Saccomandi, Giuseppe:
Il Problema Centrale della Teoria dell'Elasticità Non-Lineare Secondo Signorini
Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana Serie 1 9 (2024), fasc. n.1, p. 5-27, (Italian)
pdf (1.29 MB), djvu (546 Kb). | Zbl 07958490
Sunto
Nel 1942 Antonio Signorini, parlando della teoria dell'elasticità non-lineare durante un convegno internazionale presso l'INDAM, dichiara che nell'ambito di questa teoria:
“... prima di ogni calcolo numerico si ha da affrontare un problema estremamente difficile di vera Fisica matematica: la scelta dell'espressione completa del potenziale elastico.”
Signorini pensava a calcoli numerici che potessero indicare la teoria dell'elasticità non-lineare come un modello matematico adeguato a descrivere il comportamento di alcuni materiali. In questa nota si illustra come il problema di Signorini dal 1942 a oggi abbia attratto l'attenzione non solo dei meccanici ma anche di molti matematici. Si illustrano anche da un punto di vista storico i principali risultati ottenuti in questi ottanta anni e si indicano i problemi fisico-matematici che sono ancora aperti..
Referenze Bibliografiche
[1]
ALMANSI, E. (
1911).
Sulle deformazioni finite dei solidi elastici isotropi.
Rendiconti della Reale Accademia dei Lincei: Classe di scienze fisiche, matematiche e naturali (Vol.
20, pp. 705-714). |
Zbl 42.0865.04[2]
ARMANNI, G. (
1915).
Sulle deformazioni finite dei soldi elastici isotropi.
Il Nuovo Cimento (1911-1923),
9(1), 427-447. |
Zbl 45.1037.03[3]
ANSSARI-BENAM, A.,
BUCCHI, A.,
DESTRADE, M., &
SACCOMANDI, G. (
2022).
The Generalised Mooney Space for Modelling the Response of Rubber-Like Materials.
Journal of Elasticity, 1-15. |
fulltext (doi) |
MR 4496447 |
Zbl 1511.74002[5]
ARRUDA, E. M., &
BOYCE, M. C. (
1993).
A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials.
Journal of the Mechanics and Physics of Solids,
41(2), 389-412. |
Zbl 1355.74020[6]
BALL, J. M. (
1976).
Convexity conditions and existence theorems in nonlinear elasticity.
Archive for rational mechanics and Analysis,
63(4), 337-403. |
fulltext (doi) |
MR 475169 |
Zbl 0368.73040[7]
BALL, J. M., &
JAMES, R. D. (
2002).
The Scientific Life and Influence of Clifford Ambrose Truesdell III.
Archive for Rational Mechanics and Analysis,
161(1), 1-26. |
fulltext (doi) |
MR 1883756 |
Zbl 0988.01007[9]
BELLINO, L.,
FLORIO, G.,
GORIELY, A. &
PUGLISI, G. (
2023)
Cooperative melting in double-stranded peptide chains through local mechanical interactions.
J. R. Soc. Interface,
20:2023013020230130. |
Zbl 0871.90018[10]
BLAYSAT, B.,
BALANDRAUD, X.,
GRÉDIAC, M.,
VIVES, E.,
BARRERA, N., &
ZANZOTTO, G. (
2020).
Concurrent tracking of strain and noise bursts at ferroelastic phase fronts.
Communications Materials,
1(1), 3. |
Zbl 07867736[11]
BRILLOUIN, L. (
1925)
Sur les tensions de radiation.
Ann.Phys.,
4:528-86. |
Zbl 51.0648.05[12]
DESTRADE, M., &
SACCOMANDI, G. (
2010).
On the rectilinear shear of compressible and incompressible elastic slabs.
International journal of engineering science,
48(11), 1202-1211. |
fulltext (doi) |
MR 2760979 |
Zbl 1231.74041[13]
DESTRADE, M.,
GILCHRIST, M. D.,
MURPHY, J. G.,
RASHID, B., &
SACCOMANDI, G. (
2015).
Extreme softness of brain matter in simple shear.
International Journal of NonLinear Mechanics,
75, 54-58. |
Zbl 07280065[14]
DESTRADE, M.,
SACCOMANDI, G., &
SGURA, I. (
2017).
Methodical fitting for mathematical models of rubber-like materials.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
473(2198), 20160811. |
Zbl 1404.74016[15]
DESTRADE, M.,
MURPHY, J., &
SACCOMANDI, G. (
2019).
Rivlin's legacy in continuum mechanics and applied mathematics.
Philosophical Transactions of the Royal Society A,
377(2144), 20190090. |
fulltext (doi) |
MR 3947229 |
Zbl 1425.74007[16]
DESTRADE, M.,
DORFMANN, L., &
SACCOMANDI, G. (
2022).
The Ogden model of rubber mechanics: 50 years of impact on nonlinear elasticity.
Philosophical Transactions of the Royal Society A,
380(2234), 20210332. |
MR 4498076 |
Zbl 1326.01052[17]
DE TOMMASI, D.,
PUGLISI, G., &
SACCOMANDI, G. (
2015).
Multiscale mechanics of macromolecular materials with unfolding domains.
Journal of the Mechanics and Physicsof Solids,
78, 154-172. |
fulltext (doi) |
MR 3349456 |
Zbl 1349.74285[18]
ERICKSEN, J. L. (
1954).
Deformations possible in every isotropic, incompressible, perfectly elastic body.
Zeitschrift für angewandte Mathematik und Physik ZAMP,
5(6),466-489. |
fulltext (doi) |
MR 66873 |
Zbl 0059.17509[19]
ERICKSEN, J. L. (
1955).
Deformations possible in every compressible, isotropic, perfectly elastic material.
Journal of Mathematics and Physics,
34(1-4), 126-128. |
fulltext (doi) |
MR 70397 |
Zbl 0064.42105[20]
FICHERA, G. (
1979).
Il contributo italiano alla teoria matematica dell'elasticità.
Rendiconti del Circolo Matematico di Palermo,
28(1), 5-26. |
Zbl 0433.73002[21]
GENT, A.N. (
1996)
A New Constitutive Relation for Rubber.
Rubber Chemistry and Technology: March 1996, Vol.
69, No. 1, pp. 59-61. |
Zbl 1349.74053[22]
GRIOLI, G. (
1962).
Mathematical theory of elastic equilibrium: recent results (
ERG ANGEW MATHE, volume
7).
Springer Science & Business Media. Chicago. |
MR 154463 |
Zbl 0102.17004[23]
HASTINGS, S. P., &
MCLEOD, J. B. (
2011).
Classical methods in ordinary differential equations: with applications to boundary value problems (Vol.
129).
American Mathematical Soc. |
fulltext (doi) |
MR 2865597 |
Zbl 1239.34001[24]
HORGAN, C. O. (
2015).
The remarkable Gent constitutive model for hyperelastic materials.
International Journal of Non-Linear Mechanics,
68, 9-16. |
Zbl 1384.03038[25]
HORGAN, C. O., &
SACCOMANDI, G. (
1999).
Simple torsion of isotropic, hyperelastic, incompressible materials with limiting chain extensibility.
Journal of Elasticity,
56(2), 159-170. |
fulltext (doi) |
MR 1799932 |
Zbl 0982.74011[26]
HORGAN, C. O., &
SACCOMANDI, G. (
2002).
A molecular statistical basis for the Gent constitutive model of rubber elasticity.
Journal of Elasticity,
68(1), 167-176. |
fulltext (doi) |
MR 2024310 |
Zbl 1073.74007[27]
HUMPHREY, J. D. (
1995).
Mechanics of the arterial wall: review and directions.
Critical Reviews in Biomedical Engineering,
23(1-2). |
Zbl 0833.01029[28]
KEARSLEY, E. A. (
1989).
Note: Strain invariants expressed as average stretches.
Journal of Rheology,
33(5), 757-760. |
Zbl 1253.35107[29]
KLEIMAN, S. L. (
1997).
Bertini and his two fundamental theorems. ArXiv preprint alg-geom/9704018. |
MR 1661859 |
Zbl 0926.14001[30]
MANGAN, R.,
DESTRADE, M., &
SACCOMANDI, G. (
2016).
Strain energy function for isotropic non-linear elastic incompressible solids with linear finite strain response in shear and torsion.
Extreme Mechanics Letters,
9, 204-206. |
Zbl 1231.74041[31]
MARCOLONGO, R. (
1907).
Progressi e sviluppo della teoria matematica della elasticità in Italia (1870-1907).
Il Nuovo Cimento (1901-1910),
14(1), 371-393. |
Zbl 38.0070.02[32]
MOONEY, M. (
1940).
A theory of large elastic deformation.
Journal of applied physics,
11(9), 582-592. |
Zbl 66.1021.04[33]
OGDEN, R. W. (
1972).
Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubber like solids.
Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,
326(1567), 565-584. |
Zbl 0257.73034[34]
OGDEN, R. W.,
SACCOMANDI, G., &
SGURA, I. (
2004).
Fitting hyperelastic models to experimental data.
Computational Mechanics,
34, 484-502. |
Zbl 1109.74320[37]
PUCCI, E., &
SACCOMANDI, G. (
2002).
A note on the Gent model for rubber-like materials.
Rubber chemistry and technology,
75(5), 839-852. |
Zbl 1045.34014[38]
PUCCI, E., &
SACCOMANDI, G. (
2013).
The anti-plane shear problem in nonlinear elasticity revisited.
Journal of Elasticity,
113(2), 167-177. |
fulltext (doi) |
MR 3102593 |
Zbl 1345.74017[39]
PUCCI, E.,
RAJAGOPAL, K. R., &
SACCOMANDI, G. (
2015).
On the determination of semi-inverse solutions of nonlinear Cauchy elasticity: The not so simple case of anti-plane shear.
International Journal of Engineering Science,
88, 3-14. |
fulltext (doi) |
MR 3306530 |
Zbl 1423.74136[40]
PUCCI, E.,
SACCOMANDI, G., &
VITOLO, R. (
2016).
Bogus transformations in mechanics of continua.
International Journal of Engineering Science,
99, 13-21. |
fulltext (doi) |
MR 3434387 |
Zbl 1423.74137[41]
PUGLISI, G., &
SACCOMANDI, G. (
2015).
The Gent model for rubber-like materials: an appraisal for an ingenious and simple idea.
International Journal of Non-Linear Mechanics,
68, 17-24. |
Zbl 1349.74285[42]
PUGLISI, G., &
SACCOMANDI, G. (
2016).
Multi-scale modelling of rubber-like materials and soft tissues: an appraisal.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
472(2187), 20160060. |
Zbl 1349.74285[43]
QUINTANILLA, R., &
SACCOMANDI, G. (
2007).
The importance of the compatibility of nonlinear constitutive theories with their linear counterparts.
J. Appl. Mech.,
74(3):455-460 |
fulltext (doi) |
MR 2308820 |
Zbl 1111.74605[44]
RIVLIN, R. S. (
1948).
Large elastic deformations of isotropic materials IV. Further developments of the general theory.
Philosophical transactions of the royal society of London. Series A, Mathematical and physical sciences,
241(835), 379-397. |
fulltext (doi) |
MR 27674 |
Zbl 0031.42602[45]
SACCOMANDI, G. (
2001).
Universal results in finite elasticity,
Nonlinear elasticity: theory and applications, volume
283 of
London Math. Soc. Lecture Note Ser., 97-134. |
fulltext (doi) |
MR 1835110 |
Zbl 0993.74009[47]
SACCOMANDI, G.,
VERGORI, L., &
ZANETTI, E. M. (
2022).
Linear, weakly nonlinear and fully nonlinear models for soft tissues: which ones provide the most reliable estimations of the stiffness? Philosophical Transactions of the Royal Society A,
380(2234), 20210321. |
MR 4498090 |
Zbl 1481.74076[48]
SACCOMANDI, G., &
VIANELLO, M. S. (
2024)
Antonio Signorini and the proto-history of the non-linear theory of elasticity.
Arch. Hist. Exact Sci. (
2024). https://doi.org/10.1007/s00407-024-00328-2. |
fulltext (doi) |
MR 4756156 |
Zbl 1545.01030[50]
SIGNORINI, A. (
1945)
Recenti progressi della teoria delle trasformazioni termoelastiche finite in
Atti del Convegno matematico del 1942 Roma,
Bardi, 153-168. 31, 35-53. |
MR 21838 |
Zbl 0061.42801[52]
SIGNORINI, A. (
1961)
Risultati semplici della teoria non linearizzata dell'Elasticita.
Rendiconti del Seminario Matematico e Fisico di Milano 31, 35-53. |
MR 127586 |
Zbl 0103.17503[53]
TAYLOR, G. I. (
1950)
Seventh International Congress for Applied Mechanics,
1948. (
1950)
Nature. |
Zbl 1001.68750[54]
TRELOAR, L. R. G. (
1949)
Physics of Rubber Elasticity.
OUP. |
Zbl 0347.73042[55]
TRUESDELL, C. (
1956).
Das ungelöste Hauptproblem der endlichen Elastizitätstheorie.
ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik,
36(3-4), 97-103. |
fulltext (doi) |
MR 79892 |
Zbl 0070.41703[56]
WANG, C. C., &
TRUESDELL, C. (
1973).
Introduction to rational elasticity (Vol.
1).
Springer Science & Business Media. |
MR 468442 |
Zbl 0308.73001