bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Varagnolo, Michela:
Su un teorema di Ariki
Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana Serie 1 3 (2018), fasc. n.1, p. 31-44, (Italian)
pdf (1.01 MB), djvu (229 Kb). | MR 3821681 | Zbl 1397.20014

Sunto

In questa nota si vuole introdurre il lettore alla teoria delle rappresentazioni. Presenteremo un risultato di Ariki del 1996, un esempio delle tecniche recenti che usano le interazioni tra le differenti teorie (rappresentazioni di gruppi, di algebre associative, di algebre di Lie) e con la geometria (ma faremo solo un cenno alla fine su quest'ultimo punto).
Referenze Bibliografiche
[1] ARIKI, S., On the decomposition numbers of the Hecke algebra of $G(m; 1; n)$, J. Math. Kyoto Univ., 36 (4) (1996), 789-808. | fulltext (doi) | MR 1443748 | Zbl 0888.20011
[2] CHRISS, N., GINZBURG, Representation Theory and Complex Geometry, Birkhäuser (1997). | MR 1433132 | Zbl 0879.22001
[3] DIPPER, R., JAMES, G.D., Representations of Hecke algebras of general linear groups, Proc. London Math. Soc., 52 (1986), 20-52. | fulltext (doi) | MR 812444 | Zbl 0587.20007
[4] ELIAS, B., WILLIAMSON, G., The Hodge Theory of Soergel bimodules, Annals of Maths. 180 (2014), 1- 48. | fulltext (doi) | MR 3245013 | Zbl 1326.20005
[5] GECK, M., HISS, G., MALLE, G., Towards a classification of the irreducible representations in non-describing characteristic of a finite group of Lie type, Math. Z. 221 (1996), no. 3, 353-386. | fulltext EuDML | fulltext (doi) | MR 1381586 | Zbl 0858.20008
[6] GOODMAN, F., WENZL, H., Crystal bases of quantum affine algebras and affine Kazhdan-Lusztig polynomials, Internat. Math. Res. Notices, 5 (1999), 251-275. | fulltext (doi) | MR 1675980 | Zbl 1027.17011
[7] HAYASHI, T., q-analogue of Clifford and Weil algebras-Spinor and oscillator representations of quantum enveloping algebra, Comm. Math. Phys., 127 (1999), 129-144. | MR 1036118 | Zbl 0701.17008
[8] HUMPHREYS, J. E., Introduction to Lie Algebras and Representation Theory, Springer-Verlag, third printing, revised (1980). | MR 499562 | Zbl 0447.17002
[9] HUMPHREYS, J. E., Reflection Groups and Coxeter Groups, Cambride University Press (1990). | fulltext (doi) | MR 1066460 | Zbl 0725.20028
[10] JAMERS, G., The decomposition matrices of $GL_n(q)$ for $n \leq 10$, Proc. Lond. Math. Soc., 60 (1990), 225-265. | fulltext (doi) | MR 1031453
[11] JIMBO, M., A q-analogue of $U(\mathfrak{gl}(N + 1))$, Hecke algebra and the Yang-Baxter equation, Lett. Math. Phys., 11 (1986), 247-252. | fulltext (doi) | MR 841713 | Zbl 0602.17005
[12] JONES V. F. R., Hecke algebra representations of braid groups, Annals of Math., 126 (2) (1987), 335-388. | fulltext (doi) | MR 908150 | Zbl 0631.57005
[13] JIMBO, M., MISRA, K., MIWA, T., OKADO, M., Combinatorics of representations of $U_q(\widehat{\mathfrak{sl}}(n))$ at $q = 0$, Comm. Math. Phys., 136 (1991), 543-566. | MR 1099695 | Zbl 0749.17015
[14] KASHIWARA, M., On crystal bases of q-analogue of universal enveloping algebra, Duke Math. J., 63 (1991), 465-516. | fulltext (doi) | MR 1115118 | Zbl 0739.17005
[15] KASHIWARA, M., On crystal bases, CMS Conf. Proc., 16 (1995), 155-197. | MR 1357199 | Zbl 0851.17014
[16] KAC, V.G., Infinite Dimensional Lie Algebras (third edition), Cambridge University Press, (1990). | fulltext (doi) | MR 1104219 | Zbl 0716.17022
[17] KRONHEIMER, P.B., MROWKA, T. S., Khovanov homology is an unknot-detector, Publ. Math. Inst. Hautes Études Sci., 113 (2011), 97-208. | fulltext (doi) | MR 2805599 | Zbl 1241.57017
[18] LASCOUX, A., LECLERC, B., THIBON, J-Y., Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Commun. Math. Phys., 181 (1996), 205-263. | MR 1410572 | Zbl 0874.17009
[19] MISRA, K., MIWA, T., Crystal base for the basic representation of $U_q(\widehat{\mathfrak{sl}}(n))$, Comm. Math. Phys., 134 (1990), 79-88. | MR 1079801 | Zbl 0724.17010
[20] SAGAN, B. E., The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Functions, GTM Springer (2001). | fulltext (doi) | MR 1824028 | Zbl 0964.05070
[21] VARAGNOLO, M., VASSEROT, E., On the decomposition matrices of the quantized Schur algebra, Duke Math. J., 100 (1999), 267-297. | fulltext (doi) | MR 1722955 | Zbl 0962.17006
[22] WILLIAMSON, G., Schubert calculus and torsion explosion, J. AMS, 30 (2017), 1023-1046. | fulltext (doi) | MR 3671935 | Zbl 1380.20015

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali