Rendiconti Lincei Matematica E Applicazioni

Salvatore Rionero
 L^{2}-stability of the solutions to a nonlinear binary reaction-diffusion system of P.D.E.s

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 16 (2005), n.4, p. 227-238.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_2005_9_16_4_227_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 2005.

Salvatore Rionero

L^{2}-STABILITY OF THE SOLUTIONS TO A NONLINEAR BINARY REACTION-DIFFUSION SYSTEM OF P.D.ES.

To Guido Zappa on the occasion of his $90^{\text {th }}$ birthday

Abstract. - The L^{2}-stability (instability) of a binary nonlinear reaction diffusion system of P.D.Es. - either under Dirichlet or Neumann boundary data - is considered. Conditions allowing the reduction to a stability (instability) problem for a linear binary system of O.D.Es. are furnished. A peculiar Liapunov functional V linked (together with the time derivative along the solutions) by direct simple relations to the eigenvalues, is used.

Key words: Nonlinear Stability; Liapunov Direct Method; Reaction - Diffusion Systems.

1. Introduction

Let $\Omega \subset \Re^{3}$ be a bounded smooth domain. The nonlinear stability analysis of an equilibrium state in Ω of two «substances» diffusing in Ω can be traced back to the nonlinear stability analysis of the zero solution of a dimensionless binary system of P.D.Es. like

$$
\left\{\begin{array}{l}
u_{t}=a_{1} u+a_{2} v+\gamma_{1} \Delta u+f(u, v, \nabla u, \nabla v) \tag{1}\\
v_{t}=a_{3} u+a_{4} v+\gamma_{2} \Delta v+g(u, v, \nabla u, \nabla v)
\end{array}\right.
$$

with f and g nonlinear and

$$
\left\{\begin{array}{l}
a_{i}=\text { const. }(i=1,2,3,4) \tag{2}\\
\gamma_{i}=\text { const. }>0(i=1,2) \\
(u=v=0) \Rightarrow f=g=0 \\
u:(\boldsymbol{x}, t) \in \Omega \times \Re^{+} \rightarrow u(\boldsymbol{x}, t) \in \Re \\
v:(\boldsymbol{x}, t) \in \Omega \times \Re^{+} \rightarrow v(\boldsymbol{x}, t) \in \Re
\end{array}\right.
$$

under Dirichlet boundary conditions

$$
\begin{equation*}
u=v=0 \quad \text { on } \partial \Omega \times \Re^{+} \tag{3}
\end{equation*}
$$

or Neumann boundary conditions (\mathbf{n} being the unit outward normal to $\partial \Omega$)

$$
\begin{equation*}
\frac{d u}{d \boldsymbol{n}}=\frac{d v}{d \boldsymbol{n}}=0 \text { on } \partial \Omega \times \Re^{+} \tag{4}
\end{equation*}
$$

with the additional conditions

$$
\begin{equation*}
\int_{\Omega} u d \Omega=\int_{\Omega} v d \Omega=0, \forall t \in \Re^{+} \tag{5}
\end{equation*}
$$

in the case (4). The stability problems (1)-(5) are encountered in many models of real world phenomena like fluid motion in porous media, heat conduction, spatial ecology (see [1-8] and references quoted therein).

Denoting by
$\langle\cdot, \cdot\rangle$ the scalar product in $L^{2}(\Omega)$;
$\|\cdot\|$ the $L^{2}(\Omega)$-norm;
$H_{0}^{1}(\Omega)$ the Sobolev space such that

$$
\varphi \in H_{0}^{1}(\Omega) \rightarrow\left\{\varphi^{2}+(\nabla \varphi)^{2} \in L(\Omega), \varphi=0 \text { on } \partial \Omega\right\}
$$

$H_{*}^{1}(\Omega)$ the Sobolev space such that

$$
\varphi \in H_{*}^{1}(\Omega) \rightarrow\left\{\varphi^{2}+(\nabla \varphi)^{2} \in L(\Omega), \frac{d \varphi}{d \boldsymbol{n}}=0 \text { on } \partial \Omega, \int_{\Omega} \varphi d \Omega=0\right\}
$$

the L^{2}-stability of ($u_{*}=v_{*}=0$) with respect to the perturbation (u, v) belonging, $\forall t \in \Re^{+}$, to $\left[H_{0}^{1}(\Omega)\right]^{2}$ in the case (3) and to $\left[H_{*}^{1}(\Omega)\right]^{2}$ in the case (4)-(5), has been studied in [7, 8] under the assumptions

$$
\left\{\begin{array}{l}
\|f\|+\|g\|=o\left[\left(\|u\|^{2}+\|v\|^{2}\right)^{1 / 2}\right] \tag{6}\\
b_{1}=a_{1}-\bar{a} \gamma_{1}<0 \\
b_{4}=a_{4}-\bar{a} \gamma_{2}<0
\end{array}\right.
$$

\bar{a} being the positive constant appearing in the Poincaré - Wirtinger inequality $\left({ }^{1}\right)$

$$
\begin{equation*}
\|\nabla \varphi\|^{2} \geq \bar{a}\|\varphi\|^{2} \tag{7}
\end{equation*}
$$

holding both in the spaces $H_{0}^{1}(\Omega), H_{*}^{1}(\Omega)$. As it is well known, $\bar{a}=\bar{a}(\Omega)>0$ is the lowest eigenvalues λ of

$$
\Delta \phi+\lambda \phi=0
$$

${ }^{1}$) When Ω is a «cell of periodicity» in three dimensions like

$$
\Omega: \boldsymbol{x}=(x, y, z) \in \Omega \Rightarrow 0 \leq x \leq a, 0 \leq y \leq b,|z| \leq \frac{1}{2}
$$

with u and v periodic in x and y directions of period a and b respectively, then (3) (4) are required only on $|z|=\frac{1}{2}$ ([4, p. 237] and [5, pp. 387-388]).
respectively in $H_{0}^{1}(\Omega)$ and $H_{*}^{1}(\Omega)$ (i.e. the principal eigenvalue of $\left.-\Delta\right)$. In the present paper we reconsider the problem requiring $(6)_{1}$ and only $b_{1}+b_{4}<0$. Our aim is to show that the stability (instability) of the critical point ($u_{*}=v_{*}=0$) of (1) is implied by the stability (instability) of the critical point $\xi_{*}=\eta_{*}=0$ of the linear binary system of O.D.Es.

$$
\left\{\begin{array}{l}
\frac{d \xi}{d t}=b_{1} \xi+a_{2} \eta \tag{8}\\
\frac{d \eta}{d t}=a_{3} \xi+b_{4} \eta
\end{array}\right.
$$

without requiring $a_{2}=a_{3}$, i.e. the symmetry of the linear operator acting in (1) [see $i v$) of Section 5].

The plan of the paper is as follows. In Section 2 we introduce a suitable rescaling transformation for u and v and a basic Liapunov functional V such that the sign of $\frac{d V}{d t}$ along the solutions of (1) is linked directly to the eigenvalues of (8). Section 3 is dedicated to the stability, while the instability is considered in Section 4. The paper ends with some final remarks (Section 5).

2. Preliminaries

Denoting by a and β two rescaling constants to be chosen suitably later, and setting

$$
\begin{equation*}
u=a \bar{u}, v=\beta \bar{v}, f^{*}=\gamma_{1}(\Delta u+\bar{a} u), g^{*}=\gamma_{2}(\Delta v+\bar{a} v) \tag{9}
\end{equation*}
$$

in view of (1), we obtain

$$
\left\{\begin{array}{l}
\bar{u}_{t}=b_{1} \bar{u}+b_{2} \bar{v}+\bar{f}^{*}+\bar{f} \tag{10}\\
\bar{v}_{t}=b_{3} \bar{u}+b_{4} \bar{v}+\bar{g}^{*}+\bar{g}
\end{array}\right.
$$

with

$$
\begin{cases}\bar{f}^{*}=\left.\frac{1}{a} f^{*}\right|_{(u=a \bar{u})}, \quad \bar{g}^{*}=\left.\frac{1}{\beta} g^{*}\right|_{(v=\beta \bar{v})}, \quad b_{2}=\frac{\beta}{a} a_{2} \tag{11}\\ \bar{f}^{*}=\left.\frac{1}{a} f^{*}\right|_{(u=a \bar{u})}, \quad \bar{g}^{*}=\left.\frac{1}{\beta} g^{*}\right|_{(v=\beta \bar{v})}, \quad b_{3}=\frac{a}{\beta} a_{3}\end{cases}
$$

In the sequel we will use essentially the following peculiar Liapunov functional

$$
\begin{equation*}
V(\bar{u}, \bar{v})=\frac{1}{2}\left[A\left(\|\bar{u}\|^{2}+\|\bar{v}\|^{2}\right)+\left\|b_{1} \bar{v}-b_{3} \bar{u}\right\|^{2}+\left\|b_{2} \bar{v}-b_{4} \bar{u}\right\|^{2}\right] \tag{12}
\end{equation*}
$$

with

$$
\begin{equation*}
A=b_{1} b_{4}-b_{2} b_{3}=b_{1} b_{4}-a_{2} a_{3}, I=b_{1}+b_{4} \tag{13}
\end{equation*}
$$

By virtue of
(14) $\frac{d V}{d t}=\left(A+b_{3}^{2}+b_{4}^{2}\right)\left\langle\bar{u}, \bar{u}_{t}\right\rangle+\left(A+b_{1}^{2}+b_{2}^{2}\right)\left\langle\bar{v}, \bar{v}_{t}\right\rangle-\left(b_{1} b_{3}+b_{2} b_{4}\right)\left(\left\langle\bar{u}, \bar{u}_{t}\right\rangle+\left\langle\bar{v}, \bar{u}_{t}\right\rangle\right)$. taking into account that along the solutions of (10) one immediately obtains

$$
\left\{\begin{array}{l}
\left\langle\bar{u}, \bar{u}_{t}\right\rangle=b_{1}\left\langle\bar{u}, \bar{u}_{t}\right\rangle+b_{2}\langle\bar{u}, \bar{v}\rangle+\left\langle\bar{u}, \bar{f}^{*}+\bar{f}\right\rangle \tag{15}\\
\left\langle\bar{v}, \bar{v}_{t}\right\rangle=b_{3}\langle\bar{u}, \bar{v}\rangle+b_{4}\langle\bar{v}, \bar{v}\rangle+\left\langle\bar{v}, \bar{g}^{*}+\bar{g}\right\rangle \\
\left\langle\bar{v}, \bar{u}_{t}\right\rangle=b_{1}\langle\bar{u}, \bar{v}\rangle+b_{2}\langle\bar{v}, \bar{v}\rangle+\left\langle\bar{v}, \bar{f}^{*}+\bar{f}\right\rangle \\
\left\langle\bar{u}, \bar{v}_{t}\right\rangle=b_{3}\left\langle\bar{u}, \bar{u}_{t}\right\rangle+b_{4}\langle\bar{u}, \bar{v}\rangle+\left\langle\bar{u}, \bar{g}^{*}+\bar{g}\right\rangle
\end{array}\right.
$$

by straightforward calculations it turns out that along the solution of (10)

$$
\begin{equation*}
\frac{d V}{d t}=A I\left(\|\bar{u}\|^{2}+\|\bar{v}\|^{2}\right)+\Psi^{*}+\Psi \tag{16}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
\Psi^{*}=\left\langle a_{1} \bar{u}-a_{3} \bar{v}, \bar{f}^{*}\right\rangle+\left\langle a_{2} \bar{v}-a_{3} \bar{u}, \bar{g}^{*}\right\rangle \tag{17}\\
\Psi=\left\langle a_{1} \bar{u}-a_{3} \bar{v}, \bar{f}\right\rangle+\left\langle a_{2} \bar{v}-a_{3} \bar{u}, \bar{g}\right\rangle \\
a_{1}=A+b_{3}^{2}+b_{4}^{2}, a_{2}=A+b_{1}^{2}+b_{2}^{2} \\
a_{3}=b_{1} b_{3}+b_{2} b_{4}
\end{array}\right.
$$

Remark 1. We observe that
i) the eigenvalues of (8) are given by

$$
\begin{equation*}
\lambda=\frac{I \sqrt{I^{2}-4 A}}{2} \tag{18}
\end{equation*}
$$

hence

$$
\left\{\begin{array}{l}
I=\lambda_{1}+\lambda_{2} \tag{19}\\
A=\lambda_{1} \lambda_{2} \\
A I=\left(\lambda_{1}+\lambda_{2}\right) \lambda_{1} \lambda_{2}
\end{array}\right.
$$

Therefore

$$
\begin{equation*}
I<0 \tag{20}
\end{equation*}
$$

imply the asymptotic exponential stability of the null solution of (8), while either

$$
\begin{equation*}
I>0 \tag{21}
\end{equation*}
$$

or

$$
\begin{equation*}
A<0 \tag{22}
\end{equation*}
$$

imply the instability. In fact let (22) hold. Then the eigenvalues of (8) are real positive numbers. Analogously when (21) hold with $A \geq 0$, at least one of the eigenvalues of (8) is a real positive number (case $I \geq 4 A$), or has positive real part (case $I<4 A$).
ii) The rescaling $\{u=a \bar{u}, v=\beta \bar{v}\}$ does not influence A and I.

$$
\text { 3. } L^{2}(\Omega) \text {-stability }
$$

Lemma 1. Let

$$
\left\{\begin{array}{l}
\gamma_{1}=\gamma_{2} \tag{23}\\
A>0
\end{array}\right.
$$

Then

$$
\begin{equation*}
\Psi^{*} \leq 0 \tag{24}
\end{equation*}
$$

Proof. In view of (17) and (22) $)_{2}$ it follows that

$$
\begin{equation*}
a_{i}>0 \quad i=1,2 \tag{25}
\end{equation*}
$$

(26) $\quad \Psi^{*}(\Omega)=\gamma_{1} a_{1}\left[-\|\nabla \bar{u}\|^{2}+\bar{a}\|\bar{u}\|^{2}\right]+\gamma_{2} a_{2}\left[-\|\nabla \bar{v}\|^{2}+\bar{a}\|\bar{v}\|^{2}\right]+\left(\gamma_{1}+\gamma_{2}\right) a_{3}[\langle\nabla \bar{v}, \nabla \bar{u}\rangle-\bar{a}\langle\bar{u}, \bar{v}\rangle]$.

For $\gamma_{1}=\gamma_{2}=\gamma$, it follows that

$$
\Psi^{*}(\Omega)=\left\{\begin{array}{l}
-A \gamma\left[\|\nabla \bar{u}\|^{2}+\|\nabla \bar{v}\|^{2}-\bar{a}\left(\|\bar{u}\|^{2}+\|\bar{v}\|^{2}\right)\right] \tag{27}\\
-\gamma\left[\left\|\nabla\left(b_{1} \bar{u}+b_{3} \bar{v}\right)\right\|^{2}-\bar{a}\left\|b_{1} \bar{u}+b_{3} \bar{v}\right\|^{2}\right]+ \\
-\gamma\left[\left\|\nabla\left(b_{2} \bar{u}+b_{4} \bar{v}\right)\right\|^{2}-\bar{a}\left\|b_{2} \bar{u}+b_{4} \bar{v}\right\|^{2}\right]
\end{array}\right.
$$

Let $\gamma_{1} \neq \gamma_{2}$ and assume, for the sake of concreteness, $\gamma_{1}<\gamma_{2}$. Then the following Lemmas hold.

Lemma 2. Let

$$
\left\{\begin{array}{l}
\gamma_{1}<\gamma_{2} \tag{28}\\
A>0
\end{array}\right.
$$

If exists a constant μ such that choosing

$$
\begin{equation*}
\frac{a}{\beta}=\mu \tag{29}
\end{equation*}
$$

it turns out that

$$
\begin{equation*}
\frac{\left|a_{3}\right|}{\sqrt{a_{1} a_{2}}} \leq 2 \frac{\sqrt{\gamma_{1} \gamma_{2}}}{\gamma_{1}+\gamma_{2}}, \tag{30}
\end{equation*}
$$

then (24) bolds.
Proof. (30) implies either

$$
\begin{equation*}
\left(\gamma_{1}+\gamma_{2}\right) a_{3}= \pm 2 \sqrt{\gamma_{1} \gamma_{2} a_{1} a_{2}} \tag{31}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\gamma_{1}+\gamma_{2}\right) a_{3}= \pm 2 \sqrt{\gamma_{1} \bar{\gamma} a_{1} a_{2}} \tag{32}
\end{equation*}
$$

with

$$
\begin{equation*}
\gamma_{1} \leq \bar{\gamma}=\frac{\left(\gamma_{1}+\gamma_{2}\right)^{2} a_{3}^{2}}{4 \gamma_{1} a_{1} a_{2}}<\gamma_{2} \tag{33}
\end{equation*}
$$

Then in view of (31) one obtains

$$
\begin{equation*}
\Psi^{*}=-\left[\left\|\nabla\left(\sqrt{a_{1} \gamma_{1}} \bar{u} \mp \sqrt{a_{2} \gamma_{2}} \bar{v}\right)\right\|^{2}-\bar{a}\left\|\sqrt{a_{1} \gamma_{1}} \bar{u} \mp \bar{a} \sqrt{a_{2} \gamma_{2}} \bar{v}\right\|^{2}\right]<0 . \tag{34}
\end{equation*}
$$

Analogously - in the case (32) - setting

$$
\varepsilon=\gamma_{2}-\bar{\gamma}
$$

it follows that

$$
\begin{equation*}
\Psi^{*}=-\varepsilon a_{2}\left[\|\nabla \bar{v}\|^{2}-\bar{a}\|\bar{v}\|^{2}\right]-\left[\left\|\nabla\left(\sqrt{a_{1} \gamma_{1}} \bar{u} \mp \sqrt{a_{2} \bar{\gamma} \bar{v}}\right)\right\|^{2} \mp \bar{a}\left\|\sqrt{a_{1} \gamma_{1}} \bar{u} \mp \bar{a} \sqrt{a_{2} \bar{\gamma}}\right\|^{2}\right]<0 . \tag{35}
\end{equation*}
$$

Lemma 3. Let (28) and

$$
\begin{equation*}
b_{1} a_{2} a_{3} b_{4}<0 \tag{36}
\end{equation*}
$$

bold. Then choosing

$$
\begin{equation*}
\mu=\frac{a}{\beta}=\left|\frac{a_{2} b_{4}}{b_{1} a_{3}}\right|^{\frac{1}{2}} \tag{37}
\end{equation*}
$$

(24) holds.

Proof. In fact (37) implies $\alpha_{3}=0$ and (24) is immediately implied by (26).
Lemma 4. Let (28) and either

$$
\begin{equation*}
\frac{\gamma_{1}+\gamma_{2}}{\sqrt{\gamma_{1} \gamma_{2}}}\left|b_{4}\right|<2 \sqrt{A+b_{4}^{2}} \tag{38}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\gamma_{1}+\gamma_{2}}{\sqrt{\gamma_{1} \gamma_{2}}}\left|b_{1}\right|<2 \sqrt{A+b_{1}^{2}} \tag{39}
\end{equation*}
$$

hold. Then (24) holds.

Proof. (30) - in view of (29) - can be written

$$
\begin{equation*}
\left|b_{1} a_{3} \mu^{2}+a_{2} b_{4}\right| \leq \frac{2 \sqrt{\gamma_{1} \gamma_{2}}}{\gamma_{1}+\gamma_{2}} \sqrt{\left(A+\mu^{2} a_{3}^{2}+b_{4}^{2}\right)\left[\mu^{2}\left(A+b_{1}^{2}\right)+a_{2}^{2}\right]} . \tag{40}
\end{equation*}
$$

Therefore (38) implies that (40) is verified strictly as inequality for $\mu=0$, hence exists a μ_{1} such that $\mu<\mu_{1}$ implies that (40) is verified. Analogously (39) implies that (40) is verified strictly as inequality in the limit $\mu \rightarrow \infty$. Therefore exists a μ_{2} such that for $\mu>\mu_{2}$ Lemma 2 holds.

Theorem 1. Let $(6)_{1}$ and (24) bold. Then

$$
\left\{\begin{array}{l}
I<0 \tag{41}\\
A>0
\end{array}\right.
$$

imply the (local) L^{2}-asymptotic exponential stability of the null solution of (1).
Proof. In view of (16), it follows that

$$
\begin{equation*}
\frac{d V}{d t} \leq-A I\left(\|\bar{u}\|^{2}+\|\bar{v}\|^{2}\right)+\Psi \tag{42}
\end{equation*}
$$

By virtue of $(41)_{2}, V$ is positive definite, further from (12) it easily follows that V is a measure equivalent to the $L^{2}(\Omega)$-norm. In fact (12) implies

$$
\begin{equation*}
k_{1}\left(\|\bar{u}\|^{2}+\|\bar{v}\|^{2}\right)<V<k_{2}\left(\|\bar{u}\|^{2}+\|\bar{v}\|^{2}\right) \tag{43}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
k_{1}=\frac{1}{2} A \tag{44}\\
k_{2}=\frac{A}{2}+\sum_{1}^{4} b_{i}^{2}
\end{array}\right.
$$

On the other hand - by virtue of (6) - it follows that exist two positive constant k and δ such that

$$
\begin{equation*}
\|\bar{f}\|+\|\bar{g}\| \leq \delta\left(\|\bar{u}\|^{2}+\|\bar{v}\|^{2}\right)^{k+\frac{1}{2}} \tag{45}
\end{equation*}
$$

hence

$$
\left\{\begin{array}{l}
\left\langle a_{1} \bar{u}-a_{3} \bar{v}, \bar{f}\right\rangle \leq \delta\left(a_{1}+\left|a_{3}\right|\right)\left(\|\bar{u}\|^{2}+\|\bar{v}\|^{2}\right)^{1+k} \tag{46}\\
\left\langle a_{2} \bar{v}-a_{3} \bar{u}, \bar{g}\right\rangle \leq \delta\left(a_{2}+\left|a_{3}\right|\right)\left(\|\bar{u}\|^{2}+\|\bar{v}\|^{2}\right)^{1+k} \\
\Psi \leq \delta_{1}\left(\|\bar{u}\|^{2}+\|\bar{v}\|^{2}\right)^{1+k}
\end{array}\right.
$$

with

$$
\begin{equation*}
\delta_{1}=\delta \max \left(a_{1}+\left|a_{3}\right|, a_{2}+\left|a_{3}\right|\right) . \tag{47}
\end{equation*}
$$

Therefore (42)-(47) imply

$$
\begin{equation*}
\frac{d V}{d t} \leq-d V+d_{1} V^{1+k} \tag{48}
\end{equation*}
$$

with

$$
\begin{equation*}
d=\frac{A|I|}{k_{2}}, d_{1}=\frac{\delta_{1}}{k_{1}^{1+k}} V^{1+k} . \tag{49}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
V_{0}^{k}<\frac{d}{d_{1}} \tag{50}
\end{equation*}
$$

implies

$$
\begin{equation*}
\frac{d V}{d t}<-\eta V \tag{51}
\end{equation*}
$$

with

$$
\begin{equation*}
\eta=d\left(1-\frac{d_{1}}{d} V_{0}^{k}\right) \tag{52}
\end{equation*}
$$

and hence

$$
\begin{equation*}
V \leq V_{0} e^{-\eta t} \tag{53}
\end{equation*}
$$

4. Instability

We consider now the linear instability of the null solution of (1). Precisely, let $\left\{\bar{a}_{n}, \varphi_{n}\right\},\left(n=1,2, . . ; \bar{a}=a_{1}\right)$ be the sequence of the eigenvalues (with the associated eigenfunctions in $H_{0}^{1}(\Omega)$ and $H_{*}^{1}(\Omega)$ according to (3) and (4)-(5), respectively) of (1). We study the instability of the null solution of

$$
\left\{\begin{array}{l}
u_{, t}=a_{1} u+a_{2} v+\gamma_{1} \Delta u \tag{54}\\
v_{, t}=a_{3} u+a_{4} v+\gamma_{2} \Delta v
\end{array}\right.
$$

with respect to the perturbations
(55)

$$
\begin{cases}u=\sum_{n=1}^{\infty} u_{n}, & v=\sum_{n=1}^{\infty} v_{n} \\ u_{n}=X_{n}(t) \varphi_{n}, & v_{n}=Y_{n}(t) \varphi_{n} \\ X_{n} \in C^{1}\left(\Re^{+}\right), & Y_{n} \in C^{1}\left(\Re^{+}\right) .\end{cases}
$$

Then, by virtue of the linearity and

$$
\begin{equation*}
\Delta \varphi_{n}=-\bar{a}_{n} \varphi_{n} \tag{56}
\end{equation*}
$$

(8) gives

$$
\left\{\begin{array}{l}
\frac{d X_{n}}{d t}=b_{1 n} X_{n}+a_{2} Y_{n} \tag{57}\\
\frac{d Y_{n}}{d t}=a_{3} X_{n}+b_{4 n} Y_{n}
\end{array}\right.
$$

with

$$
\left\{\begin{array}{l}
b_{1 n}=a_{1}-\gamma_{1} \bar{\alpha}_{n} \tag{58}\\
b_{4 n}=a_{4}-\gamma_{2} \bar{a}_{n}
\end{array} .\right.
$$

Setting

$$
\left\{\begin{array}{l}
A_{n}=b_{1 n} b_{4 n}-a_{2} a_{3} \tag{59}\\
I_{n}=b_{1 n}+b_{4 n}
\end{array}\right.
$$

it follows that (for $\gamma_{2} \geq \gamma_{1}, \gamma_{2}=\gamma_{1}+\xi$)

$$
\left\{\begin{array}{l}
A_{n}=A_{1}+\left[\gamma_{1}^{2}\left(\alpha_{n}-\bar{\alpha}\right)+\xi\left(\bar{\alpha}_{n} \gamma_{1}-\alpha_{1}\right)-\gamma_{1} I_{1}\right]\left(\bar{\alpha}_{n}-\bar{\alpha}\right) \tag{60}\\
I_{n}=I_{1}-\left(\gamma_{1}+\gamma_{2}\right)\left(\bar{\alpha}_{n}-\bar{\alpha}\right)
\end{array}\right.
$$

TheOrem 2. The linear instability of the null solution of (1) is implied by each n such that either

$$
\begin{equation*}
I_{n}>0 \tag{61}
\end{equation*}
$$

or

$$
\begin{equation*}
A_{n}<0 \tag{62}
\end{equation*}
$$

Proof. See i) of Remark 1.
Remark 2.
i) Generally the coefficients a_{i} depend on some dimensionless parameters characteristic of the phenomenon at hands. Assuming that the parameters are only two and denoted by R and C, (61)-(62) can be written:

$$
\begin{align*}
& I(n, R, C)=b_{1 n}+b_{4 n}>0 \tag{63}\\
& A(n, R, C)=b_{1 n} b_{4 n}-a_{2} a_{3}<0 \tag{64}
\end{align*}
$$

respectively. Let (63)-(64) imply respectively

$$
\begin{align*}
& R \leq F(n, C) \tag{65}\\
& R \leq G(n, C)
\end{align*}
$$

and set

$$
\left\{\begin{array}{l}
R_{c}^{(1)}=\inf _{N^{+}} F(n, C) \tag{67}\\
R_{c}^{(2)}=\inf _{N^{+}} G(n, C)
\end{array}\right.
$$

Then the critical value $R^{(c)}$ of R guaranteeing that $R>R_{C}$ implies instability is given by

$$
\begin{equation*}
R^{(c)}=\inf \left(R_{c}^{(1)}, R_{c}^{(2)}\right) \tag{68}
\end{equation*}
$$

ii) By virtue of $(60)_{2}, I_{n}$ is a decreasing function of $\bar{a}_{n}-\bar{a}$. Hence exists an \bar{n} such that

$$
0 \leq I_{\bar{n}}, \quad I_{\bar{n}+1}<0
$$

which implies

$$
R_{c}^{(1)}=\inf _{n \leq \bar{n}} F(n, C)
$$

Analogously, in view of $(60)_{1}$, it follows that exists a n^{*} such that

$$
A_{n^{*}}<0, \quad A_{n^{*}+1} \geq 0
$$

which imply

$$
R_{c}^{(2)}=\inf _{n \leq n^{*}} G(n, C)
$$

iii) In the case $\gamma_{1} \neq \gamma_{2}$ the destabilizing effect of diffusion can appear. We refer to [78] for the details.

5. Final remarks

i) The L^{2}-asymptotic stability implies the analogous stability with respect to the essential sup, in the weak sense of the asymptotic (Lebesgue) measure stability. In fact denoting by $\widehat{\Omega}(\varepsilon,|\varphi(\boldsymbol{x}, t)|)$ the largest subdomain of Ω on each point of which, at time $t,|\varphi|$ is bigger than $\varepsilon>0$ and by $\widetilde{\mu}(\varepsilon,|\varphi(\boldsymbol{x}, t)|)$ the Lebesgue measure of $\widehat{\Omega}$, for $p \geq 1$, the following inequality holds [9]

$$
\begin{equation*}
\tilde{\mu}\left(\|\varphi(\boldsymbol{x}, t)\|_{p}^{\frac{p}{p+1}},|\varphi(\boldsymbol{x}, t)|\right) \leq\|\varphi(\boldsymbol{x}, t)\|_{p}^{\frac{p}{p+1}}, \forall t \geq 0 \tag{69}
\end{equation*}
$$

In particular for $p=2$, it follows that

$$
\begin{equation*}
\tilde{\mu}\left(\|\varphi(\boldsymbol{x}, t)\|_{2}^{\frac{2}{3}},|\varphi(\boldsymbol{x}, t)|\right) \leq\|\varphi(\boldsymbol{x}, t)\|_{2}^{\frac{2}{3}} \tag{70}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\forall \varepsilon>0, \quad \lim _{t \rightarrow \infty}\|\varphi(\boldsymbol{x}, t)\|=0 \quad \Rightarrow \quad \lim _{t \rightarrow \infty} \tilde{\mu}(\varepsilon,|\varphi(\boldsymbol{x}, t)|)=0 \tag{71}
\end{equation*}
$$

ii) If $\Psi \leq 0$, then Theorem 1 guarantees global L^{2}-asymptotic exponential stability.
iii) The stability-instability theorems 1-2 continue to hold for the more general system

$$
\left\{\begin{array}{l}
u_{t}=a_{1} u+a_{2} v+\boldsymbol{e} \cdot \nabla u+\gamma_{1} \Delta u+f \tag{72}\\
v_{t}=a_{3} u+a_{4} v+\boldsymbol{b} \cdot \nabla v+\gamma_{2} \Delta v+g
\end{array}\right.
$$

with \boldsymbol{e} and \boldsymbol{b} divergence free vectors, at least when either $a_{3}=0$ or $\boldsymbol{e}=\boldsymbol{b}$ in the case (3). In fact the contribution of $\boldsymbol{e} \cdot \nabla u, \boldsymbol{e} \cdot \nabla v$ to $\frac{d V}{d t}$ is

$$
\begin{gathered}
\left\langle a_{1} u-a_{3} v, \boldsymbol{e} \cdot \nabla u\right\rangle+\left\langle a_{2} v-a_{3} u, \boldsymbol{b} \cdot \nabla v\right\rangle= \\
=\frac{1}{2}\left[\left\langle a_{1}, \boldsymbol{e} \cdot \nabla u^{2}\right\rangle+\langle u, \boldsymbol{b} \cdot \nabla v\rangle\right]= \\
=-a_{3}\langle v,(\boldsymbol{e}-\boldsymbol{b}) \cdot \nabla u\rangle .
\end{gathered}
$$

In the case (4), the additional conditions $\boldsymbol{e} \cdot \boldsymbol{n}=\boldsymbol{b} \cdot \boldsymbol{n}=0$ on $\partial \Omega$ are needed.
$i v)$ By virtue of theorems 1-2 it turns out that either when Lemma 1 or Lemma 3 hold, the coincidence between the condition of linear and nonlinear stability is reached without restriction on γ_{1}, γ_{2}. This coincidence - without restriction on γ_{1}, γ_{2} - can be obtained also in the case

$$
\begin{equation*}
a_{2} a_{3}>0 \tag{73}
\end{equation*}
$$

by choosing as Liapunov functional $E=\frac{1}{2}\left[\|\bar{u}\|^{2}+\|\bar{v}\|^{2}\right]$ with a suitable choice of $\frac{a}{\beta}$. In fact (1), in view of $(9)_{1},(9)_{2}$ can be written

$$
\begin{equation*}
\overline{\boldsymbol{u}}_{t}=\mathcal{L} \overline{\boldsymbol{u}}+\mathcal{N} \overline{\boldsymbol{u}} \tag{74}
\end{equation*}
$$

with

$$
\begin{gather*}
\mathcal{L}=\left(\begin{array}{cc}
a_{1}+\gamma_{1} \Delta & \frac{\beta}{a} a_{2} \\
\frac{a}{\beta} a_{3} & a_{4}+\gamma_{2} \Delta
\end{array}\right) \tag{75}\\
\mathcal{N}=\left(\begin{array}{ll}
f & 0 \\
0 & g
\end{array}\right), \quad \overline{\boldsymbol{u}}=\binom{\bar{u}}{\bar{v}} .
\end{gather*}
$$

In the case (73) the linear operator \mathcal{L} can be symmetrized by choosing

$$
\begin{equation*}
\frac{a}{\beta}=\left(\frac{a_{2}}{a_{3}}\right)^{1 / 2} . \tag{77}
\end{equation*}
$$

This choice allows to obtain the coincidence between linear and nonlinear stability in the $L^{2}(\Omega)$-norm (we refer to [4, pp. 80-82] for the proof). Further from

$$
\begin{equation*}
\frac{1 d}{2 d t}\|\boldsymbol{u}\|^{2}=<\mathcal{L} \overline{\boldsymbol{u}}, \overline{\boldsymbol{u}}>+<\mathcal{N} \overline{\boldsymbol{u}}, \overline{\boldsymbol{u}}> \tag{78}
\end{equation*}
$$

it follows that if

$$
\begin{equation*}
<\mathcal{N} \overline{\boldsymbol{u}}, \overline{\boldsymbol{u}}>\leq 0 \tag{79}
\end{equation*}
$$

then one obtains the global stability. This happens for instance in the case

$$
\begin{equation*}
f=\boldsymbol{e} \cdot \nabla \bar{u}, \quad g=\boldsymbol{e} \cdot \nabla \bar{v} \tag{80}
\end{equation*}
$$

with \boldsymbol{e} divergence free vector depending on (\bar{u}, \bar{v}), under the additional condition $\boldsymbol{e} \cdot \boldsymbol{n}=0$ on $\partial \Omega$ when (4) hold. In fact it follows that

$$
\begin{equation*}
<\mathcal{N} \overline{\boldsymbol{u}}, \overline{\boldsymbol{u}}>=\frac{1}{2}<\boldsymbol{e}, \nabla\left(\bar{u}^{2}+\bar{v}^{2}\right)>=0 . \tag{81}
\end{equation*}
$$

Acknowledgements

This work has been performed under the auspicies of the G.N.F.M. of I.N.D.A.M. and M.I.U.R. (P.R.I.N.): «Propagazione non lineare e stabilità nei processi termodinamici del continuo».

References

[1] A. Okubo - S.A. Levin, Diffusion and ecological problems: modern prospectives. 2nd ed., Interdisciplinary Applied Mathematics, vol. 14, Springer-Verlag, New York 2001, 488 pp.
[2] J.D. Murray, Mathematical Biology. I. An Introduction. 3rd ed., Interdisciplinary Applied Mathematics, vol. 17, Springer-Verlag, New York 2002, 600 pp .
[3] J.D. Murray, Mathematical Biology. II. Spatial Models and Biomedical Applications. 3rd ed., Interdisciplinary Applied Mathematics, vol. 18, Springer-Verlag, New York 2003, 811 pp.
[4] B. Straughan, The energy method, stability, and nonlinear convection. 2nd ed., Appl. Math. Sci. Ser. vol. 91, Springer-Verlag, New York-London 2004, 240 pp.
[5] R.S. Cantrell - C. Cosner, Spatial Ecology via Reaction-Diffusion Equations. Wiley Series in Mathematical and Computational Biology, Wiley, Chichester 2003, 411 pp.
[6] J.N. Flavin - S. Rionero, Qualitative estimates for partial differential equations: an introduction. CRC Press, Boca Raton, Florida 1996, 360 pp.
[7] S. RIonero, A nonlinear L^{2}-stability analysis for two-species population dynamics with dispersal. Mathematical Biosciences and Engineering, vol. 3, n. 1, 2006, 189-204.
[8] S. Rionero, A rigorous reduction of the L^{2}-stability of the solutions to a nonlinear binary reaction-diffusion system of P.D.Es. Journal of Mathematical Analysis and Applications, to appear.
[9] S. Rionero, Asymptotic properties of solutions to nonlinear possibly degenerated parabolic equations in unbounded domains. Mathematics and Mechanics of Solids, vol. 10, 2005, 541-557.

