ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

MARTIN MOSKOWITZ

An extension of Mahler's theorem to simply connected nilpotent groups

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. **16** (2005), n.4, p. 265–270. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_2005_9_16_4_265_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 2005.

Rend. Mat. Acc. Lincei s. 9, v. 16:265-270 (2005)

MARTIN MOSKOWITZ

AN EXTENSION OF MAHLER'S THEOREM TO SIMPLY CONNECTED NILPOTENT GROUPS

To Guido Zappa on the occasion of his 90th birthday

ABSTRACT. — This *Note* gives an extension of Mahler's theorem on lattices in \mathbb{R}^n to simply connected nilpotent groups with a Q-structure. From this one gets an application to groups of Heisenberg type and a generalization of Hermite's inequality.

KEY WORDS: Log lattice; Subgroup of finite index; Fundamental domain; Measure preserving automorphism; Equivariant map.

In 1946 Mahler [8] proved the following result which bears a striking resemblance to the classical theorem of Ascoli. It concerns lattices Γ in \mathbb{R}^n . Here by a lattice is meant a discrete subgroup with compact quotient; in other words a subgroup of \mathbb{R}^n with *n* linearly independent generators. Given a lattice and linearly independent generators $v_1, \ldots v_n$ the parallelepiped formed by the generators is called a fundamental domain. If $\mathcal{L}(\mathbb{R}^n) = \mathcal{L}$ denotes the space of all lattices (with a natural topology), Mahler's theorem is the following: A subset S of \mathcal{L} has compact closure if and only if

1. The volumes of all the fundamental domains as Γ varies over S is bounded.

2. There exists some neighborhood U of 0 in \mathbb{R}^n so that $\Gamma \cap U = (0)$ for all $\Gamma \in S$.

The first condition is analogous to uniform boundedness while the second (often described as S being uniformly discrete) is analogous to equicontinuity in Ascoli's theorem.

We denote by \mathcal{L}_0 , the subspace of \mathcal{L} consisting of lattices whose fundamental domain has volume 1. Once we explain what the topology on \mathcal{L} is we will see that \mathcal{L}_0 is closed in \mathcal{L} . A direct corollary of Mahler's theorem is then:

A subset S of \mathcal{L}_0 has compact closure if and only if there exists some neighborhood of 0 in \mathbb{R}^n so that $\Gamma \cap U = (0)$ for all $\Gamma \in S$.

 \mathcal{L} can be topologized by observing that GL (n, \mathbb{R}) acts transitively on it. Therefore we can choose any lattice as a base point for this orbit. Choosing the standard lattice, \mathbb{Z}^n , we see that the isotropy group is GL (n, \mathbb{Z}) . Thus \mathcal{L} can be identified in a natural way with the homogeneous space GL $(n, \mathbb{R})/$ GL (n, \mathbb{Z}) . The (natural) topology is then that of this coset space. It does not depend on a choice of generators in the lattice. A short proof of Mahler's theorem using Siegel domains in GL (n, \mathbb{R}) is given in Borel [3, p. 16].

It is our goal to establish a non-abelian generalization of Mahler's theorem. To this end one can consider other simply connected solvable groups G rather than just \mathbb{R}^n . Let G be a connected Lie group with Lie algebra g. One can topologize Aut (G), the group of all bicontinuous automorphisms (actually smooth automorphisms) of G as in ([7, pp. 40 and 97-99)]. The topology on Aut (G) makes it into a locally compact group and actually a Lie group by Cartan's theorem since it has a faithful continuous representation into the linear group Aut (g). Moreover, the action Aut (G) $\times G \to G$ is jointly continuous (actually smooth). Let $M(G) = \{a \in Aut(G) : \Delta(a) = 1\}$ stand for the group of measure preserving automorphisms of G, where $\Delta(a)$ is the common ratio $\frac{\mu(a(F))}{\mu(F)}$, for any

measurable set $F \subset G$ of positive, finite left Haar measure, μ . Δ is a smooth homomorphism Aut $(G) \to \mathbb{R}_+^{\times}$. Hence M(G) is a closed normal subgroup of Aut (G).

In general G might not have any lattices at all so now we shall have to assume G contains a lattice Γ . Here Γ is again a discrete subgroup and G/Γ is compact. Just as before Aut (G) acts on the set $\mathcal{L}(G)$ of all lattices. However, now it may not act transitively. For example, (see [1]) in the orbit space of the Heisenberg group N_n of dimension 2n + 1, any lattice Γ is isomorphic under an automorphism of N_n to a lattice of the form $\Gamma_{k,\vec{r}}$ for some $k \in \mathbb{Z}^+$ and $\vec{r} = (r_1, r_n) \in (\mathbb{Z}^+)^n$ satisfying $r_1 = 1$, and $r_i|r_{i+1}$ for all *i*. $\Gamma_{k,\vec{r}}$ is defined by the conditions $x_i \in r_i\mathbb{Z}$, $y_i \in \mathbb{Z}$, and $z \in \frac{1}{k}\mathbb{Z}$. For this reason we shall have to assume that S is contained in a single orbit and, if successful in that case, any conclusion would evidently also be valid if S were contained in a finite union of orbits.

For any connected Lie group \mathcal{L} can be topologized by the Chabauty topology (see [5]). If G is a simply connected and solvable linear group with real eigenvalues and Γ is a lattice, then the orbits, Aut $(G)(\Gamma)$, are closed in this topology and are homeomorphic with Aut (G) / Stab_{Aut (G)} (Γ) (see [12, Theorem (3.1)]). Since we are going to be dealing with subsets of a single orbit we can consider the topology to be that of Aut (G) / Stab_{Aut (G)} (Γ). Moreover, this stability subgroup is discrete whenever G has no non-trivial automorphisms of bounded displacement (see [13, Proposition (1.1)]). In particular, this holds for any simply connected solvable group of type E (see [14, Corollary (1.3)]). An important special case of all this is when G is simply connected and nilpotent, since such a group has a faithful unipotent representation (see [7, Theorem (3.1), p. 219]).

We now suppose that G is a simply connected nilpotent Lie group whose Lie algebra g has a Q-structure. Then by Malcev's theorem [9], G has a lattice Γ . Hence G is unimodular so we can just speak of Haar measure. Since the center Z(G) of G is nontrivial, using induction on dim G and the formula $\int_{G} dg = \int_{G/Z(G)} dg' \int_{Z(G)} dz$ shows that Haar measure is Lebesgue measure in appropriate global coordinates. A well known formula for the derivative of the exponential map of a Lie group is:

$$d(\exp)_X = \sum_{n=0}^{\infty} \frac{(-1)^n \operatorname{ad}_X^n}{(n+1)!}.$$

Since G is nilpotent, each ad_X is simultaneously nil-triangular and this analytic

function is actually a polynomial, hence we see $d(\exp)_X$ is unipotent. Hence det $(d(\exp)_X) \equiv 1$. Because G is simply connected and nilpotent, $\exp : \mathfrak{g} \to G$ is a global diffeomorphism and since det $(d(\exp)_x) \equiv 1$, the change of variable formula for multiple integrals tells us that Haar measure μ on G corresponds to Lebesgue measure v on g. If $a \in \operatorname{Aut}(G)$ and $a^{\bullet} \in \operatorname{Aut}(\mathfrak{g})$ is its derivative, then for a subset F of finite positive measure in G we have $\mu(a(F)) = \Delta(a)\mu(F)$ and $v(a^{\bullet}(\log(F))) = |\det(a^{\bullet})|v(\log(F))$. Hence after identifications, $\Delta(a) = |\det(a^{\bullet})|$.

Our extension of Mahler's theorem is the following.

THEOREM 1. Let G be a simply connected nilpotent Lie group whose Lie algebra g has a Q-structure. A subset $S \subseteq \mathcal{L}$ which is contained in a finite number of Aut (G)-orbits has compact closure if and only if

1. For all Γ in S the measures of the fundamental domains are bounded.

2. There exists a fixed neighborhood U of 1 in G such that for all Γ in S, $U \cap \Gamma = (1)$.

Before proving the theorem we state the following result due to Barbano in [2]. There the interest was measure preserving automorphisms so that was the way it was formulated. However, as the reader can check, the argument works perfectly well for arbitrary automorphisms. A lattice Γ in a simply connected nilpotent group is called a *log-lattice* if log (Γ) is a lattice in g.

LEMMA 2. Let G be a simply connected nilpotent group with Q-structure and Γ be a non-log lattice in G. Then there exists a log-lattice $\Gamma_* \subseteq \Gamma$ in G with $\operatorname{Stab}_{\operatorname{Aut}(G)}(\Gamma)$ a subgroup of finite index in $\operatorname{Stab}_{\operatorname{Aut}(G)}(\Gamma_*)$.

This lemma is Theorem (5.1) in [2]. We now turn to the proof of our theorem.

PROOF. In either direction we may assume S is contained in a single orbit, $\{a(\Gamma) : a \in \operatorname{Aut}(G)\}$. We first assume the two conditions and show S is relatively compact. Since G is simply connected $\operatorname{Aut}(G)^{\bullet} = \operatorname{Aut}(\mathfrak{g})$, so we can identify these. Moreover, since G is nilpotent exp is a global diffeomorphism. Hence taking derivatives gives an equivariant equivalence between the action of $\operatorname{Aut}(G)$ on G and the associated linear action on \mathfrak{g} ,

Aut
$$(G) \times G \to G$$

and

Aut
$$(\mathfrak{g}) \times \mathfrak{g} \to \mathfrak{g}$$
.

Also Aut (g) is a closed subgroup of GL (g). Let π denote the orbit map and consider $S' \subseteq$ Aut (g) \subseteq GL (g), where $S' = \pi^{-1}(S)$. The first condition tells us Δ is bounded on S' and hence so is $|\det(a^{\bullet})|$.

By [11] Γ has a subgroup Γ^* of finite index which is a log lattice, *i.e.*, log (Γ^*) is a lattice in g. Hence each $a(\Gamma)$ has a subgroup $a^{\bullet}(\Gamma^*)$ of finite index which is also a log lattice. Therefore there is a neighborhood U^* of 0 in g which meets no other points of log ($a^{\bullet}(\Gamma^*)$). By Mahler's theorem, in this linear action S' must act boundedly. Hence this must also be so in the equivariantly equivalent action of Aut (G) on G. Thus S has compact closure. We now show relative compactness of S implies both conditions. For the first condition, since $\Delta(a)\mu(F) = \mu(a \cdot F)$, for $F \subseteq G$. If we take F to be a fundamental domain for Γ we see the first condition is equivalent to $\Delta(a)$ being bounded on S. But Δ is continuous and S^- is compact so this is true.

For the second condition we apply Lemma 2 and choose a log-lattice Γ_* in G such that $\operatorname{Stab}_{\operatorname{Aut}(G)}(\Gamma)$ a subgroup of finite index in $\operatorname{Stab}_{\operatorname{Aut}(G)}(\Gamma_*)$. Therefore the projection

$$p: \operatorname{Aut}(G)/\operatorname{Stab}_{\operatorname{Aut}(G)}(\Gamma) \to \operatorname{Aut}(G)/\operatorname{Stab}_{\operatorname{Aut}(G)}(\Gamma_*)$$

is a covering map. The following lemma shows it is proper and applies whenever H is a (not necessarily connected) Lie group, D and D_* discrete subgroups with the index $[D_*:D]$ finite, X = H/D, $X_* = H/D_*$ and $p: X \to X_*$ is the natural map.

LEMMA 3. Let $p: X \to X_*$ be a covering space of the (not necessarily connected) manifolds X and X_{*} with the property that each fiber is finite. Then p is a proper map. In particular, S is relatively compact in X if and only if p(S) is relatively compact in X_{*}.

PROOF. Let *C* be a compact set in X_* and $\{V_a\}$ be a covering of $p^{-1}(C)$ by open sets in *X* for which the open sets $p(V_a)$ are evenly covered. Thus $p^{-1}(p(V_a))$ is a finite union of open sets homeomorphic with $p(V_a)$. Since by compactness *C* is a finite union of the $p(V_a)$ it follows that $p^{-1}(C)$ is itself a finite union of the $\{V_a\}$.

Continuing the proof of the theorem we see that by Lemma 2 S is relatively compact in Aut (G)/Stab_{Aut (G)} (Γ) if and only if $p(S) = S_*$ is relatively compact in Aut (G)/Stab_{Aut (G)} (Γ_*). In the proof of the converse statement given just above we can take for Γ^* the lattice Γ_* which is also log-lattice subgroup of Γ . There we were reduced to the case of Mahler's theorem itself. Hence, by that argument there is a neighborhood U_* of 0 in g which meets no other points of log ($a^{\bullet}(\Gamma_*)$).

LEMMA 4. Let Γ be a finitely generated group and Γ_* be a subgroup of finite index. Then there exists a fixed integer k so that $\gamma^k \in \Gamma_*$ for every $\gamma \in \Gamma$.

PROOF. Since, as is well known, Γ is a finitely generated group and Γ_* has finite index in it there is a normal subgroup Γ_{**} of Γ contained in Γ_* which also has finite index, say kin Γ . In the finite group Γ/Γ_{**} Lagrange's theorem tells us that $\gamma^k \in \Gamma_{**}$ for every $\gamma \in \Gamma$.

Taking logs we see that the k-multiples of every element of $\log(\Gamma)$ lies in $\log(\Gamma_*)$. It follows that if we take a smaller neighborhood W_* of 0 in g with $kW_* \subseteq U_*$, then $\exp(W_*)$ is a neighborhood of 1 in G which meets $a(\Gamma)$ only at the identity as a varies.

The following inequality is a variant of one in Margulis [10, p. 169], whose proof we leave to the reader.

LEMMA 5. Let T be a linear transformation on a finite dimensional real or complex vector space V of dimension n and $\|\cdot\|$ be the Hilbert-Schmidt norm on End (V). Then $|\det T| \leq ||T||^n$.

This inequality, together with our method of passing to log-lattices in the Lie algebra, gives the following sufficient condition.

COROLLARY 6. Let G be a simply connected nilpotent Lie group whose Lie algebra g has a Q-structure. A subset $S \subseteq \mathcal{L}$ contained in a finite number of Aut (G)-orbits has compact closure if

1. For all $a(\Gamma)$ in S the set $||a^{\bullet}||$ is bounded.

2. There exists a fixed neighborhood U of 1 in G such that for all Γ in S, U $\cap \Gamma = (1)$.

An immediate corollary of the theorem is

COROLLARY 7. Let G be a simply connected nilpotent Lie group whose Lie algebra \mathfrak{g} has a Q-structure. A subset $S \subseteq \mathcal{L}$ which is contained in a finite number of M(G) orbits has compact closure if and only if there exists a fixed neighborhood U of 1 in G such that for all lattices Γ in S we have $U \cap \Gamma = (1)$.

We now apply this corollary to the Heisenberg groups N_n , their quaternionic analogues H_n , and the groups C_n built on the Cayley numbers. In all these cases, and certain others, the stabilizer of a lattice in *G* is again a *lattice* in M(*G*) and sometimes is even a *uniform lattice*. Also, the Lie algebras of groups of Heisenberg type all have Qstructure by [6]. But here we have an interesting dichotomy between \mathbb{R}^n and N_n on the one hand, and H_n and C_n on the other. In the former the stabilizer is a non-uniform lattice in M(*G*) while in the latter it is uniform (see [13] and [2]). Here since M(*G*) is the \mathbb{R} points of an algebraic Q-group and $\operatorname{Stab}_{M(G)_0}(\Gamma)$ is an arithmetic subgroup (see [13] and [2]), M(*G*)₀ has finite index in M(*G*) by [15]. Therefore we need not make any fundamental distinction between these.

Our next corollary follows from this dichotomy.

COROLLARY 8. Let $G = H_n$ or C_n and Γ be a lattice in G. Then there exists a neighborhood U of 1 in G such that $a(\Gamma) \cap U = (1)$ for all $a \in M(G)$. On the other hand, if $G = \mathbb{R}^n$, for $n \ge 2$ or N_n , then there can be no such neighborhood.

One can check the non-compactnesss of the latter two homogeneous spaces by applying [4] and observing that SL (n, \mathbb{R}) has non-trivial unipotent elements while in N_n there are unipotent elements in M (G)₀ not in the unipotent radical. The compactness of the former two follows from [2] together with [13].

In this connection we remark that the fact that $M(G)/\operatorname{Stab}_{M(G)}(\Gamma)$ has finite volume is rather special. In general it only applies to irreducible groups of Heisenberg type (see [2] and [13]). These simply connected groups are, for example, all 2 step nilpotent. If *G* is the full real unitriangular group of order $n \ge 4$, that is, anything other than the Heisenberg group, this fails (see [13, p. 13]).

Finally, by passing to a log-lattice $\Gamma_* \subseteq \Gamma$ and using equivariance, Hermite's inequality (see [3]) can be generalized. We denote by $\|\cdot\|$ the Euclidean norm on g transferred to G.

COROLLARY 9. Let G be a simply connected nilpotent Lie group whose Lie algebra g has a Q-structure and Γ be a lattice in G. Then there is a positive constant c(G) such that $\min_{\gamma \in \Gamma, \gamma \neq 1} ||a(\gamma)|| \leq c(G)\Delta(a)^{\frac{1}{\dim G}}$, for every $a \in \operatorname{Aut}(G)$.

References

- [1] L. AUSLANDER, Lecture notes on nil-theta functions. CBMS Reg. Conf. Series Math., 34, Amer. Math. Soc., Providence 1977.
- [2] P. BARBANO, Automorphisms and quasiconformal mappings of Heisenberg type groups. J. of Lie Theory, vol. 8, 1998, 255-277.
- [3] A. BOREL, Introduction aux Groups Arithmetiques. Hermann, Paris 1969.
- [4] A. BOREL HARISH-CHANDRA, Arithmetic subgroups of algebraic groups. Annals of Math., 75, 1962, 485-535.
- [5] C. CHABAUTY, Limites d'ensembles et géométrie des nombres. Bull. Soc. Math. de France, 78, 1950, 143-151.
- [6] G. CRANDALL J. DODZIUK, Integral Structures on H-type Lie Algebras. J. of Lie Theory, 12, 2002, 69-79.
- [7] G.P. HOCHSCHILD, The Structure of Lie Groups. Holden Day, San Francisco 1965.
- [8] K. MAHLER, On Lattice Points in n-dimensional Star Bodies I, Existence theorems. Proc. Roy. Soc. London A, 187, 1946, 151-187.
- [9] A. MALCEV, On a class of homogeneous spaces. Amer. Math. Soc. Translation Series, 39, 1951.
- [10] G. MARGULIS, Discrete Subgroups of Semisimple Lie Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 17, Springer-Verlag, Berlin-Heidelberg-New York 1990.
- [11] C. MOORE, Decompositions of Unitary Representations defined by Discrete subgroups of Nilpotent Groups. Annals of Math., 82, 1965.
- [12] R. MOSAK M. MOSKOWITZ, Zariski density in Lie groups. Israel J. Math., 52, 1985, 1-14.
- [13] R. MOSAK M. MOSKOWITZ, Stabilizers of lattices in Lie groups. J. of Lie Theory, vol. 4, 1994, 1-16.
- [14] M. MOSKOWITZ, Some Remarks on Automorphisms of Bounded Displacement and Bounded Cocycles. Monatshefte f
 ür Math., 85, 1978, 323-336.
- [15] H. WHITNEY, Elementary structure of real algebraic varieties. Ann. of Math., 66, 1957, 545-556.

Department of Mathematics CUNY Graduate Center 365 Fifth Avenue - New York NY 10016 (U.S.A.)