bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Carlotto, Alessandro:
L'eredità di Gregorio Ricci-Curbastro nella matematica contemporanea
Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana Serie 1 10 (2025), fasc. n.2, p. 107-120, (Italian)
Il full-text sarà disponibile solo dopo 12 mesi dalla pubblicazione.

Sunto

Che cosa resta oggi dell'opera di Gregorio Ricci-Curbastro? In questo articolo proverò a tratteggiare l'impatto delle nozioni da lui introdotte e degli strumenti matematici su cui queste si fondano, con particolare riguardo a vari recenti sviluppi nell'analisi geometrica.
Referenze Bibliografiche
[1] L. AMBROSIO, N. GIGLI, and G. SAVARÉ, Gradient flows in metric spaces and in the space of probability measures, Second, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. | MR 2401600 | Zbl 1145.35001
[2] L. AMBROSIO, N. GIGLI, and G. SAVARÉ, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math. 195 (2014), no. 2, 289-391. | fulltext (doi) | MR 3152751 | Zbl 1312.53056
[3] L. AMBROSIO, N. GIGLI, and G. SAVARÉ, Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J. 163 (2014), no. 7, 1405-1490. | fulltext (doi) | MR 3205729 | Zbl 1304.35310
[4] L. AMBROSIO, N. GIGLI, and G. SAVARÉ, Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab. 43 (2015), no. 1, 339-404. | fulltext (doi) | MR 3298475 | Zbl 1307.49044
[5] G. ANTONELLI, M. POZZETTA, and K. XU, A sharp spectral splitting theorem, preprint, available at arXiv:2412.12707. | Zbl arXiv:2412.12707
[6] G. ANTONELLI and K. XU, New spectral Bishop-Gromov and Bonnet-Myers theorems and applications to isoperimetry, preprint, available at arXiv:2405.08918. | Zbl arXiv:2405.08918
[7] R. BENEDETTI and C. MANTEGAZZA, The Poincaré conjecture and the Ricci flow, Mat. Cult. Soc. Riv. Unione Mat. Ital. (I) 2 (2017), no. 3, 245-290. | fulltext EuDML | MR 3753845 | Zbl 1447.57021
[8] A. L. BESSE, Einstein manifolds, Classics in Mathematics, Springer-Verlag, Berlin, 2008. Reprint of the 1987 edition. | MR 2371700 | Zbl 1147.53001
[9] S. BOCHNER, Vector fields and Ricci curvature, Bull. Amer. Math. Soc. 52 (1946), 776-797. | fulltext (doi) | MR 18022 | Zbl 0060.38301
[10] E. BOMBIERI, E. DE GIORGI, and E. GIUSTI, Minimal cones and the Bernstein problem, Invent. Math. 7 (1969), 243-268. | fulltext EuDML | fulltext (doi) | MR 250205 | Zbl 0183.25901
[11] E. BRUÈ, A. NABER, and D. SEMOLA, Fundamental groups and the Milnor conjecture, Ann. of Math. (2) 201 (2025), no. 1, 225-289. | fulltext (doi) | MR 4848671 | Zbl 07995689
[12] G. CATINO, P. MASTROLIA, and A. RONCORONI, Two rigidity results for stable minimal hypersurfaces, Geom. Funct. Anal. 34 (2024), no. 1, 1-18. | fulltext (doi) | MR 4706440 | Zbl 1543.53058
[13] J. CHEEGER and T. H. COLDING, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997), no. 3, 406-480. | MR 1484888 | Zbl 0902.53034
[14] J. CHEEGER and D. GROMOLL, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geom. 6 (1971/72), 119-128. | MR 303460 | Zbl 0223.53033
[15] J. CHEEGER and A. NABER, Lower bounds on Ricci curvature and quantitative behavior of singular sets, Invent. Math. 191 (2013), no. 2, 321-339. | fulltext (doi) | MR 3010378 | Zbl 1268.53053
[16] A. COGLIATI, Some remarks on the history of Ricci's absolute differential calculus, Arch. Hist. Exact Sci. 78 (2024), 717-761. | fulltext (doi) | MR 4814073 | Zbl 1554.53001
[17] S. COHN-VOSSEN, Kürzeste Wege und Totalkrümmung auf Flächen, Compos. Math. 1 (1935), 69-133. auf Fla | fulltext EuDML | MR 1556908 | Zbl 61.0789.01
[18] T. H. COLDING and A. NABER, Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications, Ann. of Math. (2) 176 (2012), no. 2, 1173-1229. | fulltext (doi) | MR 2950772 | Zbl 1260.53067
[19] D. CORDERO-ERAUSQUIN, R. J. MCCANN, and M. SCHMUCKENSCHLÄGER, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math. 146 (2001), no. 2, 219-257. | fulltext (doi) | MR 1865396 | Zbl 1026.58018
[20] T. FRANKEL, On the fundamental group of a compact minimal submanifold, Ann. of Math. (2) 83 (1966), 68-73. | fulltext (doi) | MR 187183 | Zbl 0189.22401
[21] N. GIGLI, On the differential structure of metric measure spaces and applications, Mem. Amer. Math. Soc. 236 (2015), no. 1113, vi+91. | fulltext (doi) | MR 3381131 | Zbl 1325.53054
[22] N. GIGLI, Nonsmooth differential geometry-an approach tailored for spaces with Ricci curvature bounded from below, Mem. Amer. Math. Soc. 251 (2018), no. 1196, v+161. | fulltext (doi) | MR 3756920 | Zbl 1404.53056
[23] R. S. HAMILTON, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255-306. | MR 664497 | Zbl 0504.53034
[24] T. LEVI-CIVITA, Commemorazione del socio nazionale Prof. G. R.-C., Memorie dell'Accademia dei Lincei 1 (1925), 555-564. | Zbl 52.0031.06
[25] T. LEVI-CIVITA, The absolute differential calculus, Dover Phoenix Editions, Dover Publications, Inc., Mineola, NY, 2005. Calculus of tensors, Translated from the Italian by Marjorie Long, Edited by Enrico Persico, Reprint of the 1926 translation. | MR 2422211 | Zbl 1206.53013
[26] G. LIU, 3-manifolds with nonnegative Ricci curvature, Invent. Math. 193 (2013), no. 2, 367-375. | fulltext (doi) | MR 3090181 | Zbl 1279.53035
[27] J. LOTT and C. VILLANI, Ricci curvature for metric measure spaces via optimal transport, Ann. of Math. (2) 169 (2009), no. 3, 903-991. | fulltext (doi) | MR 2480619 | Zbl 1178.53038
[28] F. C. MARQUES and A. NEVES, Min-max theory and the Willmore conjecture, Ann. of Math. (2) 179 (2014), no. 2, 683-782. | fulltext (doi) | MR 3152944 | Zbl 1297.49079
[29] F. C. MARQUES and A. NEVES, Existence of infinitely many minimal hypersurfaces in positive Ricci curvature, Invent. Math. 209 (2017), no. 2, 577-616. | fulltext (doi) | MR 3674223 | Zbl 1390.53064
[30] L. MAZET, Stable minimal surfaces in $\mathbb{R}^6$, preprint, available at arXiv:2405.14676. | Zbl 1390.53064
[31] J. MILNOR, A note on curvature and fundamental group, J. Differential Geom. 2 (1968), 1-7. | MR 232311 | Zbl 0162.25401
[32] G. PERELMAN, The entropy formula for the Ricci flow and its geometric applications, preprint, available at arXiv:0211159. | Zbl 1130.53001
[33] G. PERELMAN, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, preprint, available at arXiv:0307245. | Zbl 1130.53003
[34] G. PERELMAN, Ricci flow with surgery on three-manifolds, preprint, available at arXiv:0303109. | Zbl 1130.53002
[35] P. PETERSEN and M. WINK, New curvature conditions for the Bochner technique, Invent. Math. 224 (2021), no. 1, 33-54. | fulltext (doi) | MR 4228500 | Zbl 1462.53026
[36] J. T. PITTS, Existence and regularity of minimal surfaces on Riemannian manifolds, Mathematical Notes, vol. 27, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1981. | MR 626027 | Zbl 0462.58003
[37] G. RICCI-CURBASTRO, Direzioni e invarianti principali in una varietà qualunque, Atti del R. Istituto veneto di scienze, lettere ed arti 63 (1904), 1233-1239. | Zbl 35.0145.01
[38] G. RICCI-CURBASTRO, Opere. Vol. I. Note e memorie, Edizioni Cremonese, Rome, 1956. A cura dell'Unione Matematica Italiana e col contributo del Consiglio Nazionale delle Ricerche. | MR 90543 | Zbl 35.0145.01
[39] G. RICCI-CURBASTRO, Opere. Vol. II. Note e memorie: teoria dell'elasticità, Edizioni Cremonese, Rome, 1957. A cura dell'Unione Matematica Italiana e col contributo del Consiglio Nazionale delle Ricerche. | MR 90543 | Zbl 0080.37101
[40] R. SCHOEN and S. T. YAU, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. (2) 110 (1979), no. 1, 127-142. | fulltext (doi) | MR 541332 | Zbl 0431.53051
[41] R. SCHOEN and S. T. YAU, On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys. 65 (1979), no. 1, 45-76. | MR 526976 | Zbl 0405.53045
[42] R. SCHOEN and S. T. YAU, Complete three-dimensional manifolds with positive Ricci curvature and scalar curvature, Seminar on Differential Geometry, 1982, pp. 209-228. | MR 645740 | Zbl 0481.53036
[43] J. SIMONS, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62-105. | fulltext (doi) | MR 233295 | Zbl 0181.49702
[44] K.-T. STURM, On the geometry of metric measure spaces. I, Acta Math. 196 (2006), no. 1, 65-131. | fulltext (doi) | MR 2237206 | Zbl 1105.53035
[45] K.-T. STURM, On the geometry of metric measure spaces. II, Acta Math. 196 (2006), no. 1, 133-177. | fulltext (doi) | MR 2237207 | Zbl 1106.53032
[46] G. TIAN, On Calabi's conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), no. 1, 101-172. | fulltext EuDML | fulltext (doi) | MR 1055713 | Zbl 0716.32019
[47] P. TOPPING, Lectures on the Ricci flow, London Mathematical Society Lecture Note Series, vol. 325, Cambridge University Press, Cambridge, 2006. | fulltext (doi) | MR 2265040 | Zbl 1105.58013
[48] C. VILLANI, Topics in optimal transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003. | fulltext (doi) | MR 1964483 | Zbl 1106.90001
[49] C. VILLANI, Optimal transport, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009. Old and new. | fulltext (doi) | MR 2459454 | Zbl 1156.53003
[50] A. VOSS, Zur Theorie der Transformation quadratischer Differentialausdrücke und der Krümmung höherer Mannig-faltigketien, Mathematische Annalen 16 (1880), 129-178. | fulltext EuDML | fulltext (doi) | MR 1510020 | Zbl 12.0570.02
[51] H. H. WU, The Bochner technique in differential geometry, Math. Rep. 3 (1988), no. 2, i-xii and 289-538. | MR 1079031 | Zbl 0875.58014
[52] K. YANO and S. BOCHNER, Curvature and Betti numbers, Annals of Mathematics Studies, No. 32, Princeton University Press, Princeton, NJ, 1953. | MR 62505 | Zbl 0051.39402
[53] S. T. YAU, Problem section, Seminar on Differential Geometry, 1982, pp. 669-706. | MR 645762 | Zbl 0479.53001

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali