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For Bertrand Russell (B. Russell, Mysticism and Logic, 1901) the main
problems of the Philosophy of Mathematics are three and all of them are
related to the idea of in�nity:

1 The problem of in�nite numbers;
2 the problem of the continuum;
3 the problem of the in�nitesimal quantities.
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According to our philosopher all these problems have been completely
solved:

1 the �rst has been solved by Cantor introducing the cardinal numbers;
2 the second has been solved by Dedekind by identifying the geometric
continuum with the real line (with the Dedekind axiom);

3 the third has been solved by Weierstrass expelling the in�nitesimals
from the Kingdom of Mathematics.
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A century has passed since Russell wrote this.

Are we sure that this is the right point of view?

Actually I think that these ideas [to day] are too restrictive and I will try to
argue for a di¤erent view of in�nity and the related problems.

In particular I will try to convince you that the use of in�nitesimals:

- simpli�es computations;

- allows to build richer models of reality;

- gives a deeper understanding of the cardinal and ordinal numbers;

- expands the epistemological horizon of the foundations of
Mathematics.
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The �rst philosophical problem: how to count in�nite sets.

Let start our discussion with the �rst problem namely the possibility of
"counting" the elements of in�nite sets.

Vieri Benci () In�nity November 26, 2019 5 / 64



How to count in�nite sets

Hume Euclides

Let us recall the two fundamental principles which rule the operation of
"counting".

The Hume principle - Two sets have the same number of elements
if and only if there exists a biunique correspondence between them.
The Euclides principle (5� common notion) - The whole is greater
than the part.
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Galileo

These two principles appear quite natural and are true when applied to
�nite set. However they are contradictory when applied to in�nite set.

Galileo is one among the natural philosophers who emphasized this point.

The square numbers are a part of all the numbers, but there is a biunique
correspondence with all the numbers.
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Galileo�s law

1  ! 1

2  ! 4

3  ! 9

4  ! 16

5  ! 25

6  ! 36

7  ! 49

8  ! 64

9  ! 81

10  ! 100

...  ! ...

s = 1
2gt

2
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Cantor

Cantor has been the �rst to understand that eliminating one of the two
principle (namely the Euclides Principle) it is possible to get a strange but
consistent theory
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In�nite cardinals

Figure: In�nite cardinals

The "quirk" of cardinal numbers is their arithmetic: if a and b are in�nite
cardinal numbers, then

a+ b = a� b = max(a, b)
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The ordinal numbers

Cantor also understood that it is possible to use a di¤erent strategy to
count sets. And changing strategy with in�nite sets, not only you get
di¤erent results, but also di¤erent numbers.

In any case, the ordinal numbers are as weird as the cardinal numbers:

ω+ 1 > 1+ω = ω
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Numerosities

There exist an alternative way to count in�nite sets in such a way to save
Euclides�principle?

Of course, we have to give up Hume�s Principle.

The answer is "yes".
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Three ways to count

There exist (at least) three ways to count the elements of a set:

1 Child three years old: biunique correspondence.
2 Child �ve years old: put the items to be counted in a row and then
"one, two, three,..."

3 Child ten years old: organize the items to be counted in groups.
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Three ways to count

Obviously these three methods give the same results whenever we count
�nite sets, but this is not true with in�nite sets:

Thus, there exists [at least] three kinds of in�nite numbers:

1 Cardinal numbers
2 Ordinal numbers
3 Numerosities
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In�nite sums

The third way to count leads inevitably to consider in�nite sums.

The idea
of an in�nite sum is somewhat natural and has no major philosophical
problems, but has technical problems.

For example, let us consider

∑
k

(�1)k = 1� 1+ 1� 1+ 1� 1+ 1� 1+ ......

By applying the associative property you have:

(1� 1) + (1� 1) + (1� 1) + (1� 1) + ...... = 0+ 0+ 0+ 0+ ...... = 0

but by applying the same property in a di¤erent way, you also have

1+ (�1+ 1) + (�1+ 1) + (�1+ 1) + ...... = 1+ 0+ 0+ 0+ .... = 1
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The trans�nite sum

Therefore, if we want to deal numerically with certain problems it seems
natural to introduce a new algorithm called trans�nite sum.

This algorithm formalizes the generic notion of in�nite sum by precise
rules (or Axioms).
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The trans�nite sum

The trans�nite sum will be denoted in the following way:

∑
k2N

ak . (1)

N = f0, 1, 2, 3, ...g is the set of natural numbers. The notion of a
trans�nite sum does not coincide with the notion of series;

to highlight
their di¤erence we will use di¤erent symbols:

∑
k2N

ak

denotes a trans�nite sum;
∞

∑
k=0

ak

denotes a usual series.

Vieri Benci () In�nity November 26, 2019 17 / 64



The trans�nite sum

The trans�nite sum will be denoted in the following way:

∑
k2N

ak . (1)

N = f0, 1, 2, 3, ...g is the set of natural numbers. The notion of a
trans�nite sum does not coincide with the notion of series; to highlight
their di¤erence we will use di¤erent symbols:

∑
k2N

ak

denotes a trans�nite sum;
∞

∑
k=0

ak

denotes a usual series.

Vieri Benci () In�nity November 26, 2019 17 / 64



The trans�nite sum

The "trans�nite sum" is governed by the following rules:

1 (Existence rule) Each trans�nite sum ∑k2N ak denotes a number
(namely an element of an ordered �eld).

2 (Finite sum rule) If ak = 0 except a �nite number of terms then the
trans�nite sum coincides with the usual sum.

3 (Sum rule) (∑k2N ak ) + (∑k2N bk ) = ∑k2N (ak + bk )
4 (Product rule) (∑k2N ak ) � (∑k2N bk ) = ∑k2N ck where

ck = ∑
max(l ,m)=k

albm

5 (Comparison rule) If for m large enough
m!

∑
k=0

ak �
m!

∑
k=0

bk ,

then

∑
k2N

ak � ∑
k2N

bk , .

Vieri Benci () In�nity November 26, 2019 18 / 64



The trans�nite sum

The "trans�nite sum" is governed by the following rules:
1 (Existence rule) Each trans�nite sum ∑k2N ak denotes a number
(namely an element of an ordered �eld).

2 (Finite sum rule) If ak = 0 except a �nite number of terms then the
trans�nite sum coincides with the usual sum.

3 (Sum rule) (∑k2N ak ) + (∑k2N bk ) = ∑k2N (ak + bk )
4 (Product rule) (∑k2N ak ) � (∑k2N bk ) = ∑k2N ck

where

ck = ∑
max(l ,m)=k

albm

5 (Comparison rule) If for m large enough
m!

∑
k=0

ak �
m!

∑
k=0

bk ,

then

∑
k2N

ak � ∑
k2N

bk , .

Vieri Benci () In�nity November 26, 2019 18 / 64



The trans�nite sum

The "trans�nite sum" is governed by the following rules:
1 (Existence rule) Each trans�nite sum ∑k2N ak denotes a number
(namely an element of an ordered �eld).

2 (Finite sum rule) If ak = 0 except a �nite number of terms then the
trans�nite sum coincides with the usual sum.

3 (Sum rule) (∑k2N ak ) + (∑k2N bk ) = ∑k2N (ak + bk )
4 (Product rule) (∑k2N ak ) � (∑k2N bk ) = ∑k2N ck

where

ck = ∑
max(l ,m)=k

albm

5 (Comparison rule) If for m large enough
m!

∑
k=0

ak �
m!

∑
k=0

bk ,

then

∑
k2N

ak � ∑
k2N

bk , .

Vieri Benci () In�nity November 26, 2019 18 / 64



The trans�nite sum

The "trans�nite sum" is governed by the following rules:
1 (Existence rule) Each trans�nite sum ∑k2N ak denotes a number
(namely an element of an ordered �eld).

2 (Finite sum rule) If ak = 0 except a �nite number of terms then the
trans�nite sum coincides with the usual sum.

3 (Sum rule) (∑k2N ak ) + (∑k2N bk ) = ∑k2N (ak + bk )

4 (Product rule) (∑k2N ak ) � (∑k2N bk ) = ∑k2N ck

where

ck = ∑
max(l ,m)=k

albm

5 (Comparison rule) If for m large enough
m!

∑
k=0

ak �
m!

∑
k=0

bk ,

then

∑
k2N

ak � ∑
k2N

bk , .

Vieri Benci () In�nity November 26, 2019 18 / 64



The trans�nite sum

The "trans�nite sum" is governed by the following rules:
1 (Existence rule) Each trans�nite sum ∑k2N ak denotes a number
(namely an element of an ordered �eld).

2 (Finite sum rule) If ak = 0 except a �nite number of terms then the
trans�nite sum coincides with the usual sum.

3 (Sum rule) (∑k2N ak ) + (∑k2N bk ) = ∑k2N (ak + bk )
4 (Product rule) (∑k2N ak ) � (∑k2N bk ) = ∑k2N ck

where

ck = ∑
max(l ,m)=k

albm

5 (Comparison rule) If for m large enough
m!

∑
k=0

ak �
m!

∑
k=0

bk ,

then

∑
k2N

ak � ∑
k2N

bk , .

Vieri Benci () In�nity November 26, 2019 18 / 64



The trans�nite sum

The "trans�nite sum" is governed by the following rules:
1 (Existence rule) Each trans�nite sum ∑k2N ak denotes a number
(namely an element of an ordered �eld).

2 (Finite sum rule) If ak = 0 except a �nite number of terms then the
trans�nite sum coincides with the usual sum.

3 (Sum rule) (∑k2N ak ) + (∑k2N bk ) = ∑k2N (ak + bk )
4 (Product rule) (∑k2N ak ) � (∑k2N bk ) = ∑k2N ck

where

ck = ∑
max(l ,m)=k

albm

5 (Comparison rule) If for m large enough
m!

∑
k=0

ak �
m!

∑
k=0

bk ,

then

∑
k2N

ak � ∑
k2N

bk , .

Vieri Benci () In�nity November 26, 2019 18 / 64



The trans�nite sum

The "trans�nite sum" is governed by the following rules:
1 (Existence rule) Each trans�nite sum ∑k2N ak denotes a number
(namely an element of an ordered �eld).

2 (Finite sum rule) If ak = 0 except a �nite number of terms then the
trans�nite sum coincides with the usual sum.

3 (Sum rule) (∑k2N ak ) + (∑k2N bk ) = ∑k2N (ak + bk )
4 (Product rule) (∑k2N ak ) � (∑k2N bk ) = ∑k2N ck where

ck = ∑
max(l ,m)=k

albm

5 (Comparison rule) If for m large enough
m!

∑
k=0

ak �
m!

∑
k=0

bk ,

then

∑
k2N

ak � ∑
k2N

bk , .

Vieri Benci () In�nity November 26, 2019 18 / 64



The trans�nite sum

The "trans�nite sum" is governed by the following rules:
1 (Existence rule) Each trans�nite sum ∑k2N ak denotes a number
(namely an element of an ordered �eld).

2 (Finite sum rule) If ak = 0 except a �nite number of terms then the
trans�nite sum coincides with the usual sum.

3 (Sum rule) (∑k2N ak ) + (∑k2N bk ) = ∑k2N (ak + bk )
4 (Product rule) (∑k2N ak ) � (∑k2N bk ) = ∑k2N ck where

ck = ∑
max(l ,m)=k

albm
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Let�s now get acquainted with the idea of trans�nite sums. The simplest
thing that can come to mind is to add a bit of "1�s" and "0�s".

To formalize this fact, it is useful to de�ne the indicator function of
E �N:

χ
E
(k) =

�
1 se k 2 E
0 se k /2 E .
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The numerosity of a subset of natural numbers

For every E �N we can de�ne the number

n (E ) = ∑
k2N

χ
E
(k)

which will be called numerosity of E . If E is a �nite set, its numerosity
corresponds to a natural number.

Otherwise, the number n (E ) is an
in�nite number that "generalizes" the previous notion.
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The number omega

The most meaningful number is

ω : = ∑
k2N

χ
N
(k).

which you get by summing up as many "one�s" as are the natural numbers.

The ω symbol is the same as it is used to denote the ordinal number
relative to the order type of N. This fact is desirable, since the two
notions, proceeding in theory, can be identi�ed.
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The result of an in�nite sum

But you have to be careful; in general an in�nite sum does not give an
ordinal number:

for example, from the rules of the sum it is deduced that

∑
k2N+

χ
N
(k) = ω� 1.

where N+ = f1, 2, 3, ...g .
Notice that

ord(N+) = ord(N) = ω

and
card(N+) = card(N) = @0
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The result of an in�nite sum

Similarly, you have the following results:

n (E) =
ω+ 1
2

where E = f0, 2, 4, 6, 8, ...g is the set of the even numbers .

n (O) =
ω� 1
2

where O = f1, 3, 5, 7, ...g is the set of the odd numbers.

n (Q) =
p

ω� 1

where Q = f1, 4, 9, 16, ...g is the set of the square numbers.

n (N�N) = ω2
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Second philosophical problem: the nature of the continuum

In classical Euclidean geometry, lines and segments are not considered as
sets of points;

conversely, in the last two centuries, the reductionist
attitude of modern mathematics has described Euclidean geometry by
means of a set theoretical interpretation.

So the Euclidean continuum has been identi�ed with Dedekind�s
continuum and the Euclidean straight line has been identi�ed with the set
of real numbers (once the origin O and a the unit segment OU have been
�xed).
Although this identi�cation is almost universally accepted today, it is still
unsatisfactory (not to say wrong) as it contradicts some theorems of
Euclidean geometry.
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Dedekind�s continuum does not model the Euclidean
continuum

As an example we consider the following Euclidean statement:

a segment AB can be divided into
two congruent segments AM and MB.

If AB is identi�ed with Dedekind continuum (e.g [A,B ] � R), then AM
has a maximum point or MB has a minimum point.

Then AM and MB are not congruent, so Dedekind�s continuum is not a
proper model of the Euclidean continuum.
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How to model the Euclidean continuum?

To build a consistent model, we are obliged to assume that points A, B
and M do not belong to the AB segment.

Then the image of the Euclidean straight line that comes out is that of a
linearly ordered set E and the segment AB is a subset of E that can not
be identi�ed with the set theoretical segment

S(A,B) := fX 2 E j A < X < Bg ,
since

M 2 S(A,B).
So we need to represent segment AB as a set of atoms interspersed by
empty spaces.

j}}}}j}}}}j}}}}j}}}}j}}}}j}}}}j

In this model, empty spaces correspond to real numbers.
In this model, empty spaces correspond to real numbers.
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The Dedekind continuum has holes

We expect the Euclidean point points to represent all magnitudes.

On the other hand, there are magnitudes which are not Archimedean and
cannot be represented by points of R.

De�nition
A set of magnitudes G is said to be Archimedean if given two non-null
magnitudes a, b 2 G , there exists n 2N such that

na > b

Between 0 and the set of positive numbers, R has a hole that contradicts
our idea of continuum.
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Non-Archimedean Geometry and Non-Archimedean
Mathematics

Thus, a coherent idea of Euclidean continuum leads us directly to the
Non-Archimedean geometry as was conceived by Giuseppe Veronese at the
end of the nineteenth century.

Levi-Civita developed the geometric ideas of Veronese in the direction of
the analysis (Levi-Civita�s �eld, 1892)
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Non-Archimedean Mathematics and Nonstandard Analysis

A more modern approach to Non-Archimedean mathematics is given by
the Non-Standard Analysis (ANS) (Robinson 1961) and its variants (e.g.
Nelson, 1977, Hrbacek, 2001)
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Nonstandard Analysis and Euclidean numbers

The theory of Euclidean numbers (which was developed for these needs)
is an evolution of the ANS in line with Veronese and Levi-Civita�s spirit
(B., Forti, 2017).

Roughly speaking, an Euclidean number is de�ned as the trans�nite sum
of any arbitrary set of real numbers:

ξ = ∑
k2E

ak
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The third problem: in�nitesimal numbers

All previous arguments lead us to consider in�nitesimals.

The Non-Archimedean Geometry leads us to in�nitesimals.

But even the notion of trans�nite sums leads us to the notion of
in�nitesimal.

In fact, by trans�nite sums you can get not only in�nite but also
in�nitesimal numbers. Consider, for example, the trans�nite sum

1� ∑
k2N+

1
2k

where N+ = f1, 2, 3, ...g is the set of positive natural numbers.
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Third problem: the in�nitesimals

Let us remember the words of Russell:

In�nitesimals as explaining continuity must be regarded as unnecessary,
erroneous, and self-contradictory.

B. Russell, The Principles of Mathematics, (1903).

Strange that Russel took this position, because he also wrote:

Thus mathematics may be de�ned as the subject in which we never know
what we are talking about, nor whether what we are saying is true.

B. Russell, Mysticism and Logic, 1901.
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The existence in�nitesimals

Following the ideas of Russell, the word existence is synonymous with
consistence.

Everything that does not lead to contradiction has the right
of citizenship in the realm of mathematics.

So the correct question is not:

Do in�nitesimals exist?

But rather

It is convenient to use in�nitesimals.

Vieri Benci () In�nity November 26, 2019 35 / 64



The existence in�nitesimals

Following the ideas of Russell, the word existence is synonymous with
consistence. Everything that does not lead to contradiction has the right
of citizenship in the realm of mathematics.

So the correct question is not:

Do in�nitesimals exist?

But rather

It is convenient to use in�nitesimals.

Vieri Benci () In�nity November 26, 2019 35 / 64



The existence in�nitesimals

Following the ideas of Russell, the word existence is synonymous with
consistence. Everything that does not lead to contradiction has the right
of citizenship in the realm of mathematics.

So the correct question is not:

Do in�nitesimals exist?

But rather

It is convenient to use in�nitesimals.

Vieri Benci () In�nity November 26, 2019 35 / 64



The existence in�nitesimals

Following the ideas of Russell, the word existence is synonymous with
consistence. Everything that does not lead to contradiction has the right
of citizenship in the realm of mathematics.

So the correct question is not:

Do in�nitesimals exist?

But rather

It is convenient to use in�nitesimals.

Vieri Benci () In�nity November 26, 2019 35 / 64



First application: rounding up the numbers

Consider the number 13 . Its decimal form is given by

0, 33333.....

i.e., the number 13 can be approximated by the trans�nite sum

1
3
�= ∑

k2N+

3
10k

But these two quantities are exactly the same?
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Rounding a number

If we add the �rst n terms, we have that
n

∑
k=1

3
10k

= 0, 333.....33| {z }
n digits

<
1
3

and therefore for the property 4 of the trans�nite sum it follows that

∑
k2N+

3
10k

<
1
3
.

Thus

∑
k2N+

3
10k

=
1
3
� ε

where ε is a suitable in�nitesimal.

Conclusion

0, 33333..... = st

 
∑

k2N+

3
10k

!
:=

∞

∑
k=1

3
10k
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∑
k2N+

3
10k

<
1
3
.

Thus

∑
k2N+

3
10k

=
1
3
� ε

where ε is a suitable in�nitesimal.

Conclusion

0, 33333..... = st

 
∑

k2N+
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The real numbers

This reasoning leads us to a new de�nition of real number.

De�nition
A real number is the "rounding" (standard part) of a trans�nite sum of
rational numbers (provided this sum is bounded).
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Meaning of the Decimal Representation of Real Number

x = a0, a1a2a3a4....

m

x = st

 
a0 + ∑

k2N+

ak
10k

!

0, 99999....... = 1
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The concept of derivative

f 0(x) = st
�
f (x + ε)� f (x)

ε

�
Example:

D(x2) = st
�
(x + ε)2 � (x)2

ε

�
= st

�
2xε+ ε2

ε

�
= st (2x + ε) = 2x
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Are in�nitesimal necessary?

However, the notion of derivative (as well as the notion of real number), as
it is well known, can also be de�ned without exploiting the in�nitesimals.

Probably, Russell, asserting that the in�nitesimals are unnecessary,
erroneous and self-contradictory, he meant that:

Calculus can be constructed without them

So we are lead to talk about problems that can not be treated outside the
NAM.
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The in�nitesimal in empirical sciences

Let us assume the Galilean point of view:

"Mathematics is the language of nature"

and let us see some phenomena that can not be described (easily) without
using in�nite and in�nitesimal numbers.
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Calculus of Probability
Limitations of Calculus of Probability based on Kolmogorov Axioms

Kolmogorov�s axioms embed the calculus of probability into the measure
theory. So often, it happens the unpleasant fact to encounter sets (events)
E 6= ? having null measure
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Events of null measure

In measure theory sets of null measure are natural;

e. g. a segment has
area equal to 0. But in the Calculus of Probability, events of null
probability are, at least, embarrassing.

In fact, they can not be interpreted as impossible events.

Let�s see an example: suppose a meteorite falls on the ground hitting a
point with probability proportional to the surface. It will fall to a certain
longitude, namely it will hit a certain meridian represented by a set/event
of null probability since the surface of a line is 0.

The sets of null probability represent very rare events. But not impossible.
But all this leads to trouble, not only epistemological, but also technical.
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Technical consequences of all this

Problem
If a meteorite has fallen at the longitude of 11 � E, what is the probability
that it has fallen within a radius of 100 km from Florence.
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Our problem is solved by the conditional probability

P(A j B) = P(A\ B)
P(B)

.

In our case,

A = fa meteorite fell within a radius of 100 km from Florence.g
B = fa meteorite fell to the 11�-E longitudeg

is a null probability event, and therefore, in the Kolmogorovian calculus, it
does not make sense

0
0

is a number prohibited by all laws !!!
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The non Archimedean Probability (NAP)

A NAP-space is de�ned by the pair (Ω,w) where Ω is the event space and

w : Ω! R+

is the function "relative probability".

The ratio
w(x)
w(y)

tells how the event fxg is most likely (more frequent, has more con�dence
etc. ...) than the event fyg.

So, the probability of an event A is de�ned by the following number

P(A) =
∑ω2A w (ω)
∑ω2Ω w (ω)

.
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This is the trivial de�nition of probability when Ω is a �nite set.

When Ω is in�nite all this is just as trivial

provided that we accept the trans�nite sums
and therefore

in�nite and in�nitesimal numbers
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Properties of the non-Archimedean Probability

(NAP0) Domain and range. The events are the subsets of Ω and
the probability is a function

P : P (Ω)! R+

where R is an ordered �eld.

(NAP1) Regularity.

P(A) = 0, A = 0.

(NAP2) Normalization.
P(Ω) = 1.

(NAP3) Additivity. If A and B are events and A\ B = ?, then

P(A[ B) = P(A) + P(B).

There are only three small di¤erences with Kolmogorov�s axioms.
Moreover the "Continuity Axiom" is not here since we have the
trans�nite sum algorithm
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Fair probability

We say that a probability space (Ω,w) de�nes a fair probability if w is
constant.

In this case we have that

P (A) =
n(A)
n(Ω)

.

The probability of an event is given by the ratio between the number of
favorable cases n(A) and the number of all possible cases n(Ω)(the old,
dear and tautological classical de�nition of Laplace).
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De Finetti�s lottery

De Finetti�s lottery is a fair lottery with a denumerable in�nity of tickets.

It represents a model that can not be described by the Kolmogorovian
probability.

In this case, we have that

Ω = N = f0, 1, 2, 3, ...g

Hence

P(A) =
n(A)
n(N)

=
n(A)

ω

For example, if A = f1, 2, 3g

P(A) =
n(A)
n(N)

=
3
ω
� 0.
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Exercise 1

What is the probability that De Finetti�s lottery comes out is an even
number?

The probability P(E) is

P(E) =
n(E)

ω
=

ω+1
2

ω
=
1
2
+

1
2ω
� 1
2
.

This is just the example that De Finetti used to criticize Kolmogorovian�s
probability, unable to model this problem.
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Exercise 2

What is the probability that number 1 will come out, knowing from the
oracle that one of the �rst 10 numbers will come out?

The conditional probability P(f1g j f0, 1, 2, 3, ..., 9g) is given by

P(f1g j f0, 1, 2, 3, ..., 9g) = P(f1g)
P(f0, 1, 2, 3, ..., 9g) =

1
ω
10
ω

=
1
10

Note that this example also suggests how the satellite problem can be
solved:

0
0 is unlawful, but

1
ω
10
ω

is allowed.
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Ultrafunctions

In many circumstances, the notion of function is not su¢ cient to the needs
of a theory and it is necessary to extend it.
Probably the �rst example is the heuristic use of symbolic methods, called
operational calculus (Oliver Heaviside�s Electromagnetic Theory of 1899).
Further, very important steps in this direction have been the introduction
of the weak derivative (Leray) and of the Dirac Delta function.
The theory of Dirac and the theory of weak derivatives where uni�ed by
Schwartz in the beautiful theory of distributions.
The the theory of ultrafunctions is a further step in this direction.
This theory has been introduced to provide generalized solutions to
equations which do not have any solutions not even among the
distributions.
The peculiarity of ultrafunctions is that they are based on a
Non-Archimedean �eld.
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Ultrafunctions

Given an set Ω � RN the set of ultrafunctions V � (Γ) is a E-algebra of
functions

u : Γ! E

where
Ω � Γ � EN
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Main properties of ultrafunctions

Every function
f : Ω! R

can be extended to an ultrafunction

f � : Γ! E

if f 2 C 1, then for every x 2 Ω,

f 0(x) = Df �(x)

where
D : V � (Γ)! V � (Γ)
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Main properties of ultrafunctions

if f is integrable Z
f (x) dx = ∑

x2Γ
f (x) d(x)

where d : Γ! E is an ultrafunction

Every distribution T can be associated to an ultrafunction uT such
that 8ϕ 2 C∞

comp

hT , ϕi = ∑
x2Γ

uT (x)ϕ(x)d(x)
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An elementary problem in electrostatic

Let Ω � R3, (open and bounded), represents a box whose boundary has
electric potential 0.

In Ω, we put a pointwise particle which might represent an electron.

We assume that it is free to move.

We want to know the point P0 which the particle will occupy.
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Natural way to model the problem

Given a point P 2 Ω, consider the Dirichlet problem�
�∆u = δP for x 2 Ω
u(x) = 0 for x 2 ∂Ω

Denote by uP the solution of the above problem and by

Eel (uP ) = hδP , ui �
1
2

Z
jruP j2dx =

1
2

Z
jruP j2dx

its energy.
The point P0 is the point which minimizes the energy:

min
P2Ω

Eel (uP )

Vieri Benci () In�nity November 26, 2019 61 / 64



Natural way to model the problem

Given a point P 2 Ω, consider the Dirichlet problem�
�∆u = δP for x 2 Ω
u(x) = 0 for x 2 ∂Ω

Denote by uP the solution of the above problem and by

Eel (uP ) = hδP , ui �
1
2

Z
jruP j2dx =

1
2

Z
jruP j2dx

its energy.

The point P0 is the point which minimizes the energy:

min
P2Ω

Eel (uP )

Vieri Benci () In�nity November 26, 2019 61 / 64



Natural way to model the problem

Given a point P 2 Ω, consider the Dirichlet problem�
�∆u = δP for x 2 Ω
u(x) = 0 for x 2 ∂Ω

Denote by uP the solution of the above problem and by

Eel (uP ) = hδP , ui �
1
2

Z
jruP j2dx =

1
2

Z
jruP j2dx

its energy.
The point P0 is the point which minimizes the energy:

min
P2Ω

Eel (uP )

Vieri Benci () In�nity November 26, 2019 61 / 64



Natural way to model the problem

Clearly this strategy cannot be applied in a "classical" framework, since,
for every P 2 Ω, Eel (uP ) = +∞.

On the contrary, if we accept to describe with the ultrafunction language,
this problem can be treated in such a simple way.

In fact, for every P 2 Ω, Eel (uP ) is an (in�nite) Euclidean number which
can be estimated easily. The minimum is achieved by any point P 2 ∂Ω.
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Thank you for your attention

A belief in the in�nitely small does not triumph easily. Yet when one
thinks boldly and freely, the initial distrust will soon mellow into a pleasant
certainty.

Paul du Bois-Reymond
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