bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Frosali, Giovanni and Mariano, Paolo Maria:
Moto di una bicicletta con ruote non circolari
Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana Serie 1 4 (2019), fasc. n.2, p. 145-157, (Italian)
pdf (1.14 MB), djvu (380 Kb). | MR 3965687


Su quale terreno può rotolare senza scivolare una ruota non circolare? Sulla questione, di cui si sono interessate le cronache perché è stata proposta come tema agli esami della Scuola Media Superiore del 2017, richiamiamo alcune proposte presenti in letteratura e formuliamo qualche ulteriore osservazione.
Referenze Bibliografiche
[1] ALI S. (2017), A unified dynamic algorithm for wheeled multibody systems with passive joints and nonholonomic constraints, Multibody Syst. Dyn., 41, 317-346. | fulltext (doi) | MR 3722120 | Zbl 1418.70008
[2] BOYER F., POREZ M., MAUNY J. (2018), Reduced dynamics of the non-holonomic Whipple bicycle, J. Nonlinear Sci., 28, 483-493. | fulltext (doi) | MR 3800252 | Zbl 06909130
[3] CHEN C.-K., CHU T.-D., ZHANG, X.-D. (2019), Modeling and control of an active stabilizing assistant system for a bicycle, Sensors, 19, art. n. 248.
[4] ESCALONA J. L., RECUERO A. M. (2012), A bicycle model for education in multibody dynamics and real-time interactive simulation, Multibody Syst. Dyn., 27, 383-402. | fulltext (doi) | MR 2896891 | Zbl 1344.70012
[5] GETZ N. H., MARSDEN J. E. (1995), Control for an autonomous bicycle, Proc. 1995 IEEE Int. Conf. Robotics Autom., 2, 1397-1402.
[6] GÓRECKI H. (2018), Mathematical model of a bicycle and its stability analysis, Studies in Systems, Decision and Control, 107, 641-663.
[7] HALL L., WAGON S. (1992), Roads and wheels, Math. Mag., 65, 283-301. | fulltext (doi) | MR 1191272 | Zbl 0785.53010
[8] HERLIHY D. V. (2004) Bicycle: The history. New Haven and London:Yale University Press.
[9] KOON W. S., MARSDEN J. E. (1997), The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems, Rep. Math. Phys. , 40, 21-62. | fulltext (doi) | MR 1492413 | Zbl 0929.70009
[10] JEONG H. B., AHN C. K., YOU S. H., SOHN, K. M. (2019), Finite-memory estimation for vehicle roll and road bank angles, IEEE Trans. Ind. Elect. , 66, 5423-5432.
[11] LEVI M. (2017), Schrödinger's equation and “bike tracks”, J. Geom. Phys., 115, 124-130. | fulltext (doi) | MR 3623618 | Zbl 1376.34017
[12] LIMEBEER D. J. N., SHARMA A. (2010), Burst oscillations in the accelerating bicycle, J. Appl. Mech. Trans. ASME, 77, art. n. 061012.
[13] MACDERMID P. W., FINK P. W., MILLER M. C., STANNARD S. (2017), The impact of uphill cycling and bicycle suspension on downhill performance during cross-country mountain biking, J. Sports Sci. , 35, 1355-1363.
[14] MERTEN E. A. (2014), Application of evolutionary structural optimisation; reinventing the (bicycle) wheel, Appl. Mech. Mat. , 553, 830-835.
[15] MEIJAARD J. P., PAPADOPOULOS JIM M., RUINA A., SCHWAB A. L. (2011), History of thoughts about bicycle self-stability., 2011. eCommons@Cornell. | Zbl 1226.70003
[16] MoMath National Museum of Mathematics,
[17] ROBISON I. G. B. (1960), Rockers and rollers, Math. Mag., 33, 139-144. | Zbl 0092.17604
[18] ROZENBLAT G. M. (2016), The controlled motion of a bicycle, J. Appl. Math. Mech., 80, 133-140. | fulltext (doi) | MR 3548936 | Zbl 07141095
[19] SCHWAB A. L., DE LANGE P. D. L., HAPPEE R., MOORE J. K. (2013), Rider control identification in bicycling using lateral force perturbation tests, Proc. Inst. Mech. Eng.s, Part K: J. Multi-body Dyn., 227, 390-406.
[20] SPICER J. B. (2013), Effects of the nonlinear elastic behavior of bicycle chain on transmission efficiency, J. Appl. Mech. Trans. ASME, 80, art. n. 021005.
[21] TABACHNIKOV S. (2017), On the bicycle transformation and the filament equation results and conjectures, J. Geom. Phys., 115, 116-123. | fulltext (doi) | MR 3623617 | Zbl 1375.37159
[22] WILSON D. G. (2004). Bicycling Science. The MIT Press, 3rd edition.
[23] WU Y.-C., CHEN L.-A. (2016), A gear-shifting mechanism with a rotary configuration for applications in a 16-speed bicycle transmission hub, Trans. Canadian Soc. Mech. Eng., 40, 597-606.
[24] ZAGORSKI S. B. (2019), Derivation of a multi-body model of an articulated vehicle, Int. J. Vehicle Perf., 5, 129-164.

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali