bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Ulcigrai, Corinna:
Biliardi matematici, caos e ciambelle “infinite”: perché i matematici “giocano” a biliardo, dai poligoni al modellodi Ehrenfest
Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana Serie 1 3 (2018), fasc. n.1, p. 13-30, (Italian)
pdf (2.18 MB), djvu (692 Kb). | MR 3821680 | Zbl 1397.37041

Sunto

I biliardi matematici sono un'idealizzazione del gioco del biliardo. Molti modelli di sistemi fisici, ad esempio in meccanica e termodinamica, sono rappresentati da biliardi matematici. Dal punto di vista matematico, i biliardi costituiscono anche un modello molto ricco di comportamento caotico. Le proprietà matematiche che caratterizzano diversi gradi di caos dipendono fortemente dalla forma del tavolo da biliardo. In questo articolo introduttivo sui biliardi esploreremo soprattutto il comportamento delle traiettorie in certi biliardi poligonali (razionali ), sia finiti che infiniti (come il famoso modello di Ehrenfest ) e cercheremo di dare un'idea degli strumenti matematici usati per studiarli, dallo srotolamento alla rinormalizzazione.
Referenze Bibliografiche
[1] A. AVILA and P. HUBERT, Recurrence for the wind-tree model, to appear in Ann. Inst. H. Poincaré Anal. Non Linéaire.
[2] V. DELECROIX and A. ZORICH, Cries and whispers in wind-tree forests, preprint arXiv:1502.06405.
[3] V. DELECROIX, P. HUBERT and S. LELIÈVRE, Diffusion for the periodic wind-tree model, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), 1085-1110. | fulltext (doi) | MR 3297155 | Zbl 1351.37159
[4] A. ESKIN, M. MIRZAKHANI and A. MOHAMMADI, Isolation, equidistribution and orbit closures for the SL(2,R) action on moduli space, Ann. of Math. (2) 182 (2015), 673-721. | fulltext (doi) | MR 3418528 | Zbl 1357.37040
[5] C. DETTMANN, Diffusion in the Lorentz Gas, Comm. Theoretical Physics 62 (2014), no. 4, 521-540. | fulltext (doi) | MR 3363162 | Zbl 1301.37022
[6] K. FRĄCZEK and C. ULCIGRAI, Non-ergodic Z-periodic billiards and infinite translation surfaces, Invent. Math. 197 (2014), 241-298. | fulltext (doi) | MR 3232007 | Zbl 1316.37006
[7] K. FRĄCZEK and C. ULCIGRAI, Ergodic directions for billiards in a strip with periodically located obstacles, Comm. Math. Phys. 327 (2014), no. 2, 643-663. | fulltext (doi) | MR 3183412 | Zbl 1347.37071
[8] M. FRIBERGER, Chaos on the mathematical table, Plus Magazine (2014) https://plus.maths.org/content/chaos-billiard-table
[9] M. FRIBERGER, Caos sul tavolo da biliardo, traduzione di A. Betti, http://www.xlatangente.it/upload/files/XlaTangente_04_online_ulcigrai.pdf
[10] M. FRIBERGER, Playing billiards on doughnuts, Plus Magazine (2014) https://plus.maths.org/content/billiards-donuts
[11] S. GLASHOW and L. MITTAG, Three rods on a ring and the triangular billiard, J. Statist. Phys. 87 (1997), no. 3-4, 937-941. | fulltext (doi) | MR 1459047 | Zbl 0952.70501
[12] S. GRAFFI, M. DEGLI ESPOSTI, Fisica Matematica Discreta, Unitext (2008).
[13] P. HOOPER, P. HUBERT and B. WEISS, Dynamics on the infinite staircase, Discrete Contin. Dyn. Syst. 33 (2013), no. 9, 4341-4347. | fulltext (doi) | MR 3038066 | Zbl 1306.37043
[14] P. HOOPER and R. SCHWARTZ, Billiards in nearly isosceles triangles., J. Mod. Dyn. 3 (2009), no. 2, 159-231. | fulltext (doi) | MR 2504742 | Zbl 1203.37073
[15] P. HOOPER and R. SCHWARTZ, program McBilliards available at http://www.math.brown.edu/res/Billiards/index.html
[16] S. KERCKHOFF, H. MASUR and J. SMILLIE, Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2) 124 (1986), 293-311. | fulltext (doi) | MR 855297 | Zbl 0637.58010
[17] S. KERCKHOFF, H. MASUR and J. SMILLIE, Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2) 124 (1986), 293-311. | fulltext (doi) | MR 855297 | Zbl 0637.58010
[18] C. LIVERANI Transport in partially hyperbolic fast-slow systems, preprint arxiv:1803.06137.
[19] J. MARKLOF The low-density limit of the Lorentz gas: periodic, aperiodic and random, Proceedings of the International Congress of Mathematicians, Seoul 2014. Vol. III, 623-646, Kyung Moon Sa, Seoul, 2014. | MR 3729044 | Zbl 1373.82065
[20] H. MASUR, Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982), no. 1, 169-200. | fulltext (doi) | MR 644018 | Zbl 0497.28012
[21] H. MASUR and J. SMILLIE, Hausdorff dimension of sets of nonergodic measured foliations, Ann. of Math. (2) 134 (1991), no. 3, 455-543. | fulltext (doi) | MR 1135877 | Zbl 0774.58024
[22] H. MASUR and S. TABACHNIKOV, Rational billiards and flat structures, in Handbook of dynamical systems, Vol. 1A, 1015-1089, North-Holland, Amsterdam, 2002. | fulltext (doi) | MR 1928530 | Zbl 1057.37034
[23] C. MATHEUS, Diffusion in Ehrenfest wind-tree model, in the blog Disquisitiones Mathematicae (posted on November 18, 2011) https://matheuscmss.wordpress.com/2011/11/18/diffusion-in-ehrenfest-wind-tree-model/
[24] D. RALSTON and S. TROUBETZKOY, Ergodic infinite group extensions of geodesic flows on translation surfaces, J. Mod. Dyn. 6 (2012), no. 4, 477-497. | fulltext (doi) | MR 3008407 | Zbl 1262.37007
[25] J. SMILLIE, The dynamics of billiard flows in rational polygons, Chapter IV in Encyclopaedia of Mathematical Sciences, 100. Mathematical Physics, I. Springer-Verlag, Berlin, 2000, 360-382. | Zbl 1323.37002
[26] S. TABACHNIKOV, Geometry and Billiards, Student Mathematical Library, vol. 30, American Mathematical Society, Providence, RI, 2005. | fulltext (doi) | MR 2168892
[27] C. ULCIGRAI, Billiards, Pretzels... and Chaos and Mathematical billiards and Flows on Surfaces slides presentations, available on webpage https://people.maths.bris.ac.uk/ maxcu/Slides.html | MR 3821680
[28] W. VEECH, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2) 115 (1982), no. 1, 201-242. | fulltext (doi) | MR 644019 | Zbl 0486.28014
[29] A. ZORICH, Flat surfaces, Frontiers in number theory, physics, and geometry. I, 437-583, Springer, Berlin, 2006 (preprint arXiv:math/0609392 available on https://arxiv.org/abs/math/0609392).
[30] A. ZORICH, Le théorème de la baguette magique de A. Eskin et M. Mirzakhani, Gazette des Mathématiciens no. 142 (2014), edited by SMF, English translation The Magic Wand Theorem of A. Eskin and M. Mirzakhani available on arXiv https://arxiv.org/pdf/1502.05654.pdf | MR 3278429

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali