bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Bambusi, Dario and Maspero, Alberto:
Sistemi integrabili infinito dimensionali e loro perturbazioni
Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana Serie 1 2 (2017), fasc. n.3, p. 309-326, (Italian)
pdf (410 Kb), djvu (324 Kb). | MR 3753847

Sunto

Durante gli ultimi 50 anni, sono stati fatti enormi progressi nella comprensione del comportamento qualitativo di equazioni a derivate parziali non lineari. In modo specifico, l'estensione a questo ambito dei metodi della meccanica Hamiltoniana ha permesso dapprima di capire che esiste un'intera classe di equazioni, chiamate ``integrabili'', le cui soluzioni hanno sempre carattere ricorrente, e successivamente di cominciare a comprendere ciò che avviene quando queste equazioni sono perturbate e danno luogo a sistemi in cui possono coesistere comportamenti regolari e comportamenti turbolenti. Nel nostro articolo, presenteremo alcuni dei risultati di questa teoria, a partire dalle sue origini fino a oggi, e discuteremo alcuni dei più importanti problemi aperti.
Referenze Bibliografiche
[1] V. I. ARNOLD. Metodi Matematici della Meccanica Classica. Editori Riuniti, 1979.
[2] V. I. ARNOLD. Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian. Uspehi Mat. Nauk, 18(5 (113)):13-40, 1963. | MR 163025
[3] V. I. ARNOLD. Instability of dynamical systems with many degrees of freedom. Dokl. Akad. Nauk SSSR, 156:9-12, 1964. | MR 163026
[4] P. BALDI, M. BERTI, and R. MONTALTO. KAM for quasilinear and fully nonlinear forced perturbations of Airy equation. Math. Ann., 359(1-2):471-536, 2014. | fulltext (doi) | MR 3201904 | Zbl 1350.37076
[5] D. BAMBUSI, J.-M. DELORT, B. GRÉBERT, and J. SZEFTEL. Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds. Comm. Pure Appl. Math., 60(11):1665-1690, 2007. | fulltext (doi) | MR 2349351 | Zbl 1170.35481
[6] D. BAMBUSI and B. GRÉBERT. Birkhoff normal form for partial differential equations with tame modulus. Duke Math. J., 135(3):507-567, 2006. | fulltext (doi) | MR 2272975 | Zbl 1110.37057
[7] D. BÄTTIG, A. M. BLOCH, J.-C. GUILLOT, and T. KAPPELER. On the symplectic structure of the phase space for periodic KdV, Toda, and defocusing NLS. Duke Math. J., 79(3):549-604, 1995. | fulltext (doi) | MR 1355177 | Zbl 0855.58035
[8] P. BERNARD, V. KALOSHIN, and K. ZHANG. Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders. Acta Math., 217(1):1-79, 2016. | fulltext (doi) | MR 3646879 | Zbl 1368.37068
[9] M. BERTI, L. CORSI, and M. PROCESI. An abstract Nash-Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds. Comm. Math. Phys., 334(3):1413-1454, 2015. | fulltext (doi) | MR 3312439 | Zbl 1312.35157
[10] J. BOURGAIN. Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom. Funct. Anal., 5(4):629-639, 1995. | fulltext EuDML | fulltext (doi) | MR 1345016 | Zbl 0834.35083
[11] J. BOURGAIN. Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. of Math. (2), 148(2):363-439, 1998. | fulltext (doi) | MR 1668547 | Zbl 0928.35161
[12] J. BOURGAIN. Green's function estimates for lattice Schrödinger operators and applications, volume 158 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2005. | fulltext (doi) | MR 2100420
[13] J. BOUSSINESQ. Essai sur la théorie des eaux courantes. Mémoires présentées par divers savants à l'Académie des Sciences. Imprimerie Nationale, 1877.
[14] J. COLLIANDER, M. KEEL, G. STAFFILANI, H. TAKAOKA, and T. TAO. Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Invent. Math., 181(1):39-113, 2010. | fulltext (doi) | MR 2651381 | Zbl 1197.35265
[15] P. J. DAVIS, R. HERSH, and E. A. MARCHISOTTO. The mathematical experience. Birkhäuser Boston, Inc., Boston, MA, study edition, 1995. With an introduction by Gian-Carlo Rota. | MR 1347448 | Zbl 0837.00001
[16] J.-M. DELORT. Quasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres. Mem. Amer. Math. Soc., 234(1103):vi+80, 2015. | fulltext (doi) | MR 3288855 | Zbl 1315.35003
[17] B. A. DUBROVIN. A periodic problem for the Korteweg-de Vries equation in a class of short-range potentials. Funkcional. Anal. i Priložen., 9(3):41-51, 1975. | MR 486780
[18] B. A. DUBROVIN, V. B. MATVEEV, and S. P. NOVIKOV. Nonlinear equations of Korteweg-de Vries type, finiteband linear operators and Abelian varieties. Uspehi Mat. Nauk, 31(1(187)):55-136, 1976. | MR 427869 | Zbl 0326.35011
[19] B. A. DUBROVIN and S. P. NOVIKOV. Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg-de Vries equation. Ž. Èksper. Teoret. Fiz., Z 67(6):2131-2144, 1974. | MR 382877
[20] L. H. ELIASSON and S. B. KUKSIN. KAM for the nonlinear Schrödinger equation. Ann. of Math. (2), 172(1):371-435, 2010. | fulltext (doi) | MR 2680422 | Zbl 1201.35177
[21] H. FLASCHKA and D. W. MCLAUGHLIN. Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions. Progr. Theoret. Phys., 55(2):438-456, 1976. | fulltext (doi) | MR 403368 | Zbl 1109.35374
[22] J. GARNETT and E. TRUBOWITZ. Gaps and bands of onedimensional periodic Schrödinger operators. Comment. Math. Helv., 59(2):258-312, 1984. | fulltext EuDML | fulltext (doi) | MR 749109 | Zbl 0554.34013
[23] P. GÉRARD and S. GRELLIER. The cubic Szego equation. Ann. Sci. Éc. Norm. Supér. (4), 43(5):761-810, 2010. | fulltext EuDML | MR 2721876 | Zbl 1228.35225
[24] A. GIORGILLI. Quasiperiodic motions and stability of the solar system. I. From epicycles to Poincaré's homoclinic point. Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (8), 10(1):55-83, 2007. | fulltext bdim | fulltext EuDML | MR 2320481 | Zbl 1277.70015
[25] A. GIORGILLI. Quasiperiodic motions and stability of the solar system. II. From Kolmogorov's tori to exponential stability. Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (8), 10(3):465-495, 614, 2007. | fulltext bdim | fulltext EuDML | MR 2394380
[26] M. GUARDIA, E. HAUS, and M. PROCESI. Growth of Sobolev norms for the analytic NLS on $\mathbb{T}^2$. Adv. Math., 301:615-692, 2016. | fulltext (doi) | MR 3539385 | Zbl 1353.35260
[27] Z. HANI, P. PAUSADER, N. TZVETKOV and N. VISCIGLIA. Modified scattering for the cubic Schrödinger equation on product spaces and applications. Forum of Math. Pi, 3, 2015. | fulltext (doi) | MR 3406826 | Zbl 1326.35348
[28] H. HOCHSTADT. Estimates of the stability intervals for Hill's equation. Proc. Amer. Math. Soc., 14:930-932, 1963. | fulltext (doi) | MR 156023 | Zbl 0122.09202
[29] T. KAPPELER. Fibration of the phase space for the Korteweg-de Vries equation. Ann. Inst. Fourier (Grenoble), 41(3):539-575, 1991. | fulltext EuDML | MR 1136595 | Zbl 0731.58033
[30] T. KAPPELER and J. PÖSCHEL. KAM & KdV. Springer, 2003. | fulltext (doi) | MR 1997070
[31] T. KAPPELER and P. TOPALOV. Global wellposedness of KdV in $H^{-1}(\mathbb{T}; \mathbb{R})$. Duke Math. J., 135(2):327-360, 2006. | fulltext (doi) | MR 2267286 | Zbl 1106.35081
[32] A. N. KOLMOGOROV. On conservation of conditionally periodic motions for a small change in Hamilton's function. Dokl. Akad. Nauk SSSR (N.S.), 98:527-530, 1954. | MR 68687 | Zbl 0056.31502
[33] D. D. J. KORTEWEG and D. G. DE VRIES. Xli. on the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philosophical Magazine Series 5, 39(240):422-443, 1895. | fulltext (doi) | MR 3363408 | Zbl 26.0881.02
[34] S. B. KUKSIN. Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funktsional. Anal. i Prilozhen., 21(3):22-37, 95, 1987. | MR 911772 | Zbl 0631.34069
[35] S. B. KUKSIN. Nearly integrable infinite-dimensional Hamiltonian systems, volume 1556 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1993. | fulltext (doi) | MR 1290785 | Zbl 0784.58028
[36] P. D. LAX. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math., 21:467-490, 1968. | fulltext (doi) | MR 235310 | Zbl 0162.41103
[37] V. A. MARCENKO and I. V. OSTROVSKI. A characterization of the spectrum of hill's operator. Mathematics of the USSR-Sbornik, 26(4):493, 1975. | MR 409965
[38] V. A. MARCHENKO. Sturm-Liouville operators and applications, volume 22 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 1986. Translated from the Russian by A. Iacob. | fulltext (doi) | MR 897106
[39] H. P. MCKEAN and E. TRUBOWITZ. Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points. Comm. Pure Appl. Math., 29(2):143-226, 1976. | fulltext (doi) | MR 427731 | Zbl 0339.34024
[40] J. MOSER. On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen Math.Phys. Kl. II, 1962:1-20, 1962. | MR 147741 | Zbl 0107.29301
[41] N. N. NEKHOROSHEV. Behavior of hamiltonian systems close to integrable. Functional Analysis and Its Applications, 5(4):338-339, 1971. | MR 294813 | Zbl 0254.70015
[42] H. POINCARÉ. Les méthodes nouvelles de la mécanique céleste: Solutions périodiques. Non-existence des intégrales uniformes. Solutions asymptotiques. 1892. Les méthodes nouvelles de la mécanique céleste. Gauthier-Villars et fils, 1892. | MR 926906 | Zbl 24.1130.01
[43] J. PÖSCHEL. A KAM-theorem for some nonlinear partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23(1):119-148, 1996. | fulltext EuDML | MR 1401420
[44] G. SCHNEIDER and C. E. WAYNE. The long-wave limit for the water wave problem. I. The case of zero surface tension. Comm. Pure Appl. Math., 53(12):1475-1535, 2000. | fulltext (doi) | MR 1780702 | Zbl 1034.76011
[45] J. SCOTT RUSSELL. Report on waves, Fourteenth meeting of the British Association for the Advancement of Science, 1844.
[46] E. TRUBOWITZ. The inverse problem for periodic potentials. Comm. Pure Appl. Math., 30(3):321-337, 1977. | fulltext (doi) | MR 430403 | Zbl 0403.34022
[47] C. E. WAYNE. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Comm. Math. Phys., 127(3):479-528, 1990. | MR 1040892 | Zbl 0708.35087
[48] N. J. ZABUSKY and M. D. KRUSKAL. Interaction of "solitons" in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett., 15:240-243, Aug 1965. | Zbl 1201.35174

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali