{2} a_{3} a_{4} \ldots
$$

Meaning of the Decimal Representation of Real Number

$$
\begin{gathered}
x=a_{0}, a_{1} a_{2} a_{3} a_{4} \ldots \\
\hat{\mathbb{1}} \\
x=s t\left(a_{0}+\sum_{k \in \mathbb{N}^{+}} \frac{a_{k}}{10^{k}}\right)
\end{gathered}
$$

Meaning of the Decimal Representation of Real Number

$$
\begin{gathered}
x=a_{0}, a_{1} a_{2} a_{3} a_{4} \ldots \\
\mathbb{\Downarrow} \\
x=s t\left(a_{0}+\sum_{k \in \mathbb{N}^{+}} \frac{a_{k}}{10^{k}}\right) \\
0,99999 \ldots \ldots=1
\end{gathered}
$$

The concept of derivative

The concept of derivative

$$
f^{\prime}(x)=s t\left(\frac{f(x+\varepsilon)-f(x)}{\varepsilon}\right)
$$

The concept of derivative

$$
f^{\prime}(x)=s t\left(\frac{f(x+\varepsilon)-f(x)}{\varepsilon}\right)
$$

Example:

$$
D\left(x^{2}\right)=s t\left(\frac{(x+\varepsilon)^{2}-(x)^{2}}{\varepsilon}\right)
$$

The concept of derivative

$$
f^{\prime}(x)=s t\left(\frac{f(x+\varepsilon)-f(x)}{\varepsilon}\right)
$$

Example:

$$
\begin{aligned}
D\left(x^{2}\right) & =s t\left(\frac{(x+\varepsilon)^{2}-(x)^{2}}{\varepsilon}\right) \\
& =s t\left(\frac{2 x \varepsilon+\varepsilon^{2}}{\varepsilon}\right)=s t(2 x+\varepsilon)=2 x
\end{aligned}
$$

Some bibliography

Reisler H.J., Foundations of Infinitesimal Calculus, Prindle, Weber \& Schmidt, Boston, (1976).
围 Benci V., Di Nasso M., How to measure infinity: Mathematics with infinite and infinitesimal numbers, World Scientific (2018).
Benci V., Alla ricerca dei numeri infinitesimi. Lezioni di Analisi Matematica esposte in un campo non-archimedeo, Aracne, (2018).

Are infinitesimal necessary?

However, the notion of derivative (as well as the notion of real number), as it is well known, can also be defined without exploiting the infinitesimals.

Are infinitesimal necessary?

However, the notion of derivative (as well as the notion of real number), as it is well known, can also be defined without exploiting the infinitesimals.

Probably, Russell, asserting that the infinitesimals are unnecessary, erroneous and self-contradictory, he meant that:

Calculus can be constructed without them

Are infinitesimal necessary?

However, the notion of derivative (as well as the notion of real number), as it is well known, can also be defined without exploiting the infinitesimals.

Probably, Russell, asserting that the infinitesimals are unnecessary, erroneous and self-contradictory, he meant that:

Calculus can be constructed without them

So we are lead to talk about problems that can not be treated outside the NAM.

The infinitesimal in empirical sciences

Let us assume the Galilean point of view:
"Mathematics is the language of nature"

The infinitesimal in empirical sciences

Let us assume the Galilean point of view:
"Mathematics is the language of nature"
and let us see some phenomena that can not be described (easily) without using infinite and infinitesimal numbers.

Calculus of Probability

Limitations of Calculus of Probability based on Kolmogorov Axioms

Calculus of Probability

Limitations of Calculus of Probability based on Kolmogorov Axioms

Kolmogorov's axioms embed the calculus of probability into the measure theory.

Calculus of Probability

Limitations of Calculus of Probability based on Kolmogorov Axioms

Kolmogorov's axioms embed the calculus of probability into the measure theory. So often, it happens the unpleasant fact to encounter sets (events) $E \neq \varnothing$ having null measure

Events of null measure

In measure theory sets of null measure are natural;

Events of null measure

In measure theory sets of null measure are natural; e. g. a segment has area equal to 0 .

Events of null measure

In measure theory sets of null measure are natural; e. g. a segment has area equal to 0 . But in the Calculus of Probability, events of null probability are, at least, embarrassing.

Events of null measure

In measure theory sets of null measure are natural; e. g. a segment has area equal to 0 . But in the Calculus of Probability, events of null probability are, at least, embarrassing.

In fact, they can not be interpreted as impossible events.

Events of null measure

In measure theory sets of null measure are natural; e. g. a segment has area equal to 0 . But in the Calculus of Probability, events of null probability are, at least, embarrassing.

In fact, they can not be interpreted as impossible events.
Let's see an example: suppose a meteorite falls on the ground hitting a point with probability proportional to the surface.

Events of null measure

In measure theory sets of null measure are natural; e. g. a segment has area equal to 0 . But in the Calculus of Probability, events of null probability are, at least, embarrassing.

In fact, they can not be interpreted as impossible events.
Let's see an example: suppose a meteorite falls on the ground hitting a point with probability proportional to the surface. It will fall to a certain longitude,

Events of null measure

In measure theory sets of null measure are natural; e. g. a segment has area equal to 0 . But in the Calculus of Probability, events of null probability are, at least, embarrassing.

In fact, they can not be interpreted as impossible events.
Let's see an example: suppose a meteorite falls on the ground hitting a point with probability proportional to the surface. It will fall to a certain longitude, namely it will hit a certain meridian

Events of null measure

In measure theory sets of null measure are natural; e. g. a segment has area equal to 0 . But in the Calculus of Probability, events of null probability are, at least, embarrassing.

In fact, they can not be interpreted as impossible events.
Let's see an example: suppose a meteorite falls on the ground hitting a point with probability proportional to the surface. It will fall to a certain longitude, namely it will hit a certain meridian represented by a set/event of null probability since the surface of a line is 0 .

Events of null measure

In measure theory sets of null measure are natural; e. g. a segment has area equal to 0 . But in the Calculus of Probability, events of null probability are, at least, embarrassing.

In fact, they can not be interpreted as impossible events.
Let's see an example: suppose a meteorite falls on the ground hitting a point with probability proportional to the surface. It will fall to a certain longitude, namely it will hit a certain meridian represented by a set/event of null probability since the surface of a line is 0 .

The sets of null probability represent very rare events.

Events of null measure

In measure theory sets of null measure are natural; e. g. a segment has area equal to 0 . But in the Calculus of Probability, events of null probability are, at least, embarrassing.

In fact, they can not be interpreted as impossible events.
Let's see an example: suppose a meteorite falls on the ground hitting a point with probability proportional to the surface. It will fall to a certain longitude, namely it will hit a certain meridian represented by a set/event of null probability since the surface of a line is 0 .

The sets of null probability represent very rare events. But not impossible.

Events of null measure

In measure theory sets of null measure are natural; e. g. a segment has area equal to 0 . But in the Calculus of Probability, events of null probability are, at least, embarrassing.

In fact, they can not be interpreted as impossible events.
Let's see an example: suppose a meteorite falls on the ground hitting a point with probability proportional to the surface. It will fall to a certain longitude, namely it will hit a certain meridian represented by a set/event of null probability since the surface of a line is 0 .

The sets of null probability represent very rare events. But not impossible. But all this leads to trouble,

Events of null measure

In measure theory sets of null measure are natural; e. g. a segment has area equal to 0 . But in the Calculus of Probability, events of null probability are, at least, embarrassing.

In fact, they can not be interpreted as impossible events.
Let's see an example: suppose a meteorite falls on the ground hitting a point with probability proportional to the surface. It will fall to a certain longitude, namely it will hit a certain meridian represented by a set/event of null probability since the surface of a line is 0 .

The sets of null probability represent very rare events. But not impossible. But all this leads to trouble, not only epistemological, but also technical.

Technical consequences of all this

Problem

If a meteorite has fallen at the longitude of $11^{\circ} \mathrm{E}$, what is the probability that it has fallen within a radius of 100 km from Florence.

Our problem is solved by the conditional probability

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Our problem is solved by the conditional probability

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

In our case,
$A=$ \{a meteorite fell within a radius of 100 km from Florence. $\}$
$B=\left\{\right.$ a meteorite fell to the 11°-E longitude $\}$
is a null probability event, and therefore, in the Kolmogorovian calculus, it does not make sense

Our problem is solved by the conditional probability

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

In our case,
$A=$ \{a meteorite fell within a radius of 100 km from Florence. $\}$
$B=\left\{\right.$ a meteorite fell to the 11°-E longitude $\}$
is a null probability event, and therefore, in the Kolmogorovian calculus, it does not make sense
is a number prohibited by all laws !!!

The non Archimedean Probability (NAP)

A NAP-space is defined by the pair (Ω, w) where Ω is the event space and

$$
w: \Omega \rightarrow \mathbb{R}^{+}
$$

is the function "relative probability".

The non Archimedean Probability (NAP)

A NAP-space is defined by the pair (Ω, w) where Ω is the event space and

$$
w: \Omega \rightarrow \mathbb{R}^{+}
$$

is the function "relative probability".
The ratio

$$
\frac{w(x)}{w(y)}
$$

tells how the event $\{x\}$ is most likely (more frequent, has more confidence etc. ...) than the event $\{y\}$.

The non Archimedean Probability (NAP)

A NAP-space is defined by the pair (Ω, w) where Ω is the event space and

$$
w: \Omega \rightarrow \mathbb{R}^{+}
$$

is the function "relative probability".
The ratio

$$
\frac{w(x)}{w(y)}
$$

tells how the event $\{x\}$ is most likely (more frequent, has more confidence etc. ...) than the event $\{y\}$.

So, the probability of an event A is defined by the following number

$$
P(A)=\frac{\sum_{\omega \in A} w(\omega)}{\sum_{\omega \in \Omega} w(\omega)}
$$

This is the trivial definition of probability when Ω is a finite set.

This is the trivial definition of probability when Ω is a finite set.
When Ω is infinite all this is just as trivial

This is the trivial definition of probability when Ω is a finite set.

When Ω is infinite all this is just as trivial

provided that we accept the transfinite sums and therefore infinite and infinitesimal numbers

Properties of the non-Archimedean Probability

- (NAPO) Domain and range. The events are the subsets of Ω and the probability is a function

$$
P: \mathcal{P}(\Omega) \rightarrow \mathfrak{R}^{+}
$$

where \mathfrak{R} is an ordered field.

Properties of the non-Archimedean Probability

- (NAPO) Domain and range. The events are the subsets of Ω and the probability is a function

$$
P: \mathcal{P}(\Omega) \rightarrow \mathfrak{R}^{+}
$$

where \mathfrak{R} is an ordered field.

- (NAP1) Regularity.

$$
P(A)=0 \Leftrightarrow A=0
$$

Properties of the non-Archimedean Probability

- (NAPO) Domain and range. The events are the subsets of Ω and the probability is a function

$$
P: \mathcal{P}(\Omega) \rightarrow \mathfrak{R}^{+}
$$

where \mathfrak{R} is an ordered field.

- (NAP1) Regularity.

$$
P(A)=0 \Leftrightarrow A=0 .
$$

- (NAP2) Normalization.

$$
P(\Omega)=1
$$

Properties of the non-Archimedean Probability

- (NAPO) Domain and range. The events are the subsets of Ω and the probability is a function

$$
P: \mathcal{P}(\Omega) \rightarrow \mathfrak{R}^{+}
$$

where \mathfrak{R} is an ordered field.

- (NAP1) Regularity.

$$
P(A)=0 \Leftrightarrow A=0 .
$$

- (NAP2) Normalization.

$$
P(\Omega)=1
$$

- (NAP3) Additivity. If A and B are events and $A \cap B=\varnothing$, then

$$
P(A \cup B)=P(A)+P(B)
$$

Properties of the non-Archimedean Probability

- (NAPO) Domain and range. The events are the subsets of Ω and the probability is a function

$$
P: \mathcal{P}(\Omega) \rightarrow \mathfrak{R}^{+}
$$

where \mathfrak{R} is an ordered field.

- (NAP1) Regularity.

$$
P(A)=0 \Leftrightarrow A=0 .
$$

- (NAP2) Normalization.

$$
P(\Omega)=1
$$

- (NAP3) Additivity. If A and B are events and $A \cap B=\varnothing$, then

$$
P(A \cup B)=P(A)+P(B)
$$

Properties of the non-Archimedean Probability

- (NAPO) Domain and range. The events are the subsets of Ω and the probability is a function

$$
P: \mathcal{P}(\Omega) \rightarrow \mathfrak{R}^{+}
$$

where \mathfrak{R} is an ordered field.

- (NAP1) Regularity.

$$
P(A)=0 \Leftrightarrow A=0 .
$$

- (NAP2) Normalization.

$$
P(\Omega)=1
$$

- (NAP3) Additivity. If A and B are events and $A \cap B=\varnothing$, then

$$
P(A \cup B)=P(A)+P(B)
$$

There are only three small differences with Kolmogorov's axioms.

Properties of the non-Archimedean Probability

- (NAPO) Domain and range. The events are the subsets of Ω and the probability is a function

$$
P: \mathcal{P}(\Omega) \rightarrow \mathfrak{R}^{+}
$$

where \mathfrak{R} is an ordered field.

- (NAP1) Regularity.

$$
P(A)=0 \Leftrightarrow A=0 .
$$

- (NAP2) Normalization.

$$
P(\Omega)=1
$$

- (NAP3) Additivity. If A and B are events and $A \cap B=\varnothing$, then

$$
P(A \cup B)=P(A)+P(B)
$$

There are only three small differences with Kolmogorov's axioms. Moreover the "Continuity Axiom" is not here since we have the transfinite sum algorithm

Fair probability

We say that a probability space (Ω, w) defines a fair probability if w is constant.

Fair probability

We say that a probability space (Ω, w) defines a fair probability if w is constant.

In this case we have that

$$
P(A)=\frac{\mathfrak{n}(A)}{\mathfrak{n}(\Omega)}
$$

Fair probability

We say that a probability space (Ω, w) defines a fair probability if w is constant.

In this case we have that

$$
P(A)=\frac{\mathfrak{n}(A)}{\mathfrak{n}(\Omega)}
$$

The probability of an event is given by the ratio between the number of favorable cases $\mathfrak{n}(A)$ and the number of all possible cases $\mathfrak{n}(\Omega)$

Fair probability

We say that a probability space (Ω, w) defines a fair probability if w is constant.

In this case we have that

$$
P(A)=\frac{\mathfrak{n}(A)}{\mathfrak{n}(\Omega)}
$$

The probability of an event is given by the ratio between the number of favorable cases $\mathfrak{n}(A)$ and the number of all possible cases $\mathfrak{n}(\Omega)$ (the old, dear and tautological classical definition of Laplace).

De Finetti's lottery

De Finetti's lottery is a fair lottery with a denumerable infinity of tickets.

De Finetti's lottery

De Finetti's lottery is a fair lottery with a denumerable infinity of tickets. It represents a model that can not be described by the Kolmogorovian probability.

De Finetti's lottery

De Finetti's lottery is a fair lottery with a denumerable infinity of tickets. It represents a model that can not be described by the Kolmogorovian probability.

In this case, we have that

$$
\Omega=\mathbb{N}=\{0,1,2,3, \ldots\}
$$

De Finetti's lottery

De Finetti's lottery is a fair lottery with a denumerable infinity of tickets. It represents a model that can not be described by the Kolmogorovian probability.

In this case, we have that

$$
\Omega=\mathbb{N}=\{0,1,2,3, \ldots\}
$$

Hence

$$
P(A)=\frac{\mathfrak{n}(A)}{\mathfrak{n}(\mathbb{N})}=\frac{\mathfrak{n}(A)}{\omega}
$$

De Finetti's lottery

De Finetti's lottery is a fair lottery with a denumerable infinity of tickets. It represents a model that can not be described by the Kolmogorovian probability.

In this case, we have that

$$
\Omega=\mathbb{N}=\{0,1,2,3, \ldots\}
$$

Hence

$$
P(A)=\frac{\mathfrak{n}(A)}{\mathfrak{n}(\mathbb{N})}=\frac{\mathfrak{n}(A)}{\omega}
$$

For example, if $A=\{1,2,3\}$

$$
P(A)=\frac{\mathfrak{n}(A)}{\mathfrak{n}(\mathbb{N})}=\frac{3}{\omega} \sim 0
$$

Exercise 1

What is the probability that De Finetti's lottery comes out is an even number?

Exercise 1

What is the probability that De Finetti's lottery comes out is an even number?

The probability $P(\mathfrak{E})$ is

$$
P(\mathfrak{E})=\frac{\mathfrak{n}(\mathfrak{E})}{\omega}=\frac{\frac{\omega+1}{2}}{\omega}=\frac{1}{2}+\frac{1}{2 \omega} \sim \frac{1}{2} .
$$

Exercise 1

What is the probability that De Finetti's lottery comes out is an even number?

The probability $P(\mathfrak{E})$ is

$$
P(\mathfrak{E})=\frac{\mathfrak{n}(\mathfrak{E})}{\omega}=\frac{\frac{\omega+1}{2}}{\omega}=\frac{1}{2}+\frac{1}{2 \omega} \sim \frac{1}{2} .
$$

This is just the example that De Finetti used to criticize Kolmogorovian's probability, unable to model this problem.

Exercise 2

What is the probability that number 1 will come out, knowing from the oracle that one of the first 10 numbers will come out?

Exercise 2

What is the probability that number 1 will come out, knowing from the oracle that one of the first 10 numbers will come out?

The conditional probability $P(\{1\} \mid\{0,1,2,3, \ldots, 9\})$ is given by

$$
P(\{1\} \mid\{0,1,2,3, \ldots, 9\})=\frac{P(\{1\})}{P(\{0,1,2,3, \ldots, 9\})}
$$

Exercise 2

What is the probability that number 1 will come out, knowing from the oracle that one of the first 10 numbers will come out?

The conditional probability $P(\{1\} \mid\{0,1,2,3, \ldots, 9\})$ is given by

$$
P(\{1\} \mid\{0,1,2,3, \ldots, 9\})=\frac{P(\{1\})}{P(\{0,1,2,3, \ldots, 9\})}=\frac{\frac{1}{\omega}}{\frac{10}{\omega}}
$$

Exercise 2

What is the probability that number 1 will come out, knowing from the oracle that one of the first 10 numbers will come out?

The conditional probability $P(\{1\} \mid\{0,1,2,3, \ldots, 9\})$ is given by

$$
P(\{1\} \mid\{0,1,2,3, \ldots, 9\})=\frac{P(\{1\})}{P(\{0,1,2,3, \ldots, 9\})}=\frac{\frac{1}{\omega}}{\frac{10}{\omega}}=\frac{1}{10}
$$

Exercise 2

What is the probability that number 1 will come out, knowing from the oracle that one of the first 10 numbers will come out?

The conditional probability $P(\{1\} \mid\{0,1,2,3, \ldots, 9\})$ is given by

$$
P(\{1\} \mid\{0,1,2,3, \ldots, 9\})=\frac{P(\{1\})}{P(\{0,1,2,3, \ldots, 9\})}=\frac{\frac{1}{\omega}}{\frac{10}{\omega}}=\frac{1}{10}
$$

Note that this example also suggests how the satellite problem can be solved:

$$
\frac{0}{0} \text { is unlawful, }
$$

Exercise 2

What is the probability that number 1 will come out, knowing from the oracle that one of the first 10 numbers will come out?

The conditional probability $P(\{1\} \mid\{0,1,2,3, \ldots, 9\})$ is given by

$$
P(\{1\} \mid\{0,1,2,3, \ldots, 9\})=\frac{P(\{1\})}{P(\{0,1,2,3, \ldots, 9\})}=\frac{\frac{1}{\omega}}{\frac{10}{\omega}}=\frac{1}{10}
$$

Note that this example also suggests how the satellite problem can be solved:

$$
\frac{0}{0} \text { is unlawful, but } \frac{\frac{1}{\omega}}{\frac{10}{\omega}} \text { is allowed. }
$$

Some bibliography

Nelson, E. Radically Elementary Probability Theory, Princeton, NJ: Princeton University Press, (1987).

圊 Benci V., Horsten H., Wenmackers S., Non-Archimedean probability, Milan J. Math., (2012), pp 121-151, arXiv:1106.1524.

回 Benci, V., Horsten, L., Wenmackers, S., Infinitesimal Probabilities, Brit. J. Phil. Sci. (2016), pp. 1-44.

Ultrafunctions

Ultrafunctions

In many circumstances, the notion of function is not sufficient to the needs of a theory and it is necessary to extend it.

Ultrafunctions

In many circumstances, the notion of function is not sufficient to the needs of a theory and it is necessary to extend it.
Probably the first example is the heuristic use of symbolic methods, called operational calculus (Oliver Heaviside's Electromagnetic Theory of 1899).

Ultrafunctions

In many circumstances, the notion of function is not sufficient to the needs of a theory and it is necessary to extend it.
Probably the first example is the heuristic use of symbolic methods, called operational calculus (Oliver Heaviside's Electromagnetic Theory of 1899). Further, very important steps in this direction have been the introduction of the weak derivative (Leray) and of the Dirac Delta function.

Ultrafunctions

In many circumstances, the notion of function is not sufficient to the needs of a theory and it is necessary to extend it.
Probably the first example is the heuristic use of symbolic methods, called operational calculus (Oliver Heaviside's Electromagnetic Theory of 1899). Further, very important steps in this direction have been the introduction of the weak derivative (Leray) and of the Dirac Delta function.
The theory of Dirac and the theory of weak derivatives where unified by Schwartz in the beautiful theory of distributions.

Ultrafunctions

In many circumstances, the notion of function is not sufficient to the needs of a theory and it is necessary to extend it.
Probably the first example is the heuristic use of symbolic methods, called operational calculus (Oliver Heaviside's Electromagnetic Theory of 1899). Further, very important steps in this direction have been the introduction of the weak derivative (Leray) and of the Dirac Delta function.
The theory of Dirac and the theory of weak derivatives where unified by Schwartz in the beautiful theory of distributions.
The the theory of ultrafunctions is a further step in this direction.

Ultrafunctions

In many circumstances, the notion of function is not sufficient to the needs of a theory and it is necessary to extend it.
Probably the first example is the heuristic use of symbolic methods, called operational calculus (Oliver Heaviside's Electromagnetic Theory of 1899). Further, very important steps in this direction have been the introduction of the weak derivative (Leray) and of the Dirac Delta function.
The theory of Dirac and the theory of weak derivatives where unified by Schwartz in the beautiful theory of distributions.
The the theory of ultrafunctions is a further step in this direction.
This theory has been introduced to provide generalized solutions to equations which do not have any solutions not even among the distributions.

Ultrafunctions

In many circumstances, the notion of function is not sufficient to the needs of a theory and it is necessary to extend it.
Probably the first example is the heuristic use of symbolic methods, called operational calculus (Oliver Heaviside's Electromagnetic Theory of 1899). Further, very important steps in this direction have been the introduction of the weak derivative (Leray) and of the Dirac Delta function.
The theory of Dirac and the theory of weak derivatives where unified by
Schwartz in the beautiful theory of distributions.
The the theory of ultrafunctions is a further step in this direction.
This theory has been introduced to provide generalized solutions to equations which do not have any solutions not even among the distributions.
The peculiarity of ultrafunctions is that they are based on a
Non-Archimedean field.

Ultrafunctions

Given an set $\Omega \subset \mathbb{R}^{N}$ the set of ultrafunctions $V^{\circ}(\Gamma)$ is a \mathbb{E}-algebra of functions

$$
u: \Gamma \rightarrow \mathbb{E}
$$

where

$$
\Omega \subset \Gamma \subset \mathbb{E}^{N}
$$

Main properties of ultrafunctions

Main properties of ultrafunctions

- Every function

$$
f: \Omega \rightarrow \mathbb{R}
$$

can be extended to an ultrafunction

$$
f^{\circ}: \Gamma \rightarrow \mathbb{E}
$$

Main properties of ultrafunctions

- Every function

$$
f: \Omega \rightarrow \mathbb{R}
$$

can be extended to an ultrafunction

$$
f^{\circ}: \Gamma \rightarrow \mathbb{E}
$$

- if $f \in C^{1}$, then for every $x \in \Omega$,

$$
f^{\prime}(x)=D f^{\circ}(x)
$$

where

$$
D: V^{\circ}(\Gamma) \rightarrow V^{\circ}(\Gamma)
$$

Main properties of ultrafunctions

Main properties of ultrafunctions

- if f is integrable

$$
\int f(x) d x=\sum_{x \in \Gamma} f(x) d(x)
$$

where $d: \Gamma \rightarrow \mathbb{E}$ is an ultrafunction

Main properties of ultrafunctions

- if f is integrable

$$
\int f(x) d x=\sum_{x \in \Gamma} f(x) d(x)
$$

where $d: \Gamma \rightarrow \mathbb{E}$ is an ultrafunction

- Every distribution T can be associated to an ultrafunction u_{T} such that $\forall \varphi \in C_{c o m p}^{\infty}$

$$
\langle T, \varphi\rangle=\sum_{x \in \Gamma} u_{T}(x) \varphi(x) d(x)
$$

An elementary problem in electrostatic

Let $\Omega \subset \mathbb{R}^{3}$, (open and bounded), represents a box whose boundary has electric potential 0 .

An elementary problem in electrostatic

Let $\Omega \subset \mathbb{R}^{3}$, (open and bounded), represents a box whose boundary has electric potential 0 .

In Ω, we put a pointwise particle which might represent an electron.

An elementary problem in electrostatic

Let $\Omega \subset \mathbb{R}^{3}$, (open and bounded), represents a box whose boundary has electric potential 0 .

In Ω, we put a pointwise particle which might represent an electron.
We assume that it is free to move.

An elementary problem in electrostatic

Let $\Omega \subset \mathbb{R}^{3}$, (open and bounded), represents a box whose boundary has electric potential 0 .

In Ω, we put a pointwise particle which might represent an electron.
We assume that it is free to move.

We want to know the point P_{0} which the particle will occupy.

Natural way to model the problem

Given a point $P \in \Omega$, consider the Dirichlet problem

$$
\left\{\begin{array}{cc}
-\Delta u=\delta_{P} & \text { for } x \in \Omega \\
u(x)=0 & \text { for } x \in \partial \Omega
\end{array}\right.
$$

Natural way to model the problem

Given a point $P \in \Omega$, consider the Dirichlet problem

$$
\left\{\begin{array}{cl}
-\Delta u=\delta_{P} & \text { for } x \in \Omega \\
u(x)=0 & \text { for } x \in \partial \Omega
\end{array}\right.
$$

Denote by u_{P} the solution of the above problem and by

$$
E_{e l}\left(u_{P}\right)=\left\langle\delta_{P}, u\right\rangle-\frac{1}{2} \int\left|\nabla u_{P}\right|^{2} d x=\frac{1}{2} \int\left|\nabla u_{P}\right|^{2} d x
$$

its energy.

Natural way to model the problem

Given a point $P \in \Omega$, consider the Dirichlet problem

$$
\left\{\begin{array}{cl}
-\Delta u=\delta_{P} & \text { for } x \in \Omega \\
u(x)=0 & \text { for } x \in \partial \Omega
\end{array}\right.
$$

Denote by u_{P} the solution of the above problem and by

$$
E_{e l}\left(u_{P}\right)=\left\langle\delta_{P}, u\right\rangle-\frac{1}{2} \int\left|\nabla u_{P}\right|^{2} d x=\frac{1}{2} \int\left|\nabla u_{P}\right|^{2} d x
$$

its energy.
The point P_{0} is the point which minimizes the energy:

$$
\min _{P \in \Omega} E_{e l}\left(u_{P}\right)
$$

Natural way to model the problem

Clearly this strategy cannot be applied in a "classical" framework, since, for every $P \in \Omega, E_{e l}\left(u_{P}\right)=+\infty$.

Natural way to model the problem

Clearly this strategy cannot be applied in a "classical" framework, since, for every $P \in \Omega, E_{e l}\left(u_{P}\right)=+\infty$.

On the contrary, if we accept to describe with the ultrafunction language, this problem can be treated in such a simple way.

Natural way to model the problem

Clearly this strategy cannot be applied in a "classical" framework, since, for every $P \in \Omega, E_{e l}\left(u_{P}\right)=+\infty$.

On the contrary, if we accept to describe with the ultrafunction language, this problem can be treated in such a simple way.

In fact, for every $P \in \bar{\Omega}, E_{e l}\left(u_{P}\right)$ is an (infinite) Euclidean number which can be estimated easily. The minimum is achieved by any point $P \in \partial \Omega$.

Some bibliography

图 V．Benci，Ultrafunctions and generalized solutions，Adv．Nonlinear Stud．13，（2013），461－486．
围 V．Benci，L．Luperi Baglini，Ultrafunctions and applications， Discrete and continuous dynamical systems，series S，Vol．7，No．4， （2014），arXiv：1405．4152．
庫 V．Benci，L．Berselli，C．Grisanti，The Caccioppoli Ultrafunctions，ANONA，（2018），DOI： https：／／doi．org／10．1515／anona－2017－0225．
圊 V．Benci，L．Luperi Baglini，M．Squassina，Generalized solutions of variational problems and applications，in preparation

Thank you for your attention

A belief in the infinitely small does not triumph easily. Yet when one thinks boldly and freely, the initial distrust will soon mellow into a pleasant certainty.

Paul du Bois-Reymond

