bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Benedetti, Riccardo and Mantegazza, Carlo:
La Congettura di Poincaré e il Flusso di Ricci
Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana Serie 1 2 (2017), fasc. n.3, p. 245-289, (Italian)
pdf (2.17 MB), djvu (1.3 MB). | MR 3753845

Sunto

Si intende presentare, almeno in parte, l'imponente intreccio di idee, tecniche e acquisizioni concettuali che si è sviluppato intorno alla congettura di Poincaré, dalla sua formulazione agli inizi del secolo scorso fino alla soluzione data da Grisha Perelman agli inizi del nuovo millennio, portando a compimento il programma basato sullo studio del flusso di Ricci di metriche riemanniane su una data 3-varietà, delineato e sviluppato da Richard Hamilton dagli anni '80. Pur nei limiti e nelle possibilità di un articolo di rassegna, si è voluto presentare in modo matematicamente compiuto almeno alcune delle nozioni ed idee cruciali, a partire dalla formulazione stessa della congettura, disponendo soltanto di nozioni di base di algebra lineare, geometria e calcolo differenziale negli spazi euclidei $\mathbb{R}^n$, che si suppongono familiari al lettore. Ne risulterà probabilmente una lettura "impegnativa", non necessariamente "ricreativa", che però, almeno nelle intenzioni degli autori, dovrebbe ripagare il lettore con un'immagine piuttosto fedele di questi formidabili processi intellettuali, individuali e collettivi, che compongono una delle pagine più belle e profonde della storia della matematica.
Referenze Bibliografiche
[1] J. W. ALEXANDER, An example of a simply connected surface bounding a region which is not simply connected, Proc. Nat. Acad. Sci. USA 10 (1924), no. 1, 8-10.
[2] R. BENEDETTI and C. PETRONIO, Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 1992. | fulltext (doi) | MR 1219310 | Zbl 0768.51018
[3] L. BESSIEÁRES, Conjecture de Poincaré: la preuve de R. Hamilton et G. Perelman, Gazette des Mathématiciens 106 (2005), 7-35. | MR 3087240
[4] L. BESSIEÁRES, G. BESSON, M. BOILEAU, S. MAILLOT, and J. PORTI, Geometrisation of 3-manifolds, EMS Tracts in Mathematics, vol. 13, European Mathematical Society (EMS), Zürich, 2010. | fulltext (doi) | MR 2683385 | Zbl 1244.57003
[5] S. BRENDLE, Convergence of the Yamabe flow for arbitrary initial energy, J. Diff. Geom. 69 (2005), no. 2, 217-278. | MR 2168505 | Zbl 1085.53028
[6] H.-D. CAO and X.-P. ZHU, A complete proof of the Poincaré and geometrization conjectures - application of the Hamilton-Perelman theory of the Ricci flow, Asian J. Math. 10 (2006), no. 2, 165-492. | fulltext (doi) | MR 2233789 | Zbl 1200.53057
[7] X. CHEN, P. LU, and G. TIAN, A note on uniformization of Riemann surfaces by Ricci flow, Proc. Amer. Math. Soc. 134 (2006), no. 11, 3391-3393 (electronic). | fulltext (doi) | MR 2231924 | Zbl 1113.53042
[8] T. H. COLDING and W. P. MINICOZZI II, Width and finite extinction time of Ricci flow, Geom. Topol. 12 (2008), no. 5, 2537-2586. | fulltext (doi) | MR 2460871 | Zbl 1161.53352
[9] S. K. DONALDSON, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), no. 2, 279-315. | MR 710056 | Zbl 0507.57010
[10] K. ECKER, Regularity theory for mean curvature flow, Progress in Nonlinear Differential Equations and their Applications, 57, Birkhäuser Boston Inc., Boston, MA, 2004. | fulltext (doi) | MR 2024995
[11] J. ELLS Jr. and J. H. SAMPSON, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. | fulltext (doi) | MR 164306 | Zbl 0122.40102
[12] M. H. FREEDMAN, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), no. 3, 357-453. | MR 679066 | Zbl 0528.57011
[13] D. GABAI, Foliations and the topology of 3-manifolds, Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 1, 77-80. | fulltext (doi) | MR 682826 | Zbl 0539.57013
[14] M. GAGE, An isoperimetric inequality with applications to curve shortening, Duke Math. J. 50 (1983), no. 4, 1225-1229. | fulltext (doi) | MR 726325 | Zbl 0534.52008
[15] M. GAGE, Curve shortening makes convex curves circular, Invent. Math. 76 (1984), 357-364. | fulltext EuDML | fulltext (doi) | MR 742856 | Zbl 0542.53004
[16] M. GAGE and R. S. HAMILTON, The heat equation shrinking convex plane curves, J. Diff. Geom. 23 (1986), 69-95. | MR 840401 | Zbl 0621.53001
[17] S. GALLOT, D. HULIN, and J. LAFONTAINE, Riemannian geometry, Springer-Verlag, 1990. | fulltext (doi) | MR 1083149
[18] M. A. GRAYSON, The heat equation shrinks embedded plane curves to round points, J. Diff. Geom. 26 (1987), 285-314. | MR 906392 | Zbl 0667.53001
[19] L. GUILLOU and A. MARIN (eds.), À la recherche de la topologie perdue, Progress in Mathematics, vol. 62, Birkhäuser Boston, Inc., Boston, MA, 1986, I. Du côté de chez Rohlin. II. Le côté de Casson. [I. Rokhlin's way. II. Casson's way]. | MR 900243 | Zbl 0597.57001
[20] R. S. HAMILTON, Three-manifolds with positive Ricci curvature, J. Diff. Geom. 17 (1982), no. 2, 255-306. | MR 664497 | Zbl 0504.53034
[21] R. S. HAMILTON, Four-manifolds with positive curvature operator, J. Diff. Geom. 24 (1986), no. 2, 153-179. | MR 862046 | Zbl 0628.53042
[22] R. S. HAMILTON, The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986), Contemp. Math., vol. 71, Amer. Math. Soc., Providence, RI, 1988, pp. 237-262. | fulltext (doi) | MR 954419
[23] R. S. HAMILTON, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), Int. Press, Cambridge, MA, 1995, pp. 7-136. | MR 1375255
[24] R. S. HAMILTON, Four-manifolds with positive isotropic curvature, Comm. Anal. Geom. 5 (1997), no. 1, 1-92. | fulltext (doi) | MR 1456308 | Zbl 0892.53018
[25] W. JACO, Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics, vol. 43, American Mathematical Society, Providence, R.I., 1980. | MR 565450 | Zbl 0433.57001
[26] K. JOHANNSON, Homotopy equivalences of 3-manifolds with boundaries, Lecture Notes in Mathematics, vol. 761, Springer, Berlin, 1979. | MR 551744 | Zbl 0412.57007
[27] M. A. KERVAIRE and J. W. MILNOR, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504-537. | fulltext (doi) | MR 148075 | Zbl 0115.40505
[28] R. KIRBY, A calculus for framed links in $S^3$, Invent. Math. 45 (1978), no. 1, 35-56. | fulltext EuDML | fulltext (doi) | MR 467753 | Zbl 0377.55001
[29] B. KLEINER and J. LOTT, Notes on Perelman's papers, ArXiv Preprint Server - http://arxiv.org, 2006. | fulltext (doi) | MR 2460872
[30] B. KLEINER and J. LOTT, Notes on Perelman's papers, Geom. Topol. 12 (2008), no. 5, 2587-2855. | fulltext (doi) | MR 2460872 | Zbl 1204.53033
[31] W. B. R. LICKORISH, A representation of orientable combinatorial 3-manifolds, Ann. of Math. (2) 76 (1962), 531-540. | fulltext (doi) | MR 151948 | Zbl 0106.37102
[32] C. MANTEGAZZA, Lecture notes on mean curvature flow, Progress in Mathematics, vol. 290, Birkhäuser/Springer Basel AG, Basel, 2011. | fulltext (doi) | MR 2815949 | Zbl 1230.53002
[33] J. W. MILNOR, On manifolds homeomorphic to the 7-sphere, Ann. of Math. (2) 64 (1956), 399-405. | fulltext (doi) | MR 82103 | Zbl 0072.18402
[34] J. W. MILNOR, A unique decomposition theorem for 3-manifolds, Amer. J. Math. 84 (1962), 1-7. | fulltext (doi) | MR 142125 | Zbl 0108.36501
[35] J. W. MILNOR, Lectures on the h-cobordism theorem, Notes by L. Siebenmann and J. Sondow, Princeton University Press, Princeton, N.J., 1965. | MR 190942 | Zbl 0161.20302
[36] J. W. MILNOR, Topology from the differentiable viewpoint, Based on notes by David W. Weaver, The University Press of Virginia, Charlottesville, Va., 1965. | MR 226651 | Zbl 0136.20402
[37] E. E. MOISE, Geometric topology in dimensions 2 and 3, Springer-Verlag, New York-Heidelberg, 1977, Graduate Texts in Mathematics, Vol. 47. | MR 488059 | Zbl 0349.57001
[38] J. MORGAN, The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes, vol. 44, Princeton University Press, Princeton, NJ, 1996. | MR 1367507 | Zbl 0846.57001
[39] J. MORGAN and G. TIAN, Ricci flow and the Poincaré conjecture, ArXiv Preprint Server - http://arxiv.org, 2006. | MR 2334563
[40] J. MORGAN and G. TIAN, Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs, vol. 3, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2007. | MR 2334563
[41] J. MORGAN and G. TIAN, Completion of the proof of the geometrization conjecture, ArXiv Preprint Server - http://arxiv.org, 2008. | MR 3186136
[42]J. MORGAN and G. TIAN, The geometrization conjecture, Clay Mathematics Monographs, vol. 5, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2014. | MR 3186136 | Zbl 1302.53001
[43] W. D. NEUMANN and G. A. SWARUP, Canonical decompositions of 3-manifolds, Geom. Topol. 1 (1997), 21-40 (electronic). | fulltext EuDML | fulltext (doi) | MR 1469066 | Zbl 0886.57009
[44] M. H. A. NEWMAN, The engulfing theorem for topological manifolds, Ann. of Math. (2) 84 (1966), 555-571. | fulltext (doi) | MR 203708 | Zbl 0166.19801
[45] G. PERELMAN, The entropy formula for the Ricci flow and its geometric applications, ArXiv Preprint Server http://arxiv.org, 2002. | Zbl 1130.53001
[46] G. PERELMAN, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, ArXiv Preprint Server - http://arxiv.org, 2003. | Zbl 1130.53003
[47] G. PERELMAN, Ricci flow with surgery on three-manifolds, ArXiv Preprint Server - http://arxiv.org, 2003. | Zbl 1130.53002
[48] P. PETERSEN, Riemannian geometry, second ed., Graduate Texts in Mathematics, vol. 171, Springer, New York, 2006. | MR 2243772
[49] C. P. ROURKE and B. J. SANDERSON, Introduction to piecewise-linear topology, Springer-Verlag, New York-Heidelberg, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69. | MR 350744 | Zbl 0254.57010
[50] H. SCHWETLICK and M. STRUWE, Convergence of the Yamabe flow for "large" energies, J. Reine Angew. Math. 562 (2003), 59-100. | fulltext (doi) | MR 2011332 | Zbl 1079.53100
[51] S. SMALE, Generalized Poincaré's conjecture in dimensions greater than four, Ann. of Math. (2) 74 (1961), 391-406. | fulltext (doi) | MR 137124 | Zbl 0099.39202
[52] S. SMALE, On the structure of manifolds, Amer. J. Math. 84 (1962), 387-399. | fulltext (doi) | MR 153022 | Zbl 0109.41103
[53] J. R. STALLINGS, Polyhedral homotopy-spheres, Bull. Amer. Math. Soc. 66 (1960), 485-488. | fulltext (doi) | MR 124905 | Zbl 0111.18901
[54] T. TAO, Perelman's proof of the Poincaré conjecture: a nonlinear PDE perspective, ArXiv Preprint Server http://arxiv.org, 2006. | MR 2647628
[55] W. P. THURSTON, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357-381. | fulltext (doi) | MR 648524 | Zbl 0496.57005
[56] W. P. THURSTON, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997, Edited by Silvio Levy. | MR 1435975 | Zbl 0873.57001
[57] F. WALDHAUSEN, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88. | fulltext (doi) | MR 224099 | Zbl 0157.30603
[58] A. H. WALLACE, Modifications and cobounding manifolds, Canad. J. Math. 12 (1960), 503-528. | fulltext (doi) | MR 125588 | Zbl 0108.36101
[59] B. WHITE, Evolution of curves and surfaces by mean curvature, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), 2002, pp. 525-538. | MR 1989203 | Zbl 1036.53045
[60] J. H. C. WHITEHEAD, A certain open manifold whose group is unity, Quart. J. Math. Oxford Ser. 6 (1939), 268-279. | MR 174464 | Zbl 61.0607.01
[61] J. H. C. WHITEHEAD, Certain theorems about three-dimensional manifolds (I), Quart. J. Math. Oxford Ser. 5 (1939), 308-320. | MR 174464 | Zbl 0010.27504
[62] R. YE, Global existence and convergence of Yamabe flow, J. Diff. Geom. 39 (1994), no. 1, 35-50. | MR 1258912 | Zbl 0846.53027
[63] E. C. ZEEMAN, The Poincaré conjecture for $n \leq 5$, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961), Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 198-204. | MR 140113

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali