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Sommario: Questo articolo offre una panoramica della ricerca sui fondamenti della teoria degli insiems,
discutendo due programmi che mirano a superarve i visultati di indecidibilita, tra i quali Uindipendenza
dellipotesi del continuo. I due programmi sono basati, rispettivamente, sugli Asstomi di Forcing e su una
congettura di Woodin chiamata V = Ultimate-L. Nel presentare queste ricerche introdurremo brevemente le

principali noziont di teoria degli insiema..

Abstract: In this article we review the present situation in the foundations of set theory, discussing two
programs meant to overcome the undecidability results, such as the independence of the continuum hypothesis;
these programs are centered, respectively, on forcing axioms and Woodin’s V = Ultimate-L conjecture. While doing

s0, we briefly introduce the key notions of set theory.

Introduction

On January 6th, 1918, Georg Cantor passed away in
Halle, after a life dedicated to the construection of the
mathematical theory of infinity. After one hundred
years his heritage is very much alive and set theory
has reached a remarkable complexity of techniques
and ideas. Not only set theory proved to be a useful
tool in solving problems from different mathemati-
cal fields, but the conceptual sophistication of its
development remained faithful to the philosophical
importance of its creation.

Rendering infinity a trustful mathematical con-
cept was not an easy task for Cantor [7], who was
opposed on both mathematical and philosophical
grounds by important intellectual figures, like Kro-
necker, who famously stated that “God created the
natural numbers, all else is the work of man” [25],
meaning that human understanding cannot go be-

Accettato: il 10 luglio 2018.

yond the infinity of the collection of all natural
numbers. However the progressive use of infinitary
methods by mathematicians of the caliber of Weier-
strass, Riemann and Dedekind paved the way to
Cantor’s mathematization of the infinite and his
creation of set theory. Then, the true mathematical
coronation happened in 1900 when Hilbert, during
his famous Paris lecture [27], setting the mathema-
tical agenda for the opening century, placed the
solution of Cantor’s Continuum Hypothesis as the
first of his twenty-three problems (*). Throughout
his life Hilbert remained a strong supporter of
Cantor’s ideas, promising, in his famous 1925 paper
On the infinite, that: “No one shall expel us from the
paradise which Cantor has created for us”.

The development of the mathematical theory of
infinity was not only a story of success. In 1901, the
discovery of Russell’s paradox shook at the very
base the entire edifice of mathematics, casting sha-

() For a well detailed history of set theory see [16].
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dows on the coherence and thus the importance of
infinity in mathematics. What became clear after
that discovery was the existing gap between the
rules that govern the infinite and those that govern
the finite. Therefore it became imperative to lay
down the right coherent laws that determine a
correct use of infinity in mathematies.

In 1908 Zermelo proposed a careful axiomatiza-
tion of set theory. Following Hilbert’s enthusiasm in
Cantor’s theory — and in the attempt to justify his
use of the Axiom of Choice AC in the proof of the
Well-ordering Theorem — he introduced a first list of
axioms. After the contributions of Fraenkel and von
Neumann, this list became the standard axiomatiza-
tion of set theory ZFC. By means of ZFC it was
possible to avoid the known paradoxes, but none-
theless many fundamental questions remained
opened for decades; among those Cantor’s Conti-
nuum Hypothesis CH.

The first fundamental step in the attempt to give
a definitive answer to CH was published in 1938,
when Gddel [22] showed its (relative) consistency
with the axioms of ZFC. Almost thirty years later, in
1963, the decidability of CH on the basis of the ZFC-
axioms received a negative answer, when Cohen [9]
established the relative consistency of the failure of
CH with ZFC. Godel and Cohen’s result showed that
CH is undecidable, that is — rephrased with the
proper terminology of mathematical logic — provably
independent with respect to the ZFC-axioms.

Cohen’s fundamental breakthrough, worth a
Fields medal, opened a new era in set theory, both
technically and conceptually. The sophistication of
Cohen’s technique allowed to show the undecidabil-
ity (i.e. independence relative to ZFC) of many
problems remained opened until then. All these
results had the effect of starting a major discussion
on the limits of axiomatization and on the sharpness
of set theoretical concepts, among which that of
infinity.

In this article we review some of the strategies
to overcome the intrinsic limitations of ZFC. With-
out any ambition of completeness (%), we will pre-

() See [56] for a bird-eye view on all approaches that can
be found in the literature.

sent the so-called Godel’s program, its extension in
terms of generic absoluteness for second order
arithmetic, and its ramifications given, respec-
tively, by forcing axioms, and by Woodin’s pro-
gram centered around the construction of the so-
called Ultimate-L. Before that, we briefly introduce
the main definitions and ideas which guided the
development of set theory during the last one and a
half century.

The paper is organized as follows: §1 introduces
the basic set theoretic concepts, §2 deals with Can-
tor’s notion of cardinality and of well-order, §3 deals
with the concept of undecidability in mathematics,
§4 presents the strategy of Godel to overcome the
independence phenomenon in set theory, §5 gives a
brief account of the implications of large cardinal
axioms on second order arithmetic, §6 briefly dis-
cusses the two research programs meant to over-
come the undecidability of CH.

There is a certain overlap between §1 and §2 of
the present paper and §2, §3, and §4 of Andretta’s
article in this issue. The reader of both articles can
skim through these sections in either of them or
instead take advantage of the two distinct presenta-
tions of these topics.

We tried to make (most of) the paper accessible
to readers with a good training in mathematics at
the level of a bachelor degree in mathematics. We
also tried to keep the prerequisites in logic and in
set theory to a minimum. It is our hope that this is
the case for the content of §1, §2, §3 (with the
exception of §3.3), §4. Nonetheless we are aware
that those who have some background in logic
and/or set theory will greatly benefit of it during
their reading. §5 and §6 will require a steadily
increasing familiarity with delicate and technical
set theoretic notions (even though we hope that
this does not preclude the non-expert reader to
get the main ideas presented in §5). On the other
hand §3.3 demands a big effort on the reader, and
has the aim of presenting measurable functions as
the non-standard instantiation of the concept of
real number given by a certain kind of forcing
notion. Familiarity with the basics of first order
logic will simplify this effort; however the reader
may safely skip all of §3.3 without compromising
the comprehension of the subsequent parts of the

paper.
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1. — The universe of all sets

In the rapid development of set theory following
the initial astonishing results of Cantor, it became
clear that not only this theory could give a math-
ematically precise formulation and justification of
the infinitary methods already widespread in al-
gebra and analysis, but it could also offer a common
framework where to develop all known mathe-
matics [42]. Indeed, the simple and abstract lan-
guage of set theory is so versatile that almost every
mathematical structure can be therein defined and
proved to exist. This peculiar character of set
theory is what is normally called the foundational
role of set theory, or, in less ontological terms, its
unversality.

1.1 — Russell’s paradox

The process that led to the formalization of set
theory is full of trials and errors, with successive
efforts attempting to caliber the right expressive
power of the theory.

An uncritical attitude towards the laws of logic,
at the end of the XIX century, induced Frege and
Dedekind, among many others, to believe that it
was always possible to define a set in terms of a
property shared by all its members; that is, given
any well defined property ¢(x), it is always possible
to form the set {x: ¢(x)} which is the family of
elements x satisfying the property ¢(x). This led
Frege to propose a foundations of mathematics
entirely based on logie. Unfortunately, this ap-
proach was shown to be inconsistent by Russell,
in 1901. Russell’s (in)famous paradox, states that
the set of all objects that do not belong to them-
selves — which is itself a well defined property —
cannot exist. This is easily shown by the following
argument. Define R ={x:x¢ x} (where x €y
stands for “x is an element of %”). Assume R is a
set, then either R € Ror R ¢ R. If R € R, it satis-
fiesits defining property, i.e. it is a set x which does
not belong to itself, yielding that R¢ R. By a
similar argument we can also infer that if R ¢ R,
then R € R. Thus we get that R € R if and only if
R ¢ R: a contradiction.

1.2 — The ZFC-axioms.

In order to amend set theory from its paradoxical
consequences, Zermelo decided to collect a list of
axioms strong enough to develop the results ob-
tained by Cantor, but weak enough to avoid any
paradox [64]. Zermelo’s list was later improved by
the contributions of Fraenkel and von Neumann to
form the axiom system ZFC.

The basic idea guiding Zermelo’s list of axioms is
the following: we need existence axioms asserting
that certain sets, like the natural numbers N, exist,
and construction principles able to build new sets
from previously given ones; in order, for example, to
construct R from N. On the other hand, Zermelo’s
list of axioms needs to be weak enough to avoid
R = {x : p(x)} being a set; otherwise Russell’s para-
dox would apply, and set theory, as formalized by
these axioms, would be inconsistent (*). The axioms
of ZFC are the following A).

Extensionality: Two sets are equal if and only if
they have the same elements.

This occurs regardless of how the sets are de-
fined, or of the order by which their elements are
presented. Therefore we get, for example, the
following equalities:

{x:xe€Zanda®—3x+2=0}={1,2} = {2,1}.

The above equations show that two sets defined in
terms of two different properties (namely being
an integer solution of the equation #* — 3x +2 = 0
or being equal to 1 or 2) are the same, simply be-
cause they have the same elements (moreover the
listing of the elements is irrelevant to decide an
equality, as {1,2} = {2,1}).

Empty-set: There exists a set with no elements.

This axiom grants that the universe of sets con-
tains something. The empty set is unique: by

() A nice reference text containing the fundamental
results of set theory is (among many others) [28].

(*) Modulo the unavoidable inaccuracies due to the fact
that we sidestep (for lack of space) the use of first order logic
in our presentation of formal systems.
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extensionality there cannot be two distinct sets
with no element. It is customary to denote with ()
the empty-set.

Pairing axiom: If X, Y are sets, sois {X,Y}.

Union axiom: If X is a set, so is
UX ={z: 2 €y for some y € X}.

The pairing axom and the union axiom are basic
construction principles already sufficient to con-
struct several important sets of finite size start-
ing from the empty set. Notice that the usual
binary union X UY can be defined as |J{X, Y}.

Separation: If X is a set and ¢(x) is a well-defined
property () {x € X : ¢(x)} is also a set.

Even though quite similar to Frege’s compre-
hension principle (asserting that {x : ¢(x)} is a set
for every property ¢(x)), Separation imposes a
fundamental restriction on where the elements of
the new set come from: namely they are elements
of a set X. Intuitively this means that, being a set,
X transfers to its subsets a label of trustfulness for
non-contradictory objects. Indeed Separation is
weak enough to avoid any proof of Russell’s
paradox from the ZFC-axioms.

Power set: If X is a set then P(X) ={Y : Y C X}
(the set of all subsets of X) is also a set.

Existence of the natural numbers: There exists an
infinite set (°).

This axiom is necessary: it is possible to construct
a universe of sets in which all sets are finite (i.e.
this axiom does not hold in the model), while all
the other axioms of ZFC are satisfied (see §5.1).

(®) It is rather delicate to define properly what it means
for a property to be well defined: the precise definition is
that of being expressible in the first order language with a
binary relation symbol for the e-relation; see [34] for more
details. We omit any further discussion of this matter here.

(®) More details on the correct formulation of this axiom
will be given in section 2.3.

Choice (AC): If {X; : 1 € I} is a non-empty set and
each X; is non-empty for all © € I, we also have
that [l;c; Xi is mon-empty (i.e. there is some
fiI—=U{Xi:iel} such that f(i) € X; for all
1el).

If 1 is finite one does not need AC to find an ele-
ment in the product [ [;.; X;. But assume for ex-
ample « is an accumulation point of some set
A C R: how do we select inside A a sequence
{x,, : m € N} converging to x? AC shows that this
is possible by choosing an element of the product
[Lien@A ﬁBi%l(ac)) (the latter is the ball in & of

radius “_—1). There are sets A C R having accu-

mulation points for which we cannot prove that
such a sequence can be found without appealing
to AC.

Replacement: If X is a set and F'(x,y) is a functional
property (i.e. a property for which one can prove
that for all sets x there is only one set y such that
F(x,y) holds), then FIX|={y: Ix € XF(x,y)}
(the pointwise tmage of X by F) is also a set.

Foundation: The binary relation € is well-founded,
i.e. there is no infinite chain {x, : n € N} such
that x,.1 € , for all n.

Foundation and Replacement come from the con-
tributions of, respectively, von Neumann and Fraen-
kel, the others are modern formulations of the
original axioms of Zermelo. Foundation and Repla-
cement are useful in dealing with large classes of
structures. They are extremely useful to develop the
structural theory of the universe of sets and replace-
ment is necessary to formalize properly category
theory, or any mathematical field where one deals
with a large family of mathematical objects at the
same time (groups, rings, etc.).

It should be noted that almost all of mathe-
matics can be developed by means of Zermelo’s
axioms. For example the reals, the complex num-
bers, the LP-spaces, and many other objects from
number theory, differential and algebraic geome-
try, functional analysis, general topology, ete. can
be proved to exist on the basis of the ZFC-axioms.
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Moreover almost all the relevant theorems about
these structures are logical consequences of these
principles.

The picture of the universe of sets offered by
Zermelo’s axioms has a conceptual cost: that of intro-
ducing collection of sets which are not themselves
sets. Indeed, the collection of all sets V' = {x : x = «x}
isnot a set, otherwise R = {x € V : & ¢ x} would also
be one, by the separation axiom applied to V" and the
property x ¢ x, leading thus to Russell’s paradox.
This conceptual cost is exactly the leverage that
permits to avoid all known paradoxes, like Russell’s.
We only need to accept that there are collections of
sets that are too big to be considered sets (such as
R = {x € V : x ¢ x}); these collections are normally
called proper classes. Some care must be paid in
handling correctly the distinctions between proper
classes and sets. We will come back on this topic in
section 2.7.

2. — Ordinals, cardinals, and the structure
of the universe of sets

In 1895 Cantor published a first summary of the
most important results of set theory [8]. There he
explained the origin of the two main concepts of his
theory: that of ordinal number and that of cardinal
number.

When we conceive a collection of mathematical
objects, we may abstract from all of their peculiar
properties except for the ordering by which they
present themselves to our mind; the “well-order” by
which these objects are organized gives raise to the
concept of ordinal type of a collection; we can even
abstract from the well-order of a collection and
retain only its “quantity”. This second notion gives
rise to the concept of cardinal number.

2.1 — Natural numbers

Let us first deal with the formalization of the con-
cept of natural number in set theory. Natural num-
bers are at the same time the simplest examples of
ordinals and cardinals, hence it is “natural” to start
our analysis of Cantor’s notion of cardinality and
well-orders briefly describing how these numbers
can be represented by sets.

It is natural to define O to be the empty-set, the
latter being the unique set with zero elements.
Among the variety of sets containing just one ele-
ment {0} = {#} = {0, 0} can be defined appealing to
the pairing axiom, the extensionality axiom, and the
fact that we know what is 0. Let us call this set 1.
Similarly we can define 2 = {0, 1} taking the set
whose elements are 0 and 1, and observing that it
has exactly two elements; proceeding so on so forth,
we can define the sets n = {0,...,n — 1} consisting
of all its preceding numbers, and observe that it has
exactly n-many elements. To define these sets we
just need to appeal to the axiom of extensionality (to
grant their uniqueness), the empty-set axiom (to
grant existence of 0), and to the pairing and union
axioms, since for all n:

n=n—-1uU{n—-1}=uU{n-1,{n-1}}.

The current ZFC-formulation of the axiom of infinity
states that there exists a set containing all the n,
more precisely it states that:

There exists a set X such that ) € X, and ifz € X
alsozU{z} € X.

The set of natural number N can be defined as the
subset of X whose elements are exactly all the sets n.
Itis abit delicate to show by means of the separation
axiom, the power-set axiom, and the axiom of infinity
that N exists. We skip the details.

Similarly one can prove on the basis of the ZFC-
axioms that the rationals, the integers, the reals, the
complex numbers ete. are (representable by) sets.
The key point is that the usual textbooks of algebra
or calculus build these objects starting from the
natural numbers — which we know to be (represen-
table by) a set — and employ at various stages
construction principles which are easily derivable
from the ZFC-axioms. We will come back to this
point later on in section 2.6. For the moment we skip
the details and assume that all the above objects are
elements of the universe of sets.

2.2 — Cardinal numbers

Cardinal numbers represent the cornerstone of
Cantor’s theory of infinity. In modern notation,
given two sets X, Y, we write X =~ Y whenever there
is a bijection f : X — Y. This defines an equivalence
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relation on the collection of all sets. It is customary
to denote the cardinality of a set X (i.e. its equiva-
lence class according to ~) by |X|. Dealing with the
relation = is rather delicate, since it can be proved
that |X| is not a set for any non-empty set X;
otherwise we would run into a paradox. Nonethe-
less, using the theory of ordinal numbers we will
sketch in 2.3, one can select a canonical representa-
tive of each equivalence class |X|, its cardinality, or
its cardinal number.

Moreover we have already introduced canonical
representatives of finite sets i.e. the sets n, which we
can use to define which are the finite sets: a set X is
finite if it is in bijection with some n; infinite if it is
not finite. Other important classes are also the
countable sets, i.e. those in bijection with [N, which
define the cardinality class of I\, and the uncounta-
ble sets, which are neither finite, nor countable.

Cantor defines the notions of sum, product, and
exponentiation of arbitrary cardinalities as follows:

[X|+ Y] = [X x {0} uY x {1}],
X|- Y] = X x ¥,
IX|" = | XY |where XY = {f: f isafunctionfrom ¥ to X}.

These rules are well defined and generalize to
cardinalities the usual arithmetical operations on
natural numbers. Indeed n x m is in bijection with
k, with k =n-m, n™ - ie. the set of functions
f :m —n —is in bijection with I, with [ = »", and
mx {0}un x {1} is in bijection with j, with
j=m+n.

It is natural to define an order relation between
cardinalities, saying that X is not larger than Y
(IX] <Y, if there is an injective function
f: X — Y. As before this property holds for finite
sets, since for example the set {ay,...,a,_1} can be
injected into {by, ..., by—1} if and only if » < m. An
important property of this order relation, now bear-
ing the name of Cantor-Schroder-Bernstein Theo-

(") One direction of this equivalence is trivial since if
f:X — Y is a bijection then f,f~! are both injections. On
the other hand if we know that f: X - Y and 2:Y — X
are injections, it is not at all clear how to find a bijective
g : X — Y. Consider for example the continuous injection

f:10;1] — (0;1) given by xH%—O—;—C, let 2: (0;1) — [0;1]

rem (CSB in what follows), states that |X| = |Y] if
and only if |X| < Y] < |X| ().

So far there seems to be a complete accordance
between the laws of set theory and those of arith-
metics, but unexpected surprises appear when we
consider the case of infinite cardinalities. Indeed,
one of the first results of Cantor shows that
X+ Y| = |X]|- Y| = max{|X|,|Y|}, whenever at
least one, among X and Y, is infinite. These first
results came together with the discovery of unex-
pected (and in some cases astonishing) equalities
and differences between cardinalities of familiar
infinite sets. To the first kind belongs the fact that
|Q| = |N], or even that there are as many algebraic
numbers (i.e. solutions of polynomials in one vari-
able with integer coefficients) as natural numbers.

In the case of rational and natural numbers it is
clear that |N| < |Q], as witnessed by the identity
function. On the other hand |Q| < |IN| can be proved
as follows: First of all |Q| < |7Z x N|, since Q can be
identified with the subset of 7 x I\ given by pairs
(n, m), with n, m coprimes and m > 0. It is also easy
to define a bijection of 7 x N with N x IN; for
example there is a bijection ¢ between 7 and N
given by ¢:m— —2n if n <0 and ¢:n—2n+1
otherwise. Then ¢ x Id: (n,m)— (¢(n),m) wit-
nesses |7 x N| = |N x N|

Finally the map (m,n)+— 2"+! . 3"*1 is an injec-
tion witnessing that |IN x IN| < |N|. Composing all
these (in)equalities we obtain:

0] < 7 x N| = [N x N| < |NJ;

we conclude that |Q| = |N| by CSB.

With the same line of reasoning, using a smarter
codification of all n-tuples of natural numbers with
natural numbers, it is possible to define an injective
map from the algebraic numbers into N. By CSB we
conclude that the two sets are in bijection.

The first true coronation of the theory of cardinal
numbers is, however, the discovery of the existence of

be the inclusion map. These maps witness that
[[0;1]] <[(0;1)] <[0;1]]. On the other hand any bijection
between [0;1] and (0;1) cannot be continuous, since the
two spaces are not homeomorphie, while the injections
defined above are both continuous. But CSB entails that
a (non-continuous) bijection can be found.
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infinitely many infinite cardinalities. One of Cantor’s
most celebrated theorem states that | X| < |P(X)| for
all sets X. Its proof is obtained by a smart tweak of
Russell’s paradox: suppose, by way of contradiction,
that there is a bijective function f : P(X) — X and
defineY = {z € X : 2 ¢f1(2)}. Now, being Y C X,
we can apply f toit and ask whether f(Y) € Y. If this
were the case, then, by definition of Y, we would
have f(Y) ¢ f~1(f(Y)) = Y. On the other hand if
f(Y)¢Y, by a similar argument, we can infer
f(Y) €Y, thus showing that f(Y) € Y if and only if
f(Y) ¢ Y, acontradiction. The map x+ {x} defines
an injection of X into P(X), hence |X| < |P(X)|.
Moreover, by iterating the powerset operation, we
get larger and larger infinite cardinalities. It can
also be shown that |P(N)| = |R|. Hence by Cantor’s
Theorem |N| < |P(N)| = |R].

We now would like to give a better picture of how
cardinals are organized by the order relation
|X| < |Y|. Indeed, with the information at disposal
so far it is not even clear that the order | X| < |Y] is
linear. It is time to introduce the second key notion
of set theory.

2.3 — Ordinal numbers

(X, <) is a well-order if < is a linear order on X
such that any non-empty subset of X has a least
element according to <. For example, every finite
linear order is a well-order, and the natural
numbers with the usual order (i.e. the structure
(N, <)) is a well-order (®). But there are a huge
quantity of infinite well-orders which are not
isomorphic to (IN,<): A first example is given
by (N x N, < ex) where (m,n) <iex (p,q) if
either (*) m < p or (m = p and n < ¢). This well-
order is not isomorphie to (IN, <) since (1,0) is
bigger than (0,m), for all m € .

A more sophisticated example is given by the linear
order (N[x], <), where p(x)=> "1 a;x' <> 1 biw'=q(x)

(®) The natural numbers can be characterized as the
unique infinite well-order whose upward bounded subsets
have a maximum. This provides an equivalent formulation of
the induction principle on IN.

* <lex is the usual lexicographic order on N2,

if either (n <m) or, (n =m and a; < b; for the
largest 7 such that a; # b;). Notice that this order
has the monomial 2™ above all polynomials of degree
less than n, and (IN x N, <jx) can be identified
inside (N[x], <) as the set of polynomials of degree
at most 1, i.e. the predecessors of x2.

A fundamental result on well-orders, due to
Zermelo, is the Well-Ordering Theorem, which is
actually an equivalent formulation of AC. It states
that for every non-empty set X there is at least one
binary relation < on X such that (X, <) is a well-
order.

A second fundamental result on well-orders is
due to von Neumann (and Mostowski). To formulate
it we need to introduce the notion of transitive set: a
set X is transitive if for alla € X, a C X. We say that
a set o is a (von Neumann) ordinal if it is transitive
and such that («, €) is a linear order. We invite the
reader to check that the sets 0,1,...,4,... are
transitive. It can be proved that every n is a transi-
tive set (and other examples of interesting transitive
sets will come in due course). von Neumann (follow-
ing a more general result by Mostowski) proves that
for each well-order (X, <) there is a unique von
Neumann ordinal o and a unique order preserving
bijection f : X — o. von Neumann ordinals provide
canonical representatives of the isomorphism types
X of awell-order (X, <), i.e. the unique transitive set
o such that (o, €) belongs to X. For example von
Neumann theorem entails that any finite linear
order is isomorphic to (n,€), for some unique n
and the isomorphism is unique. However the full
strength of von Neumann'’s theorem shows up when
we have to deal with well orders more complicated
than \N. For example we get that there are unique
ordinals o, f such that (N x N, <j¢y) is isomorphic to
(o, €) and (N]x], <) is isomorphic to (f, €). More-
over one can check that o € f holds as well.

A third fundamental result on well orders, due to
Cantor, asserts that for any two well orders (X, <x)
(Y,<y) there is a trichotomy: either there is a
unique order preserving bijection f: X — Y, ie.
(Y, <y) is isomorphie to (X, <x); or there is some
a €Y and a unique order preserving f:X — Y
such that f[X]={beY :b <y a}, that is (X, <x)
is isomorphic to an initial segment of (Y, <y); or
conversely (Y,<y) is uniquely isomorphic to an
initial segment of (X, <x).
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One can use Cantor’s trichotomy theorem, von
Neumann’s theorem and some extra work to show
that for any two von Neumann ordinals o, 8, either
o € ff(when (o, €) is isomorphic to an initial segment
of (#,€)), or f€a, or « =pf. Therefore one can
compare the isomorphism types of two well-orders
simply checking whether the unique ordinals in
these isomorphism types belong to one another or
are equal.

For ordinals o, , we will write « < f to denote
that o € § or o = . The class Ord, given by von
Neumann ordinals, is itsef well ordered by e: if
C C Ord is non-empty, take ff € C. If C' N f is empty
then f = min C; otherwise C N f C f is non-empty,
hence —since (5, <) is a well-order— it has an e-
minimal element o, giving that « = min(C).

2.4 — Many infinities, but which?

Remark that for ordinals o, f, o« € f entails that
o C f (by transitivity of f8), which trivially gives that
|| < |B|. von Neumann’s theorem applied to the
well-orders (NN, <), (N x N, <), and (Nx], <)
gives us three distinct ordinals: w # o # . By Can-
tor’s trichotomy we also have that w € o € . On the
other hand it is not hard to check that |w| = |«| = |f];
it also holds that |w| > |n| for all n € w; actually w is
the least ordinal (according to €) in the cardinality
class of countable sets.

More generally by means of Zermelo’s Well-
ordering Theorem one gets that Ord N | X| is a non-
empty subset of Ord for any non-empty cardinality
class | X|. Hence each cardinality class | X | must have
an €-minimal ordinal, which we consider the cano-
nical representative of | X]|.

We are now in the position to define the subclass
Card of Ord, given by these canonical representatives
of all cardinalities (*°):

Card = {x : k is the €-least ordinal in|x|}.

(1% For those familiar with first order logic the definition
of Card is slightly problematic: it uses the collection of
proper classes given by cardinalities to define a new proper
class; it is not transparent that with such a definition Card is
the extension of a well-defined property according to the
first order formalization of ZFC. With some work (which we
omit) it can be shown that this is indeed the case.

By the trichotomy of ordinals, from 1 # x € Card we
get that either A € k or x € . Assuming the first,
since « is transitive, we get that 1 C «, hence || < |x]|.
But since 4 ¢ |«|, being two different cardinals, we
conclude that |/| < |«|. Therefore we have just proved
the following.

For x # 4 € Card, || < |x| if and only if 1 € .

Hence the e-relation restricted to Card well-orders
its elements according to their cardinality, more-
over the sets n are the canonical representatives in
Card of the cardinality classes of finite sets. It is
customary to denote by X, the a-th infinite element
of Card according to its well-order given by € and to
confuse a cardinality class |X| with the unique
N, € |X|. With this notation |o| = Ny, ®; is the least
uncountable cardinal, Ny the second uncountable
cardinal, ete.

2.5 — Cantor’s continuum problem

We have a very simple table of sum and multiplica-
tion for infinite cardinalities, as well as a nice order-
ing between cardinalities (it is a proper class that
can be well ordered by a well order of length Ord). It
is now time to address the table of the exponential
map x — 2,

Cantor’s continuum hypothesis CH can be for-
mulated without any reference to well-orders as
follows:

(CHp) There is no set X such that |[N| < |X| < |P(N)].

If we take into account the general theory of
cardinalities so far presented, and recall that
2% = |P(N)| = |R|, we can rephrase CH as

(CHy) 2% = .

The attempt to verify or falsify CH represents a
common trait of a large portion of the history of set
theory, and it is indeed the attempt of finding a
satisfactory solution to the question of how many
real numbers there are, that motivates and explains
the two programs we will describe at the end of this

paper.
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2.6 — The cumulative hierarchy

To proceed further, it is in our eyes advisable to step
back a bit and outline Zermelo’s work on the struc-
ture of the universe of sets.

In order to secure the consistency of ZFC, in
1930 Zermelo [65] was able to give a precise
description of the structure of the universe of sets
according to the ZFC-axioms. The simplest ana-
logy with Zermelo’s work comes from a comparison
of ZFC with the Peano’s axiomatization of natural
numbers. N can be intuitively described as the
structure obtained iterating the successor opera-
tor n—mn+1 starting from the element 0 and
generating one after the other the natural num-
bers, 0, 1, 2, 3,...,n, n+1,.... Peano’s axioms
describe N by giving details on the properties of
the successor operation and of its interaction with
the operations of sum and multiplication. Moreover
the structure (NN, +,-,0,1, =) is the “standard mod-
el” of Peano axioms for arithmetics (*1).

Zermelo’s work took the same approach with
the ambition to give a clear intuitive picture of the
mathematical structure whose elements are all and
only sets: in modern terminology the universe of
all sets.

As N can be obtained iterating the successor
operator n— mn + 1, a similar iterative conception
was shown to be essential for the notion of set.
Zermelo showed that the axioms of ZFC grant that
the universe of all sets is stratified in a cumulative
hierarchy, where one now uses the power-set opera-
tion to generate the new elements of the hierarchy.
In this case we can say that the ZFC-axioms capture
the key properties of the power-set operation de-
seribing its interactions with other simpler set-con-
struction principles.

To describe Zermelo’s stratification of the uni-
verse of sets it is useful to refresh some piece of
notation. The symbol w indicates the well-order of
N, while @ + 7 is the well-order obtained putting a
(the) linear order of nm-elements on top of the
natural numbers. Now we can stratify the universe

(') See §3.1 for a brief description of the notion of model
of a family of axioms.

of sets as follows:

)
Va) = P(P(V1)) =
03, {03}, {0.{0}}} (#3),

Vo = UneN Vs
T/(U+1 - P(Va)),
Vo2 = P(P(Vo)),

By iterating transfinitely this operation for all or-
dinals a, one can define V, the collection of all sets we
can produce in «-many steps (*2).

In the structure (V,,1,€,=) one can already
develop number theory, most of analysis, and great
parts of areas of mathematics like differential geo-
metry; while functional analysis deals mainly with
objects belonging to (or at least subsets of) V9.

Recalling that Ord is the collection of all von
Neumann ordinals, the universe of all sets V is
provably given by the union of all the V,, i.e.:

V= U V,.

0e0rd

2.7 — On the distinction between sets and proper
classes

Some practical hints to handle correctly sets and
proper classes are the following:

e Almost all interesting mathematical entities are
(represented by) sets, and all elements of a set
are themselves sets.

(*?) Tt can be proved that V, is transitive for all o, but not
linearly orderd by € for n > 2; we invite the reader to check
that this is the case for the first V,,s.
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e There are interesting collections of sets which are
not sets. These families of sets are named proper
classes. The largestis V = {x : ® = «} (where the
variable & ranges over all sets), the proper class
consisting of all sets. Other proper classes are:
the family of all groups, the family of all topolo-
gical spaces, Card, Ord, and many others.

e Any set X 1is contained in V, since
X ={xeV:xecX}isacollection of sets. The
key distinction between a set and a proper class
is that a set X always belong to a proper class, as
X € V, while proper classes are exactly those
collections of sets which are “too large” to
belong to V, under pain of running into parado-
xes. The term class denotes either a set or a
proper class, i.e. a collection of sets.

e One can handle classes much in the same way one
handles sets. For example the union | J;.; C; of an
indexed family of classes is itself a class (the
index set I can be either a set or a proper class).
On the other hand if C is a proper class its
powerset P(C) does not exist: if P(C) were a
proper class, its elements would be sets, but C is
an element of P(C), and C is not a set, being a
proper class.

It takes some practice to understand which classes
cannot be sets, which set-theoretic operations (such
as unions and intersections) can be safely performed
on a (family of) class(es), yielding perfectly well-
defined classes, and which set-theoretic operations
are not valid for classes (as the power-set operation)
for they lead to the construction of paradoxical
entities. In any case nowadays the paradoxes caused
by misconceptions on sets and proper classes are not
anymore a source of concerns, as it had been for
Cantor and his contemporaries.

3. - The phenomenon of independence

Once a sufficiently clear picture of the universe of
sets was available, the belief in the possibility to
find a definitive answer to the most pressing set
theoretical questions became stronger. Put other-
wise, after Zermelo’s definition of V, most mathe-
maticians held the view that it was only a matter of
time (and hard work) to find the solution of ques-
tions like CH.

3.1 — The independence of CH

For many decades Cantor and many others at-
tempted to prove or disprove CH. But it took the
genius of both Godel and Cohen to show that all
these attempts were doomed to fail, at least in the
context of the ZFC-axioms. Indeed, in two subse-
quent and complementary steps, Godel [22] in 1938,
and Cohen [9] in 1963, showed that, just on the basis
of the ZFC-axioms, it is impossible, respectively, to
prove the negation of CH, or to prove CH.

We briefly introduce the notion of formal inde-
pendence, a necessary step in order to grasp the
content of Godel and Cohen’s result.

Let I" be a bunch of mathematical assertions, for
example the group axioms. These assertions may, or
may not, correctly describe the properties of a given
mathematical structure M. In case the statements
in I assert true facts about M, we say that M is a
model of T, or that T is valid in (or satisfied by) M,
and write M T

The precise definitions of these concepts would
need a lenghty detour in first order logic; one we will
not take for the sake of brevity. Instead, let us
exemplify these notions with an example.

The group axioms are the following statements:

VaVyVz (x «y) x 2 = x * (y * 2),

Vy (exy=yxe=y),
VyFe (zxy =y*z=e).

A group M = (G, -,1,=) is amodel of the axioms for
group theory: when we interpret x as the multi-
plication operation - of G, and e as the neutral
element 1 of G, the three formal expressions above
are naturally recognized as assertions stating that
the operation - and the element 1 satisfy the laws
making (G, -,1,=) a group.

Clearly the group axioms can have non-iso-
morphic models: for example (7,+,0,=) and
(Zin,+,10],,,=). Letting I be the group axioms and
¢ the formula

V(e ... xx=e),

n—times

we have that (Z, +,0,=) is not a model of ¢, while
(Zn,+,0],,,=) is a model of ¢, even though both
satisfy the axioms of T'.
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Indeed this is the paradigm of independence. It is
enough to show that there are two models of the
same set of axioms I', one verifying a sentence ¢, the
other verifying its negation, in order to conclude
that ¢ is formally independent from T.

In our case we are interested in structures for set
theory, i.e. of the form (M,E,=) with E C M? a
binary relation which is the intended meaning for M
of the e-relation, and = the equality relation on M.
In this setting it is correct to state that
(V,e,=) E ZFC.

The discovery that the same axioms could have
different models helped to develop an abstract
perspective, shaping ideas and methods of mod-
ern mathematics. During the XIX century it was
first discovered that even in the case of theories
—i.e. collections of mathematical propositions —
meant to describe a unique reality, like geometry,
there might be different incompatible models.
Concretely, this occurred with the discovery of
models for geometry not satisfying Euclid’s Par-
allel Axiom. This axiom is indeed independent
from the other axioms of geometry, since it holds
in the standard three, or two, dimensional eucli-
dean space, but fails on the hyperbolic space or on
the sphere.

This is exactly what Godel’s and Cohen’s results
achieve with respect to CH and ZFC. They provide
two structures that satisfy all ZFC-axioms one ver-
ifying CH, the other falsifying it.

3.2 — Godel’s constructible universe

The key idea of Godel’s construction consists in
carving inside the universe V' the minimal model of
ZFC containing all ordinals Ord, and closed under
the most basic set-theoretical operations, which
Godel reduced to the list of Table 1 below.

TABLE 1 - List of Godel operations.

The resulting structure was named the construc-
tible hierarchy L by Godel himself, given its ex-
tremely simple definition of a contructivist flavour.
Moreover, Godel showed that L satisfies ZFC and
CH at the same time. Further investigations start-
ing with the seminal work of Jensen [29] showed
that L has such a simple structure that it is most
often possible to compute, according to L, the
solution (in L) of many problems undecidable (or
open) on the basis of ZFC alone. We will detail more
on this point later on.

It is possible to show that L is the smallest
transitive model of ZFC containing all ordinals,
being the intersection of all transitive classes M
contained in V, such that (M, e,=) F ZFC and M
contain all ordinals. Roughly stated, L throws away
many sets of V and retains just the minimal amount
of sets needed to validate ZFC.

3.3 — Forcing

The strategy adopted by Cohen to construct a model
of ZFC where CH fails consisted in devising a
completely new technique, named forcing.

While Gddel’s constructible universe carves in-
side V the minimal model of ZFC, Cohen’s forcing
method takes an opposite approach and aims to
enlarge V, adding sets that are “new” in a sense to
be specified later, and thus producing a larger
universe of sets. What is true or false in such a
larger universe of sets depends on which “new” sets
are added.

We cannot refrain from giving a brief description
of some of the aspects of forcing. We have to admit
that this is far from easy for both conceptual and
technical reasons. There are several obstructions,
one being that most mathematicians may complete
their graduate studies without ever encountering a

Gi(X,)Y)={X,Y}
Gs(X,Y)=A{(x,y):xeX,ycY,xcy}
G:;(X,Y)=XnY

Gr(X) =A{x: (x,y) € X}

Go(X) ={(2,,2) : (x,2,9) € X}

Go(X,Y) =X xY
Gu(X,Y)=X\Y
Ge(X)=UX={z: yeXzey}

={(2,y) : (y,2) € X}
Gi(X) ={(2,y,2) : (y,2,2) € X}
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course in logic during their master or bachelor
program. Hence we will try to give the flavour of
Cohen’s forcing method outlining analogies between
forcing and other more familiar constructions.

The simplest analogy compares forcing with the
adjunction of a polynomial root to a field. Moving
from the structure (Q,-,+,=) to the structure
(Q(V/2), -, +,=) (which are both models of the field
axioms), we find in the larger field both solutions of
the equation > — 2 = 0, which has norootsin Q. The
positive solution belongs to the set QU {/2}, but
the latter set is not a field. Hence it is natural to
enlarge it to Q(v/2), adding the least possible family
of elements X such that Q U X is a field containing
V2.

Much in the same way, Cohen’s idea is to start
from a transitive class (or set) M, such that
(M, e€,=) E ZFC, and add a new set G to M satisfy-
ing certain desirable properties, so to build the
smallest transitive model (M[G], €, =) of ZFC prop-
erly containing M U {G}.

But which models of set theory can we enlarge?
Of course we cannot hope to enlarge V, the collection
of all sets, because any G will be, itself, a set, and
therefore in V, hence we would have V C V|G] C V,
ending up with what we started.

A way out to this logical difficulty is to perform a
boolean valued construction (*3): one defines a new
proper class VB/, and a new binary relation €8 /,
on VB/ . which is also a proper class different from
the binary relation €, thus showing the non-stan-
dard character of the model (VB/;, €B /., =).
These (*4) two (proper) classes of sets are given by
a well-defined property, and (VB/,;,€B /., =) is a
structure where to test the truth of ZFC exactly
the same way as (V,€,=) is. It turns out that
(VB/a, €8 /¢, =) is a model of the ZFC-axioms.

We can also define a map k:V — VB /¢ (of
course, different from the identity) which embeds

(**) We roughly present this method following the alter-
native approach to forcing (with respect to Cohen’s treat-
ment) devised originally by Vopenka, Scott, and Solovay [3].

(**) For the averted reader already familiar with forcing,
we are here describing a scenario in which G is an ordinary
ultrafilter on B, not a V-generic one, see [3] or the notes [26,
59] for more details on this approach.

V as a substructure of VB/, i.e. is such that a € b if
and only if k(a) €8 / k(b). In this way we can view
VB/ ¢ as an extension of (the image under & of) V.

Let us briefly sketch some considerations which
guide the boolean valued construction (*%). We will
borrow ideas from functional analysis and present a
toy example of the forcing method which outlines
that certain well known spaces of functions can also
be seen as extensions of the real numbers obtained
by means of forcing (*°). In particular our aim is to
endow a certain ring of germs of measurable func-
tions with a topological-algebraic—order—etc. struc-
ture resembling the natural one we have on the real
numbers.

Suppose we want to describe a new real number.
This real number should be generic, i.e. share any
property which almost all real numbers have. For
example it should be non-algebraic, since so are
almost all real numbers, and it should be different
from any fixed real number a, given that so are all
other real numbers except a. Clearly such a new,
generic real number cannot exist. Indeed, if it were
some b € R, in order to be generic it should be
different from itself, which is impossible.

To overcome this logical difficulty, the forcing
method resorts to two clever ideas. First we might
change the truth values we use, from {True, False},
the trivial boolean algebra, to a larger set, whose
elements form a more complicated boolean alge-
bra ().

In the example below we use the complete boolean
algebra MALG given by equivalence classes of Lebes-
gue measurable sets A C R modulo null sets (9).
Denoting by [A] the equivalence class modulo null
sets of the set A, the family of equivalence classes is a

(**) We warn again the reader that the remainder of this
section is far more advanced then the subsequent parts of
the paper and that she/he can safely skip this part without
compromising the comprehension of the following sections.
For the remainder of this section we assume the reader is
familiar with the basic properties of Lebesgue measure on
R" and of the space L>(R) given by essentially bounded
measurable functions.

(*%) A detailed account on what is sketched below ean be
found in [55].

(*"y We refer the reader to [21] for the basic theory of
boolean algebras.

(*%) MALG stands for Measure ALGebra.
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boolean algebra with operations [A] A [B] =[ANB],
-[A] =[R\A4], [A]v[B]=[AUB]. It is a theorem
(not always well known) that this boolean algebra
is complete (i.e. admits suprema for all its subsets)
with V;f[Ai] = (Ui, Al

To each sentence ¢ we can attach a boolean value
[¢] € MALG representing its truth-value. [R] is the
truth, [(] is the falsity, for any set A with A and R \ A
both of positive Lebesgue measure [A] denotes an
intermediate truth value neither completely true
nor completely false. The attribution of boolean
values to properties ¢ should respect the logical
structure of ¢; for example a true sentence gets
value [R], a false one gets value [()], [¢V ] gets
boolean value [¢] V [¢] (¢ V ¢ denotes the disjunc-
tion of ¢ with v), —¢ (the negation of ¢) gets boolean
value —[¢], ete. (**)

In particular MALG gives us the means to prop-
erly interpret logical properties without committing
ourselves to assert that a certain property is either
true or false: there will be cases (see below) in which
a certain logical property ¢ will get an intermediate
value [¢] neither true nor false.

The second clever idea of forcing regards the
procedure to define the new elements. Consider the
space of real-valued measurable functions. The ele-
ments of this space will be used to name the new real
numbers according to a certain forcing construction.
Indeed, we can identify R inside this space by means
of the constant functions ¢, : x+— a for each a € R.

Take now sin(x) and cos(x). We want to be able to
decide whether these functions denote new, generic
real numbers different from any a € R. If so, we
want also to be able to decide which of the two
denotes the bigger “new” real number. Forcing
attaches to each Lebesgue measurable property
P(x1,...,2,) on R" and to measurable functions
fi,- .., fn the equivalence class in MALG of the set
{x e R: P(fi(x),....fo(x))} *°). For example we as-
sign to the formula sin(x) = cos(x) its boolean value
[sin(x) = cos(x)] = [{* € R : sin(x) = cos(x)}] 1in

(*) For those familiar with first order logic
[B3x¢] =V, [¢(a)] as a ranges in the appropriate domain.
To interpret quantifiers we use that MALG is complete.

(*°) Notice that if P C R” is Lebesgue measurable, so is

{x e R: P(fi(x),..., fulx))}.

MALG; since this is the equivalence class of a measure
0-set, generically sin(x) and cos(x) will name different
reals. Similarly for each a € R

{x € R:sin(x) = ¢q4(x) = a}

is countable, hence of measure 0. This means that
sin(x) denotes a real number different from any
a € R. Hence, a “new” real. On the other hand
sin(x) < cos(x) gets boolean value

[{x € R :sin(x) < cos(x)}] =

= [U((Zn—l)-w—i—%;‘?n-ﬂ—k%)

nez

and sin(x) > cos(x) gets boolean value
Uper@n-m4+2;2r+1) -7+ 3)].
Hence
[sin(x) # cos(x)] = [R\ (7 - Z 4+ w/4)] =

= [sin(x) < cos(x)] V [sin(x) > cos(x)],

and therefore it is true that sin(x) and cos(x) denote
two different reals and that they are comparable,
since to these sentences we assign the equivalence
class of R in MALG.

On the other hand in order to decide whether
sin(x) > cos(x) holds or not, we must decide whether
to choose [sin(x) < cos(x)] or [sin(x) > cos(x)], in
particular the logical properties sin(x) < cos(x) and
sin(x) > cos(x) gets both positive (but complemen-
tary) boolean values in MALG. Similarly we will have to
decide whether the map arctan(x) is smaller or larger
than sin(«x) and/or cos(x), and such decisions must be
made for all measurable functions. Also, the decisions
must be coherent, in the sense that it cannot be
the case that we can choose simultaneously the boo-
lean values [sin(x) < cos(x)], [cos(x) < arctan(x)],
[arctan(x) < sin(x)], otherwise we would not end up
having a linear order on these functions (which is a
property we should have, if our family of new and old
real numbers describes a new structure which satis-
fies most of the properties the continuum has).

A coherent selection of choices is possible resort-
ing to the notion of ultrafilter G on MALG: a subset of
MALG closed under A i.e. [A],[B] € G entails that
[A N B] € G, and such that exactly one among [A] or
[R\A] € G for any [A] € MALG; these conditions
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entail that [R] € G and [()] ¢ G, and also that when-
ever [A] € Gand B D A, [B] € G as well. Roughly an
ultrafilter G on MALG decides which among the [A]
belonging to the boolean algebra MALG are consid-
ered “true” (those in ), and the selection is coher-
ent: ie., if [A] and [B] are “true” so is [A] A [B];
maximal: i.e., it always decide whether [A] or —[A4]
is “true”; and consistent with what MALG has al-
ready decided about truth: i.e., [R] € G and [0] ¢ G,
and if [A] € G and [B] is “more true” than [A]
according to MALG, i.e. B D A, then [B] € G as
well (*).

Now given G ultrafilter on MALG and a measur-
able function f, define [f],={g:[f =g] € G}.
Since just one among [sin(x) < cos(x)] € G or
[sin(x) > cos(x)] € G, G selects which of the two
holds; on the other hand since [ sin(x)= cos(x)]=[0],
either [ sin(x)< cos(x)] € G or [[sin(x)> cos(x)] € G.
More generally we obtain that the relation <g
given by [fls <¢ (9]¢ if and only if [f <g] € G
defines a dense linear order with no end-points on
{[flg : f is real — valued measurable}.

Let us sketch a proof of the density property of
<g: Assume [f]; <¢ 9], we must find some [h];
such that [f] <¢ [t <¢ [9]g- Now [f]; <e [9]g if
and only if [f <g]=[{re R:f(x) <g(x)}] € G.
Let h(x) :fi(x) —;—g(x)-

Then
[f<h]ATh <gl=If <h<g]=[{x € R: f(x) <h(x) <g(x)}]
Since

{r e R:flx) <h(r) <g@)i={recR:f(r)<g(®)},

(®Y) For the specific case we are considering we can give an
alternative description of the notion of ultrafilter. Consider the
real C*-algebra L>°(IR) given by real-valued measurable func-
tions which are also essentially bounded. A character
0:L>*(R) — R, is a continuous homomorphism of this real
C*-algebra onto R. Denote by x4 the characteristic function
of a measurable set A, and given a character 0 let
Gy = {[A] : 0(xa) =1}. Then Gy is an ultrafilter on MALG.
Conversely given a ultrafilter G on MALG define a character
O : L>*(R) — R letting 06 (3 ;c; 4ixa;) = > 4, )eq 4 When-
ever {A; : 1 € I} is a partition of R in Lebesgue measurable
sets; we can use the density of linear combinations of char-
acteristic functions of measurable sets in L>°(RR) to extend 8¢
to all of L*°(IR). In particular the two notions of character and
ultrafilter are completely equivalent for MALG.

and [{xeR: f(x) <gx)}] €G, we get that
[f <h],[h<g] are both in G, yielding that
f1g <a lhlg <c [glg.

We have just outlined a very special case of a
deeper result. Consider the space L*"(R) given
by measurable functions f: R — R U {400, —o0}
such that {a € R : f(a) = £oo} has Lebesgue mea-
sure 0 (*?). Given a ultrafilter G on MALG, define the
ring of germs L>**(R)/ letting [f]; = [¢]; if and
only if Ar, = [{x : f(x) = g(x)}] is in the ultrafilter
G on MALG. It is actually possible to check that
L>*(R)/ with its pointwise operations modulo G
(e [flg-cl9le = [f - 9]¢ ete.) is a field (*5).

The forcing theorem, which is the key to under-
stand what is true in L**(R)/, can be phrased as
follows in this specific context:

Given a Borel (**) relation R C R", a ultrafilter G
on MALG, fi ....f, € LT (R), we say that

R/:([flg,---»[falg) holds if and only if
{acR: R(Ai(a),.... ful@)}] €G.

Then for R,S Borel relations on R", their lifts
R/, S/g behave properly, for example:

o R'\R/¢([Alg,---,fulg) holds if and only if
R/o([filg, -, [fulg) does not,
b W/G([fl]??[fnb iftmglonlyif
R/o([filg: -+ [fulg) and S/o([filgs - -+ [fule),

o the same conclusion holds for the (possibly non
Lebesgue measurable) relation on R obtained

(**) For example the identity, x+ 1/, the exponen-
tial map are examples of measurable functions in
L**(R)\ L>*(R), i.e. measurable functions which are
not essentially bounded. Strictly speaking x—1/x is not
even real-valued measurable since it is not defined on all
of R but just on a conull subset of R, this is one of the
reason to extend the possible values of the functions to
R U {400, —c0}, while restricting the new set of values to
have measure 0.

(*®) Here we are really using that the space we work with
is L>**(R), for example for example the inverse of [sin(x)];
— ! which be-
sin(x)
longs to L**(R)\ L*(R), while the measurable function
f:R—= RU{+00,—c0} with constant value +oo is such
that [f]; does not have an inverse.

is the equivalence class of the function

(**) See the beginning of section 5.2 for the definition of
Borel set. Remark that Borel sets are Lebesgue measurable.
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by projecting along an axis a Borel relation on
R", and for the Borel relation on R" given by the
countable union (or intersection) of Borel rela-
tions R; C R" forj € I\.

More generally given an n-ary Borel relation
R C R" and a first order formula ¢(x1, . .., 2%,) in a
language with one n-ary relation symbol

L (R) /g R/, =) E ¢flg: - - - [fule)

if and only if

{o e R:(R,R, =) F ¢(fi(a),....fu(@)}] € G.

This theorem is extremely powerful, for it links the
logical properties which hold in L**(R)/ to the
combinatorial properties of the boolean algebra
MALG and of the ultrafilter G.

We are just scratching the surface of the enor-
mous complications one has to overcome to deal
properly with forcing. The general method of for-
cing applied to the structure (V,€,=) is able to
encode the above situation as follows: the reals are
the real numbers of V, and one is able, by means of
forcing, to construct a structure VMALG/ . such that
the real numbers of VMALG/ . are exactly the ele-
ments of the ring L>*"(R)/;. In particular in
VMALG/ . there are new real numbers, for example
[sin(x)];, with respect to those existing in V.

However to define properly VMALG /. we should:
(a) besides describing how to define the new real
numbers in the larger model VMALG /. define what
counts as a natural number, a complex number, ete.
in VMALG/ . More generally one must be able to
define all set-theoretical operations in VMALG/ .
since it must be shown that (VMALG /. cMALG /. )
models ZFC; (b) be able to define the forcing theo-
rem in general for models of the form VB/, where B
is a complete boolean algebra and G is a ultrafilter on
it; (c) finally, in order to use forcing to establish the
independence of a statement ¢ (such as the conti-
nuum hypothesis), we should find some B so that we
can compute whether VB/ . models ¢ or not.

The very ingenious strategy of Cohen was to use
the forcing theorem to transfer the problem of
checking whether CH holds or not in VB/, to the
problem of checking whether B satisfies certain
combinatorial properties. He was then able to prove

that the algebra C given by the regular open sets of
the space [0, 1]P(P(N)) endowed with the product of
the euclidean topology on [0,1] is such that V°¢/
models (*) ~CH.

4. —- Godel’s program

The set theoretical tools developed by Godel and
Cohen show that the phenomenon of independence
in mathematics is broader than expected and not
confined to ad hoc examples, as those discovered by
Godel, in 1931, by means of his incompleteness
theorem. Indeed CH is a mathematical problem
which grew out of the researches of the most pro-
minent mathematicians of the end of the XIX cen-
tury. The combined use of Godel’s constructible
hierarchy and Cohen’s forcing method showed the
independence of a variety of mathematical problems
arising in distinet fields, such as group theory, e.g.
the Whitehead problem on the characterization of
free groups [49], [50], functional analysis, e.g. Ka-
plansky characterization of Banach algebra morph-
isms [11], or the problem of the existence of outer
automorphisms for the Calkin algebra [12, 47], and
many, many others. These results showed the in-
adequacy of ZFC to give a complete and satisfactory
picture of a fast growing discipline like contempor-
ary mathematics. There are “outskirts” of the math-
ematical universe where the ordinary methods of
proof do not suffice to find an answer to well-posed
and natural problems, at least this is not possible
with the means offered by ZFC. Nonetheless set
theoretic techniques are crucial to understand which
problems inhabit this hazy part of mathematics.

4.1 — How to overcome the weakness of ZFC?

Some scholars, like Cohen himself [10], or Fefer-
man, argue that the independence results with

(*®) For a complete presentation of this method see [3, 34]
or the notes [59]. Remark that (modulo the identification of
Cohen’s original poset — given by partial functions
P : w2 X w — 2 with finite domain — with its boolean com-
pletion, and the assumption of Cohen that Ny = |P(P(N))]
holds in the ground model) the above example is exactly the
original forcing notion devised by Cohen.
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respect to ZFC cast shadows on the possibility that a
mathematical theory of infinity could be captured
axiomatically. But independence with respect to
ZFC, by itself, does not prove the existence of
intrinsic limits of the axiomatic method, but only of
a specific axiomatic system: namely ZFC. An ap-
proach offered by the set-theoretic community, and
suggested by Godel himself, consists in supplement-
ing the ZFC-axioms with new set theoretical princi-
ples, able to give solutions to the largest possible
family of otherwise independent, or open, problems.
This approach goes under the name of Godel’s
program.

The practice of extending the means of proofs
with new principles asserting the existence of cer-
tain mathematical entities is as old as mathematics
itself, even if it often took time to incorporate these
principles in the main body of mathematics. Think
about the introduction of irrational numbers follow-
ing the Pithagorean discovery of the irrationality of
V2, or the use of complex numbers to find roots of
third degree polynomial equations. As a more recent
example, Groethendieck universes (), mathemati-
cal objects whose existence cannot be proved in ZFC,
were used in Wiles original solution to Fermat’s last
theorem. However, there is a difference between the
use of new mathematical principles in Wiles proof
and the extensions of ZFC originated by Godel’s
program: their unequal status of necessity. As a
matter of fact a solution of Fermat’s last theorem
which avoids any reference to Groethendieck uni-
verses and that uses elementary methods-i.e. for-
malizable in Peano’s Arithmetic or at least in ZFC-is
believed by many to be possible, although unknown,
at least for the case of Peano’s Arithmetic. On the
other hand it is provably impossible to solve CH on
the basis of ZFC. To give a solution to CH it is
necessary to supplement ZFC with new axioms.

(*®) Groethendieck universes are mathematical entities
providing a correct framework where certain category the-
oretic questions can be properly formulated and solved.
Their existence is not provable in ZFC but follows from the
axiom stating the existence of a strongly inaccessible cardi-
nal; see [51] for an account on Groethendieck universes, in
section 5.1 we give the definition of strongly inaccessible
cardinals.

As already mentioned, there are scholars, like
Feferman [13], who doubt the existence of, yet
unknown, set-theoretic truths, able to decide CH.
But in our opinion the situation is not much different
than it was in other well-known turning points in the
development of mathematics. One example is the
debate surrounding the introduction of AC at the
beginning of the XX century [43]. While AC brings
some undesirable consequences, such as the exis-
tence of non-measurable sets of reals, it has been
finally accepted by most mathematicians. A compel-
ling reason being that by means of AC it is possible
to give a simple general outline of many mathema-
tical theories: one example is the nice general theory
of cardinalities we sketched in 2.2; other funda-
mental consequences of AC are the Hahn-Banach
theorem, the existence of prime ideals in rings, the
compactness of the product of compact spaces, just
to name few of them. Nowadays most textbooks in
functional analysis, algebra, topology, ete. do not
question the truth of AC and develop their field
using it freely. Following Hilbert’s motto “Wir miis-
sen wissen — wir werden wissen” (%), we consider a
feasible mathematical task to find the correct ax-
ioms for set theory which can settle CH, and two
promising candidates are outlined in the final sec-
tion of this paper. We are also confident that time
and practice can bring the mathematical community
to accept these axioms much in the same way it
occurs now for AC. Of course the adoption of new
axioms will require both mathematical and philoso-
phical arguments, since not only these axioms
should be able to solve old problems — a good
mathematical point in favor of their acceptance —
but they also need to be well justified-by philoso-
phical arguments.

4.2 — Intrinsic vs. extrinsic

There is a vast literature on the criteria for justifica-
tion of new axioms in set theory *®). To give a rough

(¢") We must know — we will know.

(*®) Besides the classical contribution by Godel, dis-
cussed in this section, we advise the interested reader to
consult the work of Boolos [5], Maddy [37, 38], Koellner [32],
and a more comprehensive discussion in [14].
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idea of the discussion, we recall two famous quotes
by Gddel [23], where he introduced the two kinds of
justification that still occupy a central role in this
debate: intrinsic and extrinsic justifications ).
Let us start with the intrinsie ones.

For first of all the axioms of set theory by no
means form a system closed in itself, but, quite on
the contrary, the very concept of set on which
they are based suggests their extension by new
axioms which assert the existence of still further
iterations of the operation “set of”. [...] probably
there exist others based on hitherto unknown
principles; also there may exist, besides the or-
dinary axioms, the axioms of infinity and the ax-
ioms mentioned in footnote 17 [here Godel means
large cardinal axioms] other (hitherto unknown)
axioms of set theory which a more profound un-
derstanding of the concepts underlying logic and
mathematics would enable us to recognize as
implied by these concepts [23, pp. 260].

On the other hand, extrinsic justifications assim-
ilate set-theoretical methodology to that of empirical
sciences.

Furthermore, however, even disregarding the
intrinsic necessity of some new axiom, and even
in case it had no intrinsic necessity at all, a deci-
sion about its truth is possible also in another
way, namely, inductively by studying its “suc-
cess”, that is, its fruitfulness in consequences and
in particular in “verifiable” consequences, i.e.,
consequences demonstrable without the new ax-
iom, whose proofs by means of the new axiom,
however, are considerably simpler and easier to
discover, and make it possible to condense into
one proof many different proofs [23, pp. 261].

Although these two forms of justification seem to
offer very different criteria, it is a well balanced
mixture of both that is commonly used to give
reasons for the acceptance of new axioms.

(*) However, there are also new perspectives on justifi-
cation in set theory that try to overcome this classical
dichotomy [2].

5. — Large cardinals, determinacy axioms,
and generic absoluteness for second
order arithmetic

5.1 — Large cardinals

The simplest and first natural examples of new
axioms extending ZFC are large cardinal axioms.
These axioms formalize the idea that the process of
generation of new levels of the cumulative hierarchy
of V is never completed.

The first example of a large cardinal axiom is the
axiom of infinity: it can be shown that (V,,, €,=) is a
model of all other ZFC-axioms; but in V,, there are no
infinite sets. This shows that it is not enough to appeal
to the construction and existence principles given by
the other axioms of ZFC to assert the existence of an
infinite set, since there is a model of all these axioms in
which no infinite set exists, but that we really need to
postulate the existence of infinite sets. Remark also
that, viewed as a suborder, any cofinal subset of N has
the same isomorphism type of the natural numbers,
i.e. (w, €). Generalizing these two observations one
can produce the simplest example of a proper large
cardinal axiom: J s strongly inaccessible if
(Vs, €,=) | ZFC and any cofinal subset of ¢ has order
type o. By Godel’s incompleteness theorem ZFC can-
not prove the existence of strongly inaccessible cardi-
nals, otherwise it would prove its own consistency. In
particular a strongly inaccessible cardinal is an ordinal
whose description cannot be obtained starting from
some smaller ordinal and appealing just to the con-
struction principles given by the ZFC-axioms.

Many other large cardinal axioms have been
formulated in the past century and are still intro-
duced nowadays. As Godel anticipated in his writ-
ings [23], there are very good reasons to argue in
favor of their intrinsic plausibility; for an overview of
these arguments see also [33]. Nonetheless in this
paper we decide not to pursue any further this type
of arguments. The reason being that soft and/or
detailed accounts on this topic are already avail-
able (*°). Moreover an exposition of the basic proper-

(% For a soft introduction to large cardinals see for
example the nice introductory paper by Koellner available
at logic.harvard.edu. The standard reference for large car-
dinals and their properties is Kanamori’s [30].
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ties of the most important large cardinal axioms, and
of the intrinsic reasons to accept them would require
us to sketch far more set theory than what has been
briefly outlined in §1 and §2 (3*). We will instead focus
on the extrinsic reasons to accept large cardinal
axioms, outlining in the other parts of this section
the striking consequences on the properties of real
numbers one can draw from them. This is a topic far
less explored in the literature, for which an introduc-
tory account as the one we sketch below is in our
opininon —at least to some extent- still missing (*%).

5.2 — Regularity properties for sets of reals and
determinacy

Given a topological space (**) (Y,7) and X C Y

e X is Borel if it belongs to the smallest g-algebra
containing the open sets (a g-algebra on P(Y) is a
family of subsets of Y closed under countable
intersections, countable unions, and complements).

(") A warning to the reader is in order at this point: we
will not define in this paper any other large cardinal notion.
Nonetheless at several points of the discussion to follow we
will mention a variety of large cardinals, including (in order of
increasing strength): strongly inaccessible cardinals, mea-
surable cardinals, strong cardinals, Woodin cardinals, super-
compact cardinals, etc. We refer the reader to Koellner’s
paper or to Kanamori’s book for details on the definitions and
the properties of these cardinals. Let us just mention that a
crucial and surprising feature of these axioms is that they line
up in a well-ordered linear hierarchy, for example: super-
compacts are Woodin; if ¢ is Woodin, it is strongly inacces-
sible and (Vs, €, =) models that there are strong cardinals; a
strong cardinal is measurable; a measurable cardinal is
strongly inaccessible. A chart describing the known depen-
dencies between the most important large cardinal axioms
can be found in the last pages of Kanamori’s book.

In the remainder of this paper we will outline certain
consequences these large cardinals have on the universe of
sets. These consequences are either mathematical facts
which refer to familiar mathematical concepts, or mathe-
matical facts which can be meaningfully formulated on the
basis of the set theory sketched so far. In particular there is
no need to define any of the above large cardinal axioms in
order to outline the consequences we will draw from them,
and we will not do that here.

(*%) See however the beautiful papers by Koellner [32] or
by Woodin [63].

(*®) To grasp the basic ideas guiding the definitions to
follow the reader may assume that Y is the set of real
numbers with the usual topology.

e X is Lebesgue measurable (now noted as LM(X))
if it belongs to the g-algebra generated by the
Lebesgue measure on R.

e X has the property of Baire (BP(X)), if there
is an open set U such that UAX (the symmetric
difference) is a meager set (i.e. the countable
union of nowhere dense sets).

e X has the property of the perfect set (PSP(X)), if
it is either countable or has a nonempty perfect
subset (which is a closed set with no isolated
points). Cantor proved that any subset of R with
the perfect set property is either countable or in
bijection with R, hence cannot be a counterexam-
ple to (**) CH.

Already at the beginning of the XX century it was
known, using AC, how to build sets without the Baire
property (Bernstein), or without the perfect set
property (Bernstein, again), or non-Lebesgue mea-
surable (Vitali). On the other hand the combined
works of Cantor, Bendixson, Alexandrov, Lebesgue,
Borel, and others showed that all Borel sets have all
the above regularity properties. In 1970 Solovay [52]
proved that if there is a strongly inaccessible cardi-
nal — one of the lowest in the hierarchy of large
cardinals — it is consistent that all subsets of the
reals are Lebesgue measurable, have the property
of Baire, and have the perfect set property. Stated
more precisely: it is possible to construct a model of
set theory in which choice fails (i.e. a model of the
axiom system ZFC \ {AC}) and all the above proper-
ties hold; moreover Solovay’s model satisfies also a
weak form of the Axiom of Choice, the Axiom of
Dependent Choices (*°) DC.

The study of regularity properties of subsets of R
is greatly simplified by the observation that for
Borel (or topologically more complex) sets it does
not matter whether we consider them as subsets of

(") The attempt to verify CH by showing the perfect set
property for subsets of the reals of increasing topological
complexity gave rise to a very interesting line of research,
which is now part of descriptive set theory (see [31]).

(*®) DC states that for all non-empty set X and every
0:X<N = X, there exists f : N — X such thatf(n) = a(fn)
for all n € N. It allows to construct infinite sequences in X
obeying the constraints imposed by o.
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R or of any other Polish space (*®), such as the
Cantor space 2~ or the Baire space N, The reason
being that all these spaces are Borel isomorphic,
that is in bijection via a Borel map with a Borel
inverse (*). For this reason, without loss of general-
ity, we can restrict our discussion to the space 2%
endowed with the product topology.

The game G 4 with players I and /] and payoff the
set A C 2" is defined according to the following
rules: it lasts w-moves; the two players alternate
their moves with [ playing ag, at even stages 2n, I1
playing ag,1 at odd stages 2n + 1; after w-moves I
wins if (@, : n € N) € A, II wins otherwise.

A strategy for player [ is a map ¢ :2<" — 2
which for any given partial play (ao, ..., a2,:1) tells
player I what is the move to make in this case, i.e.
a({ao, - ..,02,+1)). Hence a run of the game accord-
ing to o looks like

<(l() = G(@),(L],dg = 0'(<(1(),(11>),

as, a4 = a({(aog, a1, 02,03)),0s5, . . .)

We say that ¢ is a winning strategy for [ if any run
of the game according to ¢ is won by I no matter
what 11 plays 38). Similarly one defines a winning
strategy for player I1. It is not hard to check that
games of finite length with perfect information,
like Chess or Noughts and Crosses, can be coded
by games of type (*?) G4, by deciding which of the
two players wins in case of a draw. A result by

(*®) A topological space (X, 1) is Polish if it is separable
(i.e. it has a countable dense subset) and there is a distance d
on X with the property that (X, d) is a complete metric space
such that the balls B(x,¢) = {y € X : d(x,y) < ¢} generated
by d are a basis for the topology .

(" f : X — Y is Borel if the preimage of Borel sets is
Borel.

(% It is not transparent that non-trivial runs of the
games according to a strategy o always exist. This can be
proved appealing to the Axiom of Dependent Choices.

() In the definition of infinite games of length w it is
convenient to assume that a draw is not possible to simplify
many arguments. This is not restrictive: optimal strategies
for games in which the players can also get to a draw can be
recovered by combining the winning strategies of the two
games obtained by letting either of the two players win in
case of a draw.

Zermelo gives that all such finite games are deter-
mined, that is exactly one of the two players has a
winning strategy (1°).

In 1962 Mycielski and Steinhaus [46] introduced
the Axiom of Determinacy AD, stating that AD(A)
holds for all A C 2, where AD(A) says that exactly
one of the two players has a winning strategy, i.e. G4
is determined.

AD was proposed as an alternative to AC, being
provably false assuming ZFC, and it fits with a
fruitful line of research on games that was started
during the 20s and the 30s by Mazur, Banach, and
Ulam among others (). Tt is a result, already from
the 50s, by Gale and Stewart [20], that games with a
closed or open payoff set are determined. A major
surprise came in the early seventies when Martin
[39] proved that the existence of a measurable
cardinal entails that all games with analytic (**) pay-
off set are determined. Moreover, Martin later
showed [40], in ZFC, that games with a Borel payoff
set are determined, this time avoiding any use of
large cardinals. These subsequent results are nor-
mally considered as extrinsic reasons for the claim
that large cardinals are well-justified principles
extending ZFC. As we hinted before, we see here
at play a model of justification that resembles one of
prediction and confirmation from natural sciences.

The use of consequences of AD greatly simplifies
the study of regularity properties. Indeed a huge
variety of regularity properties, including the per-
fect set property, the Baire property, and Lebesgue
measurability, follow from the determinacy of an
appropriate game in combination with (**) DC.

(*%) Zermelo’s proof is non constructive, for example in
the case of chess we do not (as yet) know which of the two
players has a winning strategy; once again assuming that a
draw is a winning condition for one of the two players.

(1) See [36] for an overview of this history and [31] for
some of the uses of such games in the study of topological
properties of spaces of functions.

(*?) A C 2V s analytic if it is the continuous image of
some Borel set. Clearly Borel sets are analytic, as witnessed
by the identity function.

(*®) One needs DC to grant that for certain sets B
(depending on the regularity property one wants to establish
for A) there always are infinite runs of the games Gz
according to the winning strategy given by AD(B).
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A key definition, isolated by Feng, Magidor, and
Woodin in [15] is that of universally Baire sets of
reals:

Given a topological space X, A C 2" is X-Baire if
F7YA] has the Baire property in X for all
f: X — 2 continuous. Moreover we say that A
is universally Baire if it is X-Baire for all compact
Hausdorff topological spaces X.

Not only Borel subsets of 2V are universally
Baire (this is provable in ZFC), but assuming the
existence of a proper class of Woodin cardinals (**)
so are all sets definable in second order arithmetic,
i.e. those subsets of 2" definable with parameters
in the first order structure (N,P(N), €,0,+,=)
or, equivalently, in the first order structure
(Vw+1a g, :) (45)-

A major result of Martin and Steel [41], combined
with the work of Woodin [35], establishes that if one
assumes a proper class of Woodin cardinals then all
universally Baire sets of reals are determined, i.e.
G 4 is determined if A is universally Baire. Therefore
all nice regularity properties hold for universally
Baire sets assuming large cardinals.

Summing up our discussion: AC has undesirable
consequences, as subsets of R failing to have certain
regularity properties, but it also gives the means to
prove in full generality certain expected results
which are essential for several fields of mathematies.
Large cardinals imply that AD(A) holds for sets of
reals A defined by sufficiently simple topological

(**) The expression “a proper class of large cardinals with
a given property ¢” asserts that the family of large cardinals
satisfying ¢ is a proper class. It is out of the scope of the
present paper to define Woodin cardinals (the interested is
referred to [53]), let us just remark that (at least in our
opinion) if one is eager to accept the intrinsic reasons which
justify the existence of inaccessible cardinals, then she/he
should have no problems to accept the axioms asserting the
existence of Woodin cardinals on the basis of the same
“intrinsic” arguments.

(*®) This family of sets can also be characterized topolo-
gically as the family of projective sets i.e. those obtained by a
Borel subset of (2™)" applying repeatedly either the opera-
tion of projection on some coordinate or the operation of
complementation.

properties, i.e being universally Baire; this suffices
to prove that all universally Baire sets A have all
desirable regularity properties. Moreover AC and
determinacy arguments are both widely used in
various branches of mathematics. Finally AC and
determinacy in its full strength contradict each
other, but they coexist harmoniously provided one
puts natural bounds, given by the notion of universal
Baireness, on the topological complexity of the sets
for which determinacy holds.

5.3 — Generic absoluteness for second order arith-
metic

In an unexpected turn of events a deep and fruitful
connection between large cardinals and forcing was
then discovered by Woodin [35, Thm 3.3.13, Section
3.4]. Informally this result, which goes under the
name of Gemneric absoluteness for second order
arithmetic, can be stated as follows.

Assume there are class many Woodin cardinals.
Given a mathematical problem formalizable in
second order arithmetic, if a solution can be es-
tablished by means of forcing, then that is the
correct solution.

That is, if we accept large cardinal axioms, we can
turn forcing into a useful tool for proving direct
implications rather than independence results. In-
deed, it is sufficient to show that forcing produces a
structure where a sentence formalizable in second
order arithmetic holds, in order to turn this consis-
tency proof into a direct derivation of the given
sentence from large cardinal assumptions. In parti-
cular Woodin’s result rules out the possibility to use
forcing to prove the independence, from ZFC sup-
plemented with large cardinals, of any problem
formalizable in second order arithmetic.

A vast portion of number theory, analysis, differ-
ential geometry, measure theory, and probability
theory can be expressed by sentences in second-
order arithmetics, hence for a great number of
problems arising in these fields, we might try to
use Woodin’s result directly and solve such pro-
blems establishing the consistency of their solution
by means of forcing; this approach is taken for
example in [6, 61].
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6. — Axioms able to settle CH.

There are many important ZFC-undecidable pro-
blems which cannot be properly formalized in sec-
ond order arithmetic. Woodin’s results cannot apply
to these problems. Among these we mention once
again CH, Whitehead’s problem on free groups, the
existence or not of outer automorphism of the Calkin
algebra. This motivates the two programs we are
about to discuss. Both propose to adopt stronger
axioms able to give a unified picture of a larger
portion of the universe of sets; a portion large
enough to include almost all sets definable in third
order arithmetic (i.e. expressible in the first order
structure (V,,,2, €, = )). As amatter of fact, a unified
theory of this portion of the universe would give a
solution to all problems mentioned above.

The first program consists in a step by step
strategy aimed at giving a complete picture of larger
and larger initial segments of the cumulative hierar-
chy, with the goal of finding an analogue of Woodin’s
absoluteness result, first, for third order arithmetic,
and then for more and more complex initial segments
of V. The second program tries to find global proper-
ties able to give a general, detailed, picture of the
whole universe of sets V, once and for all.

6.1 — Forcing axioms

Intuitively, forcing axioms tell us that the universe
of all sets has been saturated by means of the
possibilities given by the method of forcing. As a
consequence we could think of a structure satisfying
forcing axioms as one obtained after many applica-
tions of forcing. Indeed this is the rough idea behind
their relative consistency proofs.

Mathematically, forcing axioms can be presented
in several different ways. The most common is to view
them as generalizations of the Baire category theo-
rem BCT. Recall that BCT states that for any (locally)
compact Hausdorff space X the intersection of coun-
tably many open dense subsets of X is still dense, and
therefore non empty. On the other hand it is not hard
to find uncountable collections of dense open subsets
of R with empty intersection, for example

R\ {z}) =0.

reR

A more sophisticated example is the follo-
wing. Consider the one point compactification
X = X; U {x} of the space N; endowed with the
discrete topology. Take the compact Hausdorff
space X with the product topology. The sets
E,={f € X" : 3nf(n) = o} are open dense in X,
for all « € X, but (,_,, £, is empty. Indeed any ¢
belonging to this intersection would be a surjection
of the countable set N onto the uncountable set
N; U {x}, but such a g clearly cannot exist.

Forcing axioms can be defined as suitable
strengthenings of BCT:

Given a cardinal A and a topological space X,
FA;(X) holds (*) if any family of /-many dense
open subsets of X has a non-empty intersection.

Therefore BCT is the statement that FAy,(X)
holds for all locally compact Hausdorff spaces X. On
the other hand the above examples show that FAy, (X)
must fail for some compact space X. Nonetheless one
of the driving questions which led the research in set
theory during the past decades has been to isolate the
largest class of compact Hausdorff spaces X for which
FA, (X) can possibly hold. This would offer a forcing
axiom able to settle a vast number of mathematical
problems at once. Indeed, a long list of striking
independence results were proved by showing that
one solution to the problem holds in L, while its
negation can be proved using the fact that FAy, (X)
holds for certain compact spaces X. More specifically,
using forcing, it was possible to produce a model of
ZFC where FAy, (X) was true for the compact spaces
X in question. For example this has been a successful
strategy to prove the independence of all the pro-
blems mentioned at the beginning of this section.

Shelah, Magidor and Foreman [19] isolated a
property of compact Hausdorff spaces X, that of
being " stationary set preserving (noted SSP (X)),

(%) FA, stands for Forcing Axiom for -sized families of
dense open sets.

(*") C C wy is a club if it contains the supremum of all its
countable subsets; S C w; is stationary if it meets all the club
subsets of w;. SSP(X) holds if letting B be the complete
booolean algebra given by regular open subsets of X and S be
a stationary subset of w1, the forcing notion associated to B
preserves the stationarity of S, i.e. — following the boolean
valued approach to forcing given (for example) in [59] — we
have that [S is stationary]g = 1s.
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which is provably in ZFC a necessary condition in
order for FAy, (X) to hold; but they were also able to
show that this can also be a sufficient condition.
Indeed, if a supercompact cardinal exists, then there
is a model of ZFC such that the following holds:

(MM) For X compact Hausdorff,
FAy, (X) if and only if SSP(X).

This principle is known in the literature as Mar-
tin’s Maximum, and predicates that FAy, (X) holds
for the largest possible family of locally compact
Hausdorff spaces X, giving a maximal topological
strengthening of BCT.

Forcing axioms can also be presented as natural
strengthenings of AC:

(X, 7)is < A-closed if whenever {A4; : i € [} C 7is
a family of size less than 1 of non-empty open sets
linearly ordered by inclusion, then (,_; A; con-
tains a non-empty open set.

iel

Notice that R with the euclidean topology is not
< Ni-closed. On the other hand this is the case for
the space 2% with bounded topology, which is the
topology generated by taking as a base the sets
N, = {f € 2% : f D s} as sranges over the functions
in 2%, and o« among the ordinals in X;.

Let I'; denote the class of compact Hausdorff
spaces which are < A-closed. Goldblatt in [24] noted
that AC is equivalent to the assertion that

(1) For all cardinals 2 FA;(X) holds for all X in T';.

It is possible to check that < N;-closed Hausdorff
compact spaces are stationary set preserving and it
is immediate to check that all compact Hausdorff
spaces are < Ny-closed. With this in mind, BCT is the
weakening of AC obtained by requiring (1) to hold
just in case 4 = Ny, while MM is an optimal strengh-
tening of (1) for 4 = ;.

Finally let us mention that there are also generie
absoluteness results for third order arithmetic
which follow from forcing axioms, as well as nice
model theoretic properties for the models of these
axioms. In a very precise sense, there are natural
strenghtenings of Martin’s Maximum, which are
consistent relative to large cardinal axioms, and
produce generic absoluteness results for third order
arithmetie [62, 60, 1]. This is a surprising and strong

analogy with Woodin’s result that large cardinals
give generic absoluteness for second order arith-
metic. Moreover it is possible to give a very nice
picture, inspired by model theoretic arguments, of
the family of first order models of these axioms [58].

These absoluteness results for third order arith-
metic give a logical explanation of the success for-
cing axioms have met in solving problems of that
complexity. Indeed, MM implies that |R| = N, deci-
des negatively Whitehead problems, and forces all
automorphism of the Calkin algebra to be inner. The
list of problems which are independent with respect
to ZFC, and are solved assuming MM, is long and
stretches from general topology, to functional ana-
lysis, algebra, and group theory; a non-exhaustive
sample can be found in [44, 45]. Moreover MM
implies that the Axiom of Determinacy holds for
projective sets of reals.

Another argument in favor of forcing axioms is
the following. There are a few nice examples of
theorems (see for example [54]) discovered assum-
ing forcing axioms and later obtained without these
extra-assumptions, exactly as it occurred for Borel
determinacy with respect to large cardinal axioms.
The possibility to discover new theorems is of course
a good argument in favor of a new principle and, as
noted before, assimilates justification in set theory
to that of empirical sciences.

We can sum up the current situation of this first
program as follows. Forcing axioms, such as MM,
are non-constructive principles which are natural
strenghtenings of Baire’s category theorem and of
AC; these axioms give strong effective means to
settle problems formalizable in third order arith-
metic. These means are also complemented by gen-
eric absoluteness results for third order arithmetic.
The situation mirrors to alarge extent that of second
order arithmetic, in which AD and large cardinal
axioms give strong means to answer many questions
formalizable in second order arithmetic and are
complemented by Woodin’s generic absoluteness
results.

However almost nothing is known on what the
forcing axioms for fourth order arithmetic could be,
or—-more or less equivalently—-what the largest class
of compact Hausdorff spaces X for which FAy,(X)
holds could be. An exhaustive non-technical account
on these matters can be found in [62].
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Finally let us mention that there are also philo-
sophical arguments that argue for a conceptual
similarity between the notion of genericity con-
nected to the method of forcing and the notion of
quasi-combinatorialism introduced by Bernays [4],
in discussing the foundations of set theory. In this
context it is argued that forcing axioms are princi-
ples giving a precise mathematical instantiation of
the, necessarily vague, notion of arbitrary set con-
nected to quasi-combinatorialism [17, 18, 57].

6.2 — Ultimate-L

An alternative program, orthogonal to forcing ax-
ioms, is proposed by Woodin and goes under the
name of Ultimate-L. The strategy of the Ultimate-L
program is not meant to offer a step-by-step com-
pletion of the theories of the initial segments of the
universe of all sets, but instead aims at finding
properties that could offer a global, detailed, picture
of V.

The starting point is the observation that assum-
ing V = L one gets a nice “complete” picture of the
universe of sets. For example all problems men-
tioned in this paper which are undecidable on the
basis of ZFC gets an answer assuming V' = L, that is
CH holds, all Whitehead groups are free, there are
outer automorphisms of the Calkin algebra, etc.
However the axiom V = L has serious drawbacks,
in particular it is not compatible with all large
cardinal axioms. This is the content of a theorem
proved by Scott in 1961 [48] on the non existence of
measurable—or Woodin, or supercompact, and all
stronger—cardinals in L. It is also possible to show
the incompatibility of L with the generie absolute-
ness results which follow from large cardinals. In-
deed in L there are projective sets which do not have
the Baire property, are not Lebesgue measurable,
and do not have the perfect set property. Moreover
it is possible to produce forcing extensions of L
which give a different solution, with respect to the
one computed in L, to problems formalizable in
second order arithmetic.

Roughly speaking Woodin’s program aims to
devise a more comprehensive version of Godel’s
constructible universe L; the so-called Ultimate-L.
The aim is to produce a model of set theory which
retains the nice features of L, and avoids its unplea-

sant drawbacks. The definition of Ultimate-L and its
analysis requires a technical background in set
theory far above the threshold we put on this
expository paper, hence our description of this
program will be elusive, and will just try to give
some basic ideas.

In the model Ultimate-L one retains the fine ana-
lysis of the universe of all sets offered by L. In
particular its definition can be given by a highly
constructive procedure, much in the same way as it
occurs for L. A key role in the definition/construction
of Ultimate-L is played once again by universally Baire
sets. These are instrumental in the definition of the
structures HOD*“4:R) where the parameter A stands
for a universally Baire set. L(A,R) is the model
obtained by closing off with respect to Godel opera-
tions the class Ord U R U {A}, and HOD*4-®) is the
ZFC-model given by hereditarily ordinal definable
sets (*®) in L(A,R). Woodin’s program is centered
around the following axiom, called V = Ultimate-L.

There are a proper class of Woodin cardinals (*%).
Moreover, whenever ¢ is a sentence holding in an
initial segment of the cumulative hierarchy of V,
there is a universally Baire set A such that ¢

holds in some initial segment of HOD4®),

Under V=Ultimate-L, Woodin offered a complete
and detailed picture of the structure of the universe
of all sets, much alike the picture one gets by
analyzing the constructible universe L. In particular
CH holds in any structure satisfying this principle.
The axiom V=Ultimate-L computes also the solution
of many, if not all, of the undecidable problems
mentioned in this paper, in most cases providing
an answer opposite to that given by forcing axioms.
Woodin’s axiom also gives a global description of V,
entailing that V = HOD,i.e. V is equal to the class of

(**) X € L(A, R) is ordinal definable in L(A4, R) if there
is a formula ¢(x,y) and an ordinal « such that
L(AR) E ¢(X,a) and L(A,R) E xg(x, ). X € L(A,R)
is hereditarily ordinal definable in L(A, R) if X and all the
elements in its transitive closure are ordinal definable in
L(A,R).

(*) This is a technical requirement in order to obtain all
regularity properties for the universally Baire sets.
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hereditarily ordinal definable sets of V. Moreover, it
can also be argued that Ultimate-L satisfies a minim-
ality property similar to that of Godel's L, since
another non-trivial property of Woodin’s axiom is
that V' cannot be obtained by forcing over some
smaller submodel.

The name Ultimate-L is evocative, but its appro-
priateness still depends on the possibility to show its
compatibility with large cardinal axioms. This is the
content of the so called V = Ultimate-L conjecture.
A positive solution of this conjecture would be, in
Woodin’s opinion, the culmination of an important
line of research, called Inner model program, which
tries to build canonical models of set theory that
display similarities with L, but that nonetheless are
compatible with all known large cardinals.

The V = Ultimate-L conjecture is still open,
although there are speculative arguments suggest-
ing that it might not be possible to prove it. Indeed,
the following interesting connection between large
cardinals and Cohen’s forcing method has been
observed. Namely, if from large cardinal axioms it
can be proved that a sentence is forcibly necessary,
then it is often the case that higher large cardinals
can prove that the same sentence holds in V. For a
sentence ¢, being forcibly necessary means that we
can use forcing to build a model of ZFC where ¢
holds, and such that we cannot apply forcing once
again, over that model, in order to falsify ¢. An
example of this phenomenon is given by the sen-
tence asserting that all projective sets are Lebesgue
measurable. Indeed, assuming the existence of a
strong cardinal, this sentence is forcibly necessary,
while assuming the existence of infinitely many
Woodin cardinals it is just true; notice that if J is a
Woodin cardinal (Vj, €,=) models that there is a
strong cardinal. Now, it has been shown that under
large cardinals the negation of V = Ultimate-L is
forcibly necessary. Therefore, if the phenomenon
we described above generalizes, it could give means
to disprove the V = Ultimate-L conjecture. Of course
these are just mere speculations, only actual proofs
can give definite answers.

In our opinion if the V = Ultimate-L conjecture is
true, there are good “extrinsic” reasons to accept
Woodin’s axiom V = Ultimate-L, given the nice pic-
ture of the universe of sets it provides, its ability to
settle almost all questions which remain undecidable

on the basis of ZFC, and its compatibility with large
cardinal axioms.

It is unclear at this stage if these two programs
can succeed and, if so, whether they will be able to
refute each other beyond any reasonable doubt, or
coexist harmoniously as it occurred finally for the
Axiom of Choice and Determinacy hypotheses. What
is striking is the effort of both programs in keeping
up with Hilbert’s rationalistic belief in the possibility
to find a clear solution to all mathematical problems.
This belief, far from being an unjustified hope, re-
presents in our opinion the very essence of the study
of the infinite; contrary to Kronecker’s dictum, this
study has proved to be fruitful and rewarding.
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