bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Lacitignola, Deborah:
The Mathematical Beauty of Nature and Turing Pattern Formation
Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana Serie 1 1 (2016), fasc. n.2, p. 93-103, (English)
pdf (305 Kb), djvu (294 Kb). | MR 3586453 | Zbl 1404.92029

Sunto

Esiste davvero una bellezza matematica della natura? E la rivoluzionaria idea di Turing può fornire una chiave per decifrarla? In questo articolo si cerca di rispondere a questi interrogativi illustrando la genesi, le basi teoriche e l'impatto scientifico della teoria di Alan Turing sulla "pattern formation". Il quadro che emerge è quello di una teoria ancora di grande attualità, che continua ad affascinare per la sua forte interdisciplinarietà e per i tanti progressi che ha permesso di ottenere sia in ambito matematico che in campo chimico e biologico.
Referenze Bibliografiche
[1] J. BARD, I. LAUDER, How well does Turing's theory of morphogenesis work?, J. Theor. Biol. 45 (1974), 501-531.
[2] P. BORCKMANS, G. DEWEL, A. DE WIT, E. DULOS, J. BOISSONADE, F. GAUFFRE, P. DE KEPPER, Diffusive instabilities and chemical reactions, Int. J. Bif. and Chaos 12 (2002), 2307-2332. | fulltext (doi) | MR 1955990 | Zbl 1041.92049
[3] B. BOZZINI, D. LACITIGNOLA, C. MELE, I. SGURA, Coupling of morphology and chemistry leads to morphogenesis in electrochemical metal growth: a review of the reactiondiffusion approach, Acta Applic. Mathematicae 122 (2012), 53-68. | fulltext (doi) | MR 2993981 | Zbl 1256.35176
[4] B. BOZZINI, D. LACITIGNOLA, C. MELE, I. SGURA, Morphogenesis in metal electrodeposition, Note di Matem. 32 (2012), 7-46. | MR 2986386 | Zbl 1264.78027
[5] B. BOZZINI, D. LACITIGNOLA, I. SGURA, Spatio-temporal organisation in alloy electrodeposition: a morphochemical mathematical model and its experimental validation, Journal of Solid State Electrochemistry 17 (2013), 467-479. | fulltext (doi) | MR 3255052
[6] B. BOZZINI, G. GAMBINO, D. LACITIGNOLA, S. LUPO, M. SAMMARTINO, I. SGURA, Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth, Computers & Mathematics with Applications 70 (2015), 1948-1969. | fulltext (doi) | MR 3400498
[7] M. BREDEN, J.P. LESSARD, M. VANICAT, Global bifurcation diagrams of steady states of systems of PDEs via rigorous numerics: a 3-component reaction-diffusion system, Acta Applicandae Mathematicae 128 (2013), 113152. | fulltext (doi) | MR 3125637 | Zbl 1277.65088
[8] B. BUNOW, J.P. KERNEVEZ, G. JOLY, D. THOMAS, Pattern formation by reaction-diffusion instabilities: application to morphogenesis in Drosophila, J. Theor. Biol. 84 (1980), 629-649. | fulltext (doi) | MR 580762
[9] T.K. CALLAHAN, E. KNOBLOCH, Symmetry-breaking bifurcations on cubic lattices, Nonlinearity 10 (1997), 1179. | fulltext (doi) | MR 1473379 | Zbl 0909.58007
[10] T.K. CALLAHAN, E. KNOBLOCH, Pattern formation in three-dimensional reaction-diffusion systems, Physica D 132 (1999), 339. | fulltext (doi) | MR 1701288 | Zbl 0935.35065
[11] J.H. CLAXTON, The determination of patterns with special reference to that of the central primary skin follicles in sheep, J. Theor. Biol. 7 (1964), 302-317.
[12] E. CRAMPIN, E.A. GAFFNEY, P.K. MAINI, Reaction and diffusion on growing domains: scenarios for robust pattern formation, Bulletin Mathematical Biology 61 (1999), 1093-1120. | Zbl 1323.92028
[13] V. CASTETS, E. DULOS, J. BOISSONADE, P. DE KEPPER, Experimental evidence of a sustained standing Turing type nonequilibrium chemical pattern. Phys. Rev. Lett. 64 (1990), 2953.
[14] J.D. CRAWFORD, Introduction to bifurcation theory, Rev. Mod. Phys. 63 (1991), 991-1037. | fulltext (doi) | MR 1154113
[15] M.C. CROSS, P.C. HONENBERG, Pattern formation outside the equilibrium, Reviews in Modern Phys. 65 (1993), 851-1112.
[16] G.C. CRUYWAGEN, P.K. MAINI, J.D. MURRAY, Biological pattern formation on two-dimensional spatial domains: a nonlinear bifurcation analysis, SIAM J. Appl. Math. 57 (1993), 1485-1509. | fulltext (doi) | MR 1484938 | Zbl 0892.92003
[17] I.R. EPSTEIN, J.A. POJMAN, O. STEINBOCK, Introduction: Self-organization in non equilibrium chemical systems, Chaos 16 (2006), 037101. | Zbl 1146.92332
[18] G. GALILEI, Il Saggiatore, 1623.
[19] G. GAMBINO, M.C. LOMBARDO, M. SAMMARTINO, Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion, Math. Comp. Simul. 82 (2012), 1112-1132. | fulltext (doi) | MR 2903351 | Zbl 1320.35170
[20] G. GAMBINO, M.C. LOMBARDO, M. SAMMARTINO, Pattern formation driven by cross-diffusion in a 2D domain, Nonlinear Analysis: Real World Applications 14 (2013), 1755-1779. | fulltext (doi) | MR 3004535 | Zbl 1270.35088
[21] A. GARFINKEL, Y. TINTUT, D. PETRASEK, K. BOSTROM, L.L. DEMER, Pattern formation by vascular mesenchymal cells, Proc. Nat. Acad. Sci. USA 101 (2004), 9247-9250.
[22] B. HOUCHMANDZADEH, E. WIESCHAIS, S. LEIBLER, Establishment of developmental precision and proportions in the early Drosophila embryo. Nature 415 (2002), 798-802.
[23] A. HUNDING, P.G. SORENSEN, Size adaptation of Turing prepatterns, J. Math. Biol. 26 (1988), 27-39. | fulltext (doi) | MR 929968 | Zbl 0631.92003
[24] M. IPSEN, F. HYNNE, P.G. SORENSEN, Amplitude equations and chemical reaction-diffusion systems, Int. J. Bifurc. Chaos 7 (1997), 1539-1554. | Zbl 0899.92037
[25] M. IPSEN, F. HYNNE, P.G. SORENSEN, Systematic derivation of amplitude equations and normal forms for dynamical systems, Chaos 8 (1998), 834-852. | fulltext (doi) | MR 1662393 | Zbl 0987.37074
[26] S. ISHIHARA, K. KANEKO, Turing pattern with proportion preservation, J. Theor. Biol. 238 (2006), 683-693. | fulltext (doi) | MR 2207257
[27] H.S. JUNG, P.H. FRANCIS-WEST, R.B. WIDELITZ, T.X. JIANG, S. TING-BERRETH, C. TICKLE, L. WOLPERT, C.M. CHUONG, Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning, Dev. Biol. 196 (1998), 11-23.
[28] R. KAPRAL, K. SHOWALTER, Chemical Waves and Patterns, Kluwer Academic Publishers, 1995.
[29] S. KONDO, R. ASAI, A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus, Nature 376 (1995), 765-768.
[30] D. LACITIGNOLA, B. BOZZINI, I. SGURA, Spatio-temporal organization in a morphochemical electrodeposition model: analysis and numerical simulation of spiral waves, Acta Applicandae Mathematicae 132 (2014), 377-389. | fulltext (doi) | MR 3255052 | Zbl 1304.35348
[31] D. LACITIGNOLA, B. BOZZINI, I. SGURA, Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay, European Journal of Applied Mathematics 26 (2015), 143-173. | fulltext (doi) | MR 3315051
[32] K.J. LEE, W.D. MCCORMICK, Q. OUYANG, H.L. SWINNEY, Pattern Formation by Interacting Chemical Fronts, Science, New Series 261 (1993), 192-194.
[33] T. LEPPANEN, M. KARTTUNEN, K. KASKI, R.A. BARRIO, Turing systems as models of complex pattern formation, Braz. J. Phys. 34 (2004), 368-372.
[34] T. LEPPANEN, The Theory of Turing Pattern Formation, in Current Topics in Physics in Honor of Sir Roger Elliot, Imperial College Press, Eds. K. Kaski and R.A. Barrio, 190-227, 2005.
[35] Y.J. LI, J. OSLONOVITCH, N. MAZOUZ, F. PLENGE, K. KRISCHER, G. ERTL, Turing-type patterns on electrode surfaces, Science 291 (2001), 2395- 2398.
[36] A. MADZVAMUSE, E.A. GAFFNEY, P.K. MAINI, Stability analysis of reaction-diffusion systems with time-dependent coefficients on growing domains, Journal of Mathematical Biology 61 (2010), 133-164. | fulltext (doi) | MR 2643885 | Zbl 1202.92010
[37] P.K. MAINI, E.J. CRAMPIN, A. MADZVAMUSE, A.J. WATHEN, R.D.K. THOMAS, Implications of domain growth in morphogenesis. In Mathematical Modelling & Computing in Biology and Medicine: 5th ESMTB Conf. 2002, vol. 1, 67-73, 2003. | MR 2093263
[38] P.K. MAINI, Using mathematical models to help understand biological pattern formation. Comptes Rendus Biologies 327 (2004), 225-234.
[39] P.K. MAINI, T.E. WOOLLEY, R.E. BAKER, E.A. GAFFNEY, S. SEIRIN LEE, Turing's model for biological pattern formation & the robustness problem, J.R. Soc.Interface Focus 2 (2012), 487- 496.
[40] P.K. MAINI, And Philip K. Maini Wonders at - Turing's Theory of Morphogenesis in Alan Turing: His Work and Impact, 1st Edition, 684-689, edited by S. Barry Cooper, J. van Leeuwen, 2013. | fulltext (doi) | MR 3324446
[41] C. MOU, B. JACKSON, P. SCHNEIDER, P.A. OVERBEEK, D.J. HEADON, Generation of the primary hair follicle pattern, Proc. Natl. Acad. Sci. U.S.A. 103 (2006), 9075-9080.
[42] J.D. MURRAY, A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol. 88 (1981), 161-199. | fulltext (doi) | MR 610574
[43] J.D. MURRAY, Mathematical Biology II; Spatial models and biomedical applications, 3rd edition, Springer, 2002. | MR 1952568
[44] B.N. NAGORCKA, J.R. MOONEY, The role of a reaction-diffusion system in the formation of hair fibres, J. Theor. Biol. 98 (1982), 575-607. | fulltext (doi) | MR 684959
[45] H.G. OTHMER, E. PATE, Scale-invariance in reaction-diffusion models of spatial pattern formation, Proc. Natl. Acad. Sci. 77 (1980), 4180-4184.
[46] H.G. OTHMER, K. PAINTER, D. UMULIS, C. XUE, The intersection of theory and application in biological pattern formation, Math. Model. Nat. Phenom. 4 (2009), 3-79. | fulltext EuDML | fulltext (doi) | MR 2532425 | Zbl 1181.35297
[47] Q. OUYANG, H.L. SWINNEY, Transition from a uniform state to hexagonal and striped Turing patterns, Nature 352 (1991), 610- 612.
[48] K.J. PAINTER, P.K. MAINI, H.G. OTHMER, Stripe forma- tion in Juvenile Pomacanthus explained by a generalized Turing mechanism with chemotaxis, PNAS 96 (1999), 5549-5554.
[49] S. ROTH, Mathematics and biology: a Kantian view on the history of pattern formation theory, Dev. Genes Evol. 221 (2011), 255-279.
[50] F. SAGUÉS, I.R. EPSTEIN, Nonlinear Chemical Dynamics, Dalton Trans. (2003), 1201- 1217.
[51] M. SHARRATT, Galileo: Decisive Innovator. Cambridge: Cambridge University Press, 1994. | Zbl 0862.01021
[52] S.Y. SHVARTSMAN, C.B. MURATOV, D.A. LAUFFENBURGER, Modeling and computational analysis of EGF receptor-mediated cell communication in Drosophila oogenesis, Development 129 (2002), 2577-2589.
[53] S. SICK, S. REINKER, J. TIMMER, T. SCHLAKE, WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism, Science 314 (2006), 1447-1450.
[54] D.W. THOMPSON, On Growth and Form, Cambridge University Press, 1917. | MR 6348
[55] C. TIAN, Z. LING, Z. LIN, Turing pattern formation in a predator-prey-mutualist system, Nonlinear Analysis: Real World Applications 12 (2011), 3224-3237. | fulltext (doi) | MR 2832962 | Zbl 1231.35275
[56] A.M. TURING, Intelligent machinery, In: The Essential Turing, Oxford University Press, 1948, (reprinted 2004). | fulltext (doi) | MR 1406760
[57] A.M. TURING, Computing machinery and intelligence, Mind 59 (1950), 433-460. | fulltext (doi) | MR 37064
[58] A.M. TURING, The chemical bases of morphogenesis, Phil. Trans. Royal Soc. London B 237 (1952), 37-72. | MR 3363444
[59] D.M. UMULIS, H.G. OTHMER, Mechanisms of scaling in pattern formation, Development 140 (2013), 4830-4843.
[60] V.K. VANAG, I.R. EPSTEIN, Design and control of patterns in reaction-diffusion systems, Chaos 18 (2008), 1-11. | fulltext (doi) | MR 2356983 | Zbl 1163.37381
[61] V.K. VANAG, I.R. EPSTEIN, Pattern formation mechanisms in reaction-diffusion systems, Int. J. Dev. Biol. 53 (2009), 673-681.
[62] C. VAREA, J.L. ARAGON, R.A. BARRIO, Confined Turing patterns in growing systems, Phys. Rev. E 56 (1997), 1250-1253.
[63] J. WANG, J. WEI, J. SHI, Global bifurcation analysis and pattern formation inhomogeneous diffusive predatorprey systems, J. Differential Equations 260 (2016), 3495-3523. | fulltext (doi) | MR 3434407 | Zbl 1332.35176
[64] L. WOLPERT, Positional information and the spatial pattern of cellar differentiation, J. Theor. Biol. 25 (1969), 1-47.

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali