bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Lucchini, Andrea:
Un approccio asintotico alla teoria dei gruppi finiti
Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana Serie 1 10 (2025), fasc. n.2, p. 187-197, (Italian)
Il full-text sarà disponibile solo dopo 12 mesi dalla pubblicazione.

Sunto

Nella letteratura dedicata allo studio dei gruppi finiti appare sempre più frequentemente la denominazione ``asymptotic group theory''. Questa denominazione, un po' generica, si riferisce a tutte quelle situazioni in cui si considera un invariante numerico associato allo studio dei gruppi finiti e ci si chiede se, escluse le oscillazioni anche notevoli che si osservano nell'insieme dei valori assunti dall'invariante in questione se si considera solo una porzione molto limitata di gruppi finiti, emerge un andamento più regolare e in qualche modo descrivibile se si allarga l'orizzonte a famiglie sempre più grandi. In altri termini si studia l'andamento asintotico dell'invariante in questione. In questa esposizione ci proponiamo di analizzare una serie di situazioni di questo tipo, concentrandoci su esempi che possono essere introdotti e descritti usando solo le nozioni più elementari della teoria dei gruppi.
Referenze Bibliografiche
[1] L. BABAI, W. KANTOR, A. LUBOTZKY, Small-diameter Cayley graphs for finite simple groups, European J. Combin. 10 (1989), no. 6, 507-522. | fulltext (doi) | MR 1022771 | Zbl 0702.05042
[2] H. U. BESCHE, B. EICK, E. O'BRIEN, A millennium project: constructing small groups, Internat. J. Algebra Comput. 12 (2002), no. 5, 623-644. | fulltext (doi) | MR 1935567 | Zbl 1020.20013
[3] A. BOROVIK, L. PYBER, A. SHALEV, Maximal subgroups in finite and profinite groups, Trans. Amer. Math. Soc. 348 (1996), no. 9, 3745-3761. | fulltext (doi) | MR 1360222 | Zbl 0866.20018
[4] R. BRAUER, Representations of finite groups, Lectures on modern mathematics, Vol. I (ed. T. L. Saaty; Wiley, New York, 1963) | MR 178056 | Zbl 0124.26504
[5] P. J. CAMERON, P. M. NEUMANN, D. N. TEAGUE, On the degrees of primitive pennutation groups, Math. Z. 180 (1982) 141-149. | fulltext EuDML | fulltext (doi) | MR 661693 | Zbl 0471.20002
[6] M. CARTWRIGHT, A bound on the number of conjugacy classes of a finite soluble group, J. London Math. Soc. (2) 36 (1987) 229-244. | fulltext (doi) | MR 906145 | Zbl 0597.20016
[7] E. DETOMI, A. LUCCHINI, Crowns and factorization of the probabilistic zeta function of a finite group, J. Algebra 265 (2003), no. 2, 651-668. | fulltext (doi) | MR 1987022 | Zbl 1072.20031
[8] J. DIXON, The probability of generating the symmetric group, Math. Z. 110 (1969), 199-205. | fulltext EuDML | fulltext (doi) | MR 251758 | Zbl 0176.29901
[9] P. ERDÖS, E. G. STRAUS, How abelian is a finite group?, Linear and Multilinear Algebra 3 (1975/76), no. 4, 307-312. | fulltext (doi) | MR 407150 | Zbl 0335.20011
[10] P. ERDÖS, P. TURÁN, On some problems of a statistical group-theory. I, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4 (1965), 175-186. | fulltext (doi) | MR 184994 | Zbl 0137.25602
[11] P. ERDÖS, P. TURÁN, On some problems of a statistical group-theory. II, Acta Math. Acad. Sci. Hungar. 18 (1967), 151-163. | fulltext (doi) | MR 207810 | Zbl 0189.31302
[12] P. ERDÖS, P. TURÁN, On some problems of a statistical group-theory. III, Acta Math. Acad. Sci. Hungar. 18 (1967), 309-320. | fulltext (doi) | MR 215908 | Zbl 0235.20003
[13] P. ERDÖS, P. TURÁN, On some problems of a statistical group-theory. IV, Acta Math. Acad. Sci. Hungar. 19 (1968), 413-435. | fulltext (doi) | MR 232833 | Zbl 0235.20004
[14] P. ERDÖS, P. TURÁN, On some problems of a statistical group theory. V, Period. Math. Hungar. 1 (1971), no. 1, 5-13. | fulltext (doi) | MR 289448 | Zbl 0223.10005
[15] P. ERDÖS, P. TURÁN, On some problems of a statistical group theory. VI, J. Indian Math. Soc. 34 (1970), no. 3-4, 3, 175-192 (1971). | MR 506081 | Zbl 0235.10008
[16] P. ERDÖS, P. TURÁN, On some problems of a statistical group theory. VII, Period. Math. Hungar. 2 (1972), 149-163. | fulltext (doi) | MR 447155 | Zbl 0247.20008
[17] M. FUSARI, P. SPIGA, On the maximum number of subgroups of a finite group, J. Algebra 635 (2023), 486-526. | fulltext (doi) | MR 4636741 | Zbl 1522.20084
[18] V. GONCHAROV, Du domaine de l'analyse combinatoire, (Russian) Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 8 (1944), 3-48. | MR 10922 | Zbl 0063.01685
[19] R. M. GURALNICK, W. M. KANTOR, Probabilistic generation of finite simple groups, J. Algebra 234 (2000), no. 2, 743-792. | fulltext (doi) | MR 1800754 | Zbl 0973.20012
[20] G. HIGMAN, Enumerating p-groups. I: Inequalities, Proc. London Math. Soc. (3) 10 (1960) 24-30. | fulltext (doi) | MR 113948 | Zbl 0093.02603
[21] O. HÖLDER, Die Gruppen der Ordnungen $p^3$, $pq^2$, $pqr$, $p^4$, Math. Ann. 43 (1893), 301-412. | fulltext EuDML | fulltext (doi) | MR 1510814 | Zbl 25.0201.02
[22] D. F. HOLT, Enumerating perfect groups, J. London Math. Soc. (2) 39 (1989), no. 1, 67-78. | fulltext (doi) | MR 989920 | Zbl 0681.20014
[23] A. HULPKE, The perfect groups of order up to two million, Math. Comp. 91 (2022), no. 334, 1007-1017. Minimal sized generating sets of permutation groups | fulltext (doi) | MR 4379985 | Zbl 1551.20004
[24] D. F. HOLT, G. TRACEY, Minimal sized generating sets of permutation groups, arXiv:2404.03952 (2024). | Zbl 1551.20004
[25] W. KANTOR, A. LUBOTZKY, The probability of generating a finite classical group, Geom. Dedicata 36 (1990), no. 1, 67-87. | fulltext (doi) | MR 1065213 | Zbl 0718.20011
[26] M. KASSABOV, B. A. TYBURSKI, J. B. WILSON, Subgroups of simple groups are as diverse as possible, Bull. London Math. Soc. 54 (2022) 213-232. | fulltext (doi) | MR 4403276 | Zbl 1521.20060
[27] T. M. KELLER, Finite groups have even more conjugacy classes, Israel J. Math. 181 (2011), 433-444. | fulltext (doi) | MR 2773051 | Zbl 1261.20030
[28] L. G. KOVÁCS, C. R. LEEDHAM-GREEN, Some normally monomial p-groups of maximal class and large derived length, Quart. J. Math. Oxford Ser. (2) 37 (1986), no. 145, 49-54. | fulltext (doi) | MR 830629
[29] L. G. KOVÁCS, G. ROBINSON, On the number of conjugacy classes of a finite group, J. Algebra 160 (1993), no. 2, 441-460. | fulltext (doi) | MR 1244923
[30] E. LANDAU, Über die Klassenzahl der binren quadratischen Formen von negativer Diskriminante, Math. Ann. 56 (1903), 671-676. | fulltext EuDML | fulltext (doi) | MR 1511192
[31] M. LIEBECK, M. BENJAMIN, A. SHALEV, On conjugacy classes of maximal subgroups of finite simple group, and a related zeta function, Duke Math. J. 128 (2005), no. 3, 541-557. | fulltext (doi) | MR 2145743
[32] M. LIEBECK, L. PYBER, A. SHALEV, On a conjecture of G. E. Wall, J. Algebra 317 (2007), no. 1, 184-197. | fulltext (doi) | MR 2360145
[33] M.W. LIEBECK, A. SHALEV, The probability of generating a finite simple group, Geom. Dedicata 56 (1995), 103-113. | fulltext (doi) | MR 1338320
[34] A. LUBOTZKY, Enumerating boundedly generated finite groups, J. Algebra 238 (2001), no. 1, 194-199. | fulltext (doi) | MR 1822189
[35] A. LUCCHINI, F. MENEGAZZO, M. MORIGI, Asymptotic results for transitive permutation groups, Bull. London Math. Soc. 32 (2000) 191-195. | fulltext (doi) | MR 1734189
[36] A. LUCCHINI, D. THAKKAR, The minimum generating set problem, J. Algebra 640 (2024), 117-128. | fulltext (doi) | MR 4669545
[37] T. LUCZAK, L. PYBER, On random generation of the symmetric group, Combin. Probab. Comput. 2 (1993), 505-512. | fulltext (doi) | MR 1264722
[38] A. MANN, Avinoam Enumerating finite groups and their defining relations, J. Group Theory 1 (1998), no. 1, 59-64. | fulltext (doi) | MR 1490158
[39] E. NETTO, Substitutionentheorie and ihre Anwendungen auf die Algebra, Teubner, Leipzig, 1882, English transl. 1892, second ed., Chelsea, New York, 1964.
[40] P. M. NEUMANN, An enumeration theorem for finite groups, Quart. J. Math. Oxford (2), 20 (1969), 395-401. | fulltext (doi) | MR 254134
[41] C. PRAEGER, J. SAXL, On the orders of primitive permutation groups, Bull. London Math. Soc. 12 (1980), no. 4, 303-307. | fulltext (doi) | MR 576980
[42] L. PYBER, Enumerating finite groups of given order, Ann. of Math. (2) 137 (1993), no. 1, 203-220. | fulltext (doi) | MR 1200081
[43] L. PYBER, How abelian is a finite group? The mathematics of Paul Erdös, I, 372-384, Algorithms Combin., 13, Springer, Berlin, 1997. | fulltext (doi) | MR 1425196
[44] L. PYBER, A. SHALEV, Asymptotic results for primitive permutation groups, J. Algebra 188 (1997), no. 1, 103-124. | fulltext (doi) | MR 1432350
[45] C. M. RONEY-DOUGAL, G. TRACEY, Subgroups of symmetric groups: enumeration and asymptotic properties, arXiv:2503.05416 (2025).
[46] A. SHALEV, Mixing and generation in simple groups, J. Algebra 319 (2008), no. 7, 3075-3086. | fulltext (doi) | MR 2397424
[47] C. SIMS, Enumerating p-groups, Proc. London Math. Soc. (3) 15 (1965), 151-166. | fulltext (doi) | MR 169921
[48] G. E. WALL, Some applications of the Eulerian functions of a finite group, J. Aust. Math. Soc. 2 (1961) 35-59. | MR 125156
[49] J. YOUNG, On the determination of the groups whose order is a power of a prime, Amer. J. Math. 15 (1893), 124-178. | fulltext (doi) | MR 1505615

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali