ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

Edoardo Vesentini

On a class of inner maps

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. **16** (2005), n.4, p. 215–226.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_2005_9_16_4_215_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 2005.

Rend. Mat. Acc. Lincei s. 9, v. 16:215-226 (2005)

Edoardo Vesentini

ON A CLASS OF INNER MAPS

To Guido Zappa on the occasion of his 90th birthday

ABSTRACT. — Let f be a continuous map of the closure $\overline{\Delta}$ of the open unit disc Δ of C into a unital associative Banach algebra \mathcal{A} , whose restriction to Δ is holomorphic, and which satisfies the condition whereby $0 \notin \sigma(f(z)) \subset \overline{\Delta}$ for all $z \in \Delta$ and $\sigma(f(z)) \subset \partial \Delta$ whenever $z \in \partial \Delta$ (where $\sigma(x)$ is the spectrum of any $x \in \mathcal{A}$). One of the basic results of the present paper is that f is *spectrally constant*, that is to say, $\sigma(f(z))$ is then a compact subset of $\partial \Delta$ that does not depend on z for all $z \in \overline{\Delta}$. This fact will be applied to holomorphic self-maps of the open unit ball of some J^* -algebra and in particular of any unital C^* -algebra, investigating some cases in which not only the spectra but the maps themselves are necessarily constant.

KEY WORDS: Associative Banach algebra; Holomorphic map; Spectrum; Spectral radius.

An inner function on the open unit disc Δ of \mathbb{C} defines a holomorphic map of Δ into itself such that the radial limits of $f(re^{i\theta})$ as $r \uparrow 1$ exist and have modulus one almost everywhere on the unit circle $\partial \Delta$. The inner function f is injective if and only if it is a holomorphic automorphism of Δ ; hence, it has a (unique) continuous extension to $\overline{\Delta}$, which is a homeomorphism of this latter set onto itself. At the other extreme, if the inner function f is the restriction to Δ of a continuous complex-valued function on $\overline{\Delta}$ – which will be denoted by the same symbol f – and if $f(\Delta) \neq \Delta$, then, by the maximum modulus theorem, f is constant: $f(\overline{\Delta})$ is a point in $\partial \Delta$.

The situation changes radically if Δ is replaced by the open unit ball B of \mathbb{C}^n (for some n > 1) endowed with the euclidean norm. In which case, a non-constant inner function f on B (whose existence was established by A. B. Aleksandrov in 1983; see [8] also for historical and bibliographical references) has quite an irregular behaviour on ∂B . For example, if f extends continuously to one point of ∂B , then f is constant (see, *e.g.*, [7, 8]). On the other hand, if B is the open unit polydisc in \mathbb{C}^n (for some n > 1), non-constant holomorphic maps $B \to \Delta$ having continuous extensions of modulus one at each point of the distinguished boundary of B, do exist, for which the validity of a similar conclusion to the one stated at the beginning in the case in which $B = \Delta$ can then be investigated.

A possible explanation of these different behaviours may be found in the fact that the polydisc \mathbb{C}^n is the unit ball of an algebra, whereas the unit euclidean ball is not when n > 1. In the present paper we shall test this explanation by replacing *B* by the unit ball of a Banach algebra \mathcal{M} and *f* by a holomorphic function on *B*, satisfying suitable boundary

conditions on ∂B , with values in a unital Banach algebra \mathcal{A} . These latter conditions can be weakened in the case in which \mathcal{M} is any unital C^* -algebra (or, more in general, any J^* -algebra, [3], for which the set of extreme points of \overline{B} is not empty).

One of the main results is expressed by the following theorem.

THEOREM. Let B be the open unit ball of a unital C^{*}-algebra \mathcal{M} . Let f be a holomorphic map of B into a complex unital Banach algebra \mathcal{A} , which has a continuous extension to the set Γ of all extreme points of \overline{B} .

If, for every $x \in B$, the spectrum $\sigma(f(x))$ of f(x) is contained in $\overline{\Delta}$ and if

(1)
$$\sigma(f(x)) \subset \partial \Delta \qquad \forall x \in \Gamma$$

then, either f(x) is not invertible in A at some point $x \in B$ or $\sigma(f(x))$ does not depend on x.

If f maps B into the open unit ball of A, if (1) holds and if there is $x_0 \in B$ for which $f(x_0)$ is invertible in A and

(2) $||f(x_0)^{-1}|| = 1,$

then, either f(x) is not invertible in A at some $x \in B$ or f(x) does not depend on x.

Assuming in particular $\mathcal{A} = \mathcal{M} = \mathcal{L}(\mathcal{H})$ for some Hilbert space \mathcal{H} , if $||f(x)|| \leq 1$ for all $x \in B$, if $f(x_0)$ is invertible and (2) holds for some $x_0 \in B$, then either f(x) is not invertible for some $x \in B$ or there is a linear isometric automorphism y of \mathcal{H} such that $f(x) = y_{|B}$ for all $x \in B$.

The basic ideas in the proofs, which are already present in the case $B = \Delta$ that will be discussed in Section 2, rely heavily on maximum theorems for spectra and on properties of holomorphic families of linear automorphisms.

The results of Section 2 are instrumental in investigating the general case in which the role of Δ is played by the open unit ball of a J^* -algebra, leading in particular to the theorem stated above for unital C^* -algebras and to a similar result holding in the case of E. Cartan's spin factors.

1. INNER SPECTRAL RADIUS

Let \mathcal{A} be an associative unital Banach algebra (¹). For $u \in \mathcal{A}$, $\sigma(u)$ or $\sigma_{\mathcal{A}}(u)$ and $\rho(u)$ or $\rho_{\mathcal{A}}(u)$ will indicate respectively the spectrum and the spectral radius of u. Let \mathcal{A}^{-1} be the set of all invertible elements of \mathcal{A} .

We will denote by $\kappa(u)$ or $\kappa_{\mathcal{A}}(u)$, and call *inner spectral radius* of u, the non-negative real number

$$\kappa(u) = \inf\{|\zeta| : \zeta \in \sigma(u)\}.$$

Thus, $\kappa(u) = 0$ if u is not invertible, or (by the spectral mapping theorem)

$$\kappa(u) = \frac{1}{\rho(u^{-1})}$$

if $u \in \mathcal{A}^{-1}$.

(1) Throughout this article, all Banach algebras will be tacitly assumed to be associative.

Assume now that \mathcal{A} is not unital, and recall that $u \in \mathcal{A}$ is a quasi-regular element of \mathcal{A} if there is $v \in \mathcal{A}$ (which is unique and is called sometimes the quasi-inverse of u) for which

$$uv - u - v = 0, uv = vu.$$

Let $\tilde{\mathcal{A}} = \mathcal{A} \oplus \mathbb{C}$ be the Banach algebra obtained by adjoining an identity (denoted by 1 or $1_{\tilde{\mathcal{A}}}$) to \mathcal{A} , equipped with the norm

$$\|u+\zeta 1_{\tilde{\mathcal{A}}}\|_{\tilde{\mathcal{A}}}=\|u\|_{\mathcal{A}}+|\zeta| \ (u\in\mathcal{A},\,\zeta\in\mathbb{C}).$$

As is well known, if \mathcal{A} is non-unital, for any $u \in \mathcal{A}$, $0 \in \sigma_{\mathcal{A}}(u) = \sigma_{\tilde{\mathcal{A}}}(u)$, and therefore $\kappa(u) = 0$ for all $u \in \mathcal{A}$.

On the other hand, by (3) $u \in A$ is quasi-regular if, and only if, u - 1 is invertible in \tilde{A} (in which case

$$(u-1_{\tilde{\mathcal{A}}})^{-1}=v-1_{\tilde{\mathcal{A}}}),$$

so that *u* is quasi-regular if, and only if, $1 \notin \sigma_A(u)$. Thus, in the case of a non-unital Banach algebra A, some of the roles of the inner spectral radius and of the spectral radius are played by two numerical indicators $\beta(u)$ and $\gamma(u)$, where:

 $\beta(u)$ is the distance, in C, of 1 from $\sigma_{\mathcal{A}}(u)$, *i.e.*,

$$\mathcal{B}(u) = \inf\{|\zeta - 1| : \zeta \in \sigma_{\mathcal{A}}(u)\},\$$

and $\gamma(u)$ is the supremum of the distances, in C, from 1 to the points of $\sigma_A(u)$:

$$\gamma(u) = \sup\{|\zeta - 1| : \zeta \in \sigma_{\mathcal{A}}(u)\}.$$

Hence,

$$\beta(u) \leq \gamma(u),$$

and, by the spectral mapping theorem,

$$\gamma(u) = \sup\{|\zeta - 1| : \zeta \in \sigma_{\mathcal{A}}(u)\} = \sup\{|\zeta| : \zeta \in \sigma_{\tilde{\mathcal{A}}}(u) - 1\}$$

 $\leq \rho(u) + 1.$

2. One complex variable

Let Δ be the open unit disc in \mathbb{C} , let \mathcal{A} be a unital Banach algebra and let g be a holomorphic map of Δ into \mathcal{A} .

THEOREM 1. If g satisfies the following conditions (*): i) $\rho(g(z)) \leq 1 \quad \forall z \in \Delta;$

(*) Note added in proofs. In a forthcoming article (Inner maps and Banach algebras), condition iii) has been replaced by the weaker hypotheses:

there exist k > 0 and $r_0 \in (0, 1)$ such that

$$1 > |z| > r_0 \Longrightarrow \kappa(g(z)) \ge k;$$

there exist a measurable set $H \subset [0, 2\pi]$, with Lebesgue measure 2π , such that

$$\lim_{r\uparrow 1} \kappa(g(re^{i\theta})) = 1$$

for all $\theta \in H$.

E. VESENTINI

ii) g(z) is invertible, i.e. $\kappa(g(z)) > 0 \forall z \in \Delta$;

iii) for every $\varepsilon \in (0, 1)$ there is some $\delta \in (0, 1)$ such that

(4)
$$1 > |z| > 1 - \delta \Longrightarrow \kappa(g(z)) > 1 - \varepsilon$$

then $\rho(g(z)) = \kappa(g(z)) = 1$ at all $z \in \Delta$ and $\sigma(g(z))$ is a compact subset of $\partial \Delta$ that does not depend on z.

PROOF. The function $h : \Delta \ni z \mapsto g(z)^{-1} \in \mathcal{A}$ is holomorphic;

$$\rho(b(z)) = \rho\left(g(z)^{-1}\right) = \frac{1}{\kappa(g(z))} > 0 \ \forall \ z \in \varDelta.$$

If $\rho(b(z)) < 1$ at some point $z \in \Delta$, there is some $\tau \in \Delta$, $\tau \neq 0$, such that $\tau \in \sigma(b(z))$. Since

$$\frac{1}{\tau} \in \sigma(g(z))$$

then $\rho(g(z)) > 1$, contradicting *i*) and showing thereby that

(5)
$$\rho(b(z)) \ge 1 \ \forall z \in \varDelta.$$

For any $\varepsilon \in (0, 1)$ there is $\delta \in (0, 1)$ satisfying (4). The function $\mu : \overline{\Delta} \to \mathbb{R}_+$ defined by

$$\mu(z) = egin{cases}
ho(b(z)) & ext{if } z \in arDelta\ 1 & ext{if } z \in \partialarDelta\,, \end{cases}$$

is upper-semicontinuous on \overline{A} , and therefore it reaches a maximum at some point of \overline{A} . By (5) and the maximum theorem for the spectral radius, [11, 12], $\rho(b(z)) = 1$ for all $z \in A$ and the peripheral spectrum of h(z) (*i.e.* the set $\partial A \cap \sigma(b(z))$) is a compact subset of ∂A which does not depend on z.

By (4), the entire spectrum of h(z) is a compact subset of $\partial \Delta$ which does not depend on z. The same conclusion holds for $\sigma(g(z))$.

COROLLARY 1. Let g be a continuous map of $\overline{\Delta}$ into A such that $g_{|\Delta}$ is holomorphic. If g satisfies conditions i) and ii), and is such that

iv) $\kappa(g(z)) = 1 \forall z \in \partial \Delta$, then $\kappa(g(z)) = 1$ at all $z \in \Delta$ and $\sigma(g(z))$ is a compact subset of $\partial \Delta$ that does not depend on z.

REMARK. If $\mathcal{A} = \mathbb{C}$, in Corollary 1 – where g is a (scalar valued) inner function, and therefore $\sigma(g(z)) = g(z)$, $\rho(g(z)) = \kappa(g(z)) = |g(z)|$ – then *i*) and *ii*) are expressed by:

v) $0 < |g(z)| \le 1 \forall z \in \Delta$, and *iii*) reads:

vi) for every $\varepsilon \in (0, 1)$ there is some $\delta \in (0, 1)$ such that

 $1 > |z| > 1 - \delta \Longrightarrow |g(z)| > 1 - \varepsilon.$

The conclusion of Theorem 1, whereby g is now equal to a constant of modulus one on Δ , can be reached through a direct application of the maximum modulus principle for scalar-valued holomorphic functions.

Following [4] we will come to the same conclusion showing, by a different argument, that if an inner function g does not vanish on Δ and satisfies condition vi), then it is constant.

The first hypothesis implies that g is a singular function, *i.e.*, up to the product by a complex number of modulus one, g is represented by the integral

$$g(z) = \exp\left(-\int_{0}^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu(\theta)\right),$$

where μ is a singular positive measure on $\partial \Delta$. The holomorphic function *h* on Δ expressed by

$$b(z) = \int_{0}^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu(\theta),$$

is such that

$$|g(z)| = e^{-\Re b(z)} \quad \forall z \in \Delta.$$

If $\{z_v\}$ is a sequence in Δ , converging non tangentially to any pre-assigned point of $\partial \Delta$, then, by condition v_i), $\Re h(z_v) \to 0$, *i.e.* the non-tangential limits of $\Re h$ vanish at all points of $\partial \Delta$. That implies that the derivative $d\mu/d\theta$ vanishes identically on the unit circle, proving thereby that g is constant.

The representation of an inner function as the product of a singular function and of a Blaschke product yields then

LEMMA 1. An inner function g is the restriction to Δ of a continuous function on $\overline{\Delta}$ if, and only if, it satisfies condition vi) and vanishes on a finite set of points of Δ .

If the unital Banach algebra \mathcal{A} is commutative, for any character χ of \mathcal{A} the function $\chi \circ g$ is a scalar-valued holomorphic function which satisfies all the hypotheses stated above for g, and therefore is a constant of modulus one on \mathcal{A} . That yields a different proof of Theorem 1, in the case of commutative unital Banach algebras.

EXAMPLE. If A is the uniform algebra C(T) of all continuous functions on a compact Hausdorff space T, for every $x \in C(T) \sigma(x)$ is the image x(T) of T by x. Thus, by Theorem 1, if the holomorphic map $g : A \to C(T)$ is such that

$$0 \notin g(z)(T) \subset \overline{\varDelta} \ \forall \ z \in \varDelta,$$

and if, for every $\varepsilon \in (0, 1)$ there is $\delta \in (0, 1)$ for which

 $1 - \delta < |z| < 1 \Longrightarrow 1 - \varepsilon < |g(z)(t)| \le 1 \ \forall \ t \in T,$

then there is a function $y \in C(T)$ with $y(T) \subset \partial \Delta$, such that g(z)(T) = y(T) for all $z \in \Delta$. We shall come back to this example in Proposition 6. REMARK. When $\mathcal{A} = \mathbb{C}$, the conclusion of Theorem 1 involves the values of the function g and not only some gauges of those values, as in the general case. This gap can be overcome by appealing to the theory of holomorphic set-valued functions developed by K. Oka ([6], see also [1]), *i.e.* to functions k defined on Δ , such that, for any $z \in \Delta$, the set $k(z) \subset \mathbb{C}$ is compact,

$$\{(z,\zeta): z \in \varDelta, \tau \notin k(z)\} \subset \varDelta \times \mathbb{C}$$

is a domain of holomorphy and the compact set-valued function k is upper semicontinuos.

According to a theorem of Z. Slodkowski ([10], Theorem IV, 365, 378-386), if

(6)
$$l = \sup\{\max\{|\tau| : \tau \in k(z)\} : z \in \Delta\} < \infty,$$

there is a separable complex Hilbert space \mathcal{H} and a holomorphic map $F : \Delta \to \mathcal{L}(\mathcal{H})$ such that $k(z) = \sigma(F(z))$ for all $z \in \Delta$.

Hence, Theorem 1 yields

PROPOSITION 1. Let k be an Oka-analytic set-valued function defined on Δ and satisfying (6) with $l \leq 1$. If, for every $\varepsilon \in (0, 1)$ there is some $\delta \in (0, 1)$ such that, whenever $1 - \delta < |z| < 1$, k(z) is contained in the annulus { $\zeta \in \mathbb{C} : 1 - \varepsilon < \zeta \leq 1$ }, then k(z) is a compact subset of $\partial \Delta$ which does not depend on z, for all $z \in \Delta$.

Suppose now that A is a closed unital subalgebra of the algebra $\mathcal{L}(\mathcal{E})$, of all bounded linear operators on a complex Banach space \mathcal{E} .

Let $z_0 \in \Delta$ and let $g(z_0)$ be a linear isometry of \mathcal{E} . Since $\sigma(g(z_0)) = \overline{\Delta}$ or $\sigma(g(z_0)) \subset \partial \Delta$ if $g(z_0)$ is respectively non-surjective or surjective, then the peripheral spectrum of $g(z_0)$ covers the entire unit circle if $g(z_0)$ is not surjective and coincides with $\sigma(g(z_0))$ if $g(z_0)$ is surjective. The maximum principles for the spectral radius and for the peripheral spectrum, [11, 12], yield

LEMMA 2. If the holomorphic map $g : \Delta \to A$ is such that $\rho(g(z)) \leq 1$ for all $z \in \Delta$ and if $g(z_0)$ is a linear isometry for some $z_0 \in \Delta$, then $\rho(g(z)) = 1$ for all $z \in \Delta$, and the peripheral spectrum of g(z) is a compact subset of $\partial \Delta$ which does not depend on z.

We will now investigate under which conditions the function g itself is constant.

First of all, if g satisfies *i*), *ii*) and *iii*), the conclusions of Theorem 1 hold also for the map $z \mapsto g(z)^{-1}$ (and the constant compact subsets $\sigma(g(z)^{-1})$ is the image of $\sigma(g(z))$ by the map $\zeta \mapsto \overline{\zeta}$).

If *i*) is replaced by the stronger condition

 $i') \|g(z)\| \le 1 \ \forall \ z \in \varDelta,$

Theorem 1 implies that, if g satisfies i'), ii) and iii), then

$$\|g(z)\| = 1 \quad \forall \ z \in \varDelta.$$

As for $g(z)^{-1}$, one can only say that $||g(z)^{-1}|| \ge 1$ at all $z \in \Delta$.

ON A CLASS OF INNER MAPS

Assume now that there is $z_0 \in \Delta$ at which

(7)

$$|g(z_0)^{-1}|| = 1.$$

Since, for any vector $\xi \in \mathcal{E} \setminus \{0\}$,

$$\|\xi\| = \|g(z_0)^{-1} g(z_0) \xi\| \le \|g(z_0) \xi\| \le \|\xi\|,$$

then $||g(z_0)\xi|| = ||\xi||$ for all $\xi \in \mathcal{E}$, *i.e.* the holomorphic family of linear contractions $z \mapsto g(z)$ of \mathcal{E} contains the automorphism $g(z_0)$. Hence, [2, Proposition V.1.10], g(z) is independent of z, and the following theorem holds.

THEOREM 2. Let $g: \Delta \to A \subset \mathcal{L}(\mathcal{E})$ be a holomorphic function mapping Δ into the open unit ball B of A. If g(z) is invertible in A for all $z \in \Delta$, if, for every $\varepsilon \in (0, 1)$ there is some $\delta \in (0, 1)$ such that, whenever $1 - \delta < |z| < 1$, $\sigma(g(z))$ is contained in the annulus $\{\zeta \in \mathbb{C} : 1 - \varepsilon < |\zeta| \leq 1\}$ and if moreover, (7) holds at some point $z_0 \in \Delta$, then g(z) is (the restriction to B of) a linear isometric automorphism of \mathcal{E} which does not depend on z.

REMARK. A similar statement to Theorem 1 in the case in which the Banach algebra \mathcal{A} is not unital can be established substituting invertible elements with quasi-regular elements and replacing the hypotheses *i*), *ii*), *iii*) by the following two conditions: *vii*) $\sigma_{\mathcal{A}}(g(z)) \subset \overline{\mathcal{A}}(1,1) \setminus \{1\} \ \forall z \in \mathcal{A} \ (where \ \mathcal{A}(1,1) \ is the open disc in C \ with center 1 and radius 1);$ *viii* $) for every <math>\varepsilon \in (0,1)$ the is some $\delta \in (0,1)$ such that

(8)
$$1 > |z| > 1 - \delta \Longrightarrow \sigma_{\mathcal{A}}(g(z)) \subset \{\zeta : \zeta \in \mathcal{A}(1,1) \setminus \{1\}, |\zeta - 1| < \varepsilon\}.$$

Theorem 1 yields then

PROPOSITION 2. If g satisfies both conditions vii) and viii), then $\sigma_A(g(z))$ is a compact subset of $\partial \Delta(1, 1)$ which does not depend on $z \in \overline{\Delta}$.

3. BANACH ALGEBRAS

Here and in the following σ , ρ and κ will stand for the spectrum, the spectral radius and the inner spectral radius in A.

Let *D* be a bounded, convex, circular domain in a complex Banach algebra \mathcal{B} and let *f* be a holomorphic map of *D* into \mathcal{A} such that

$$\rho(f(x)) \le 1 \ \forall \ x \in D$$

and that, given any $\varepsilon \in (0, 1)$ there exists in \mathcal{B} an open set $U_{\varepsilon} \supset \partial D$ satisfying the conditions:

(10)
$$x \in U_{\varepsilon} \cap D \Longrightarrow \kappa(f(x)) > 1 - \varepsilon.$$

The intersection of *D* with the complex affine line in \mathcal{B} defined by any two distinct points x_1 and x_2 in *D* is a bounded convex domain $D(x_1, x_2)$ which is biholomorphically equivalent to Δ . By Theorem 1 applied to the holomorphic function $g = f_{|D(x_1, x_2)}$, either

 $0 \in \sigma(f(x))$ for some $x \in D(x_1, x_2)$ or there is a compact set $K \subset \partial \Delta$ such that $\sigma(f(x)) = K$ for all $x \in D(x_1, x_2)$. Letting x_2 vary in D, we obtain the following proposition.

PROPOSITION 3. If (9) and (10) are satisfied, either f(x) is not invertible in A for some $x \in D$ or there is a compact set $K \subset \partial \Delta$ such that $\sigma(f(x)) = K$ for all $x \in D$.

Assume now, as in Section 2, A to be a closed unital subalgebra of the Banach algebra $\mathcal{L}(\mathcal{E})$, where \mathcal{E} is, as before, a complex Banach space. Replacing D by the open unit ball B of \mathcal{B} , a similar argument to the one leading to Proposition 3, based now on Theorem 2, yields

PROPOSITION 4. If (9) and (10) hold for all $x \in B$, if f maps B into the closed unit ball of A and if there is $x_0 \in B$ for which $f(x_0)$ is invertible in A, and

(11)
$$||f(x_0)^{-1}|| = 1,$$

then either f(x) is not invertible at some $x \in B$ or f(x) is a linear isometric automorphism of \mathcal{E} which does not depend on x.

4. J^* -algebras

In the case in which the role of \mathcal{B} is played by a class of J^* -algebras, some of the foregoing results can be improved by weakening the hypotheses on the boundary behaviour of f.

Let \mathcal{M} be a J^* -algebra, [3], let B be its open unit ball and let Γ be the set of the extreme points of \overline{B} , which will be always assumed to be non-empty. Let \mathcal{A} be a closed unital subalgebra of the algebra $\mathcal{L}(\mathcal{E})$, where \mathcal{E} is a complex Banach space, and let $f: B \to \mathcal{A}$ be a holomorphic map; as before, σ , ρ and κ will stand for the spectrum, the spectral radius and the inner spectral radius in \mathcal{A} .

THEOREM 3. If

(12)
$$\rho(f(x)) \le 1 \ \forall \ x \in B$$

(equivalently, if $\sigma(f(x)) \in \overline{\Delta} \forall x \in B$) and if,

ix) for every $\varepsilon \in (0, 1)$, there is an open set $U_{\varepsilon} \supset \Gamma$ such that

(13) $x \in U_{\varepsilon} \cap B \Longrightarrow \kappa(f(x)) > 1 - \varepsilon,$

then either $f(x) \notin A^{-1}$ (i.e. $0 \in \sigma(f(x))$) for some $x \in B$ or, for all $x \in B$, $\sigma(f(x))$ is a compact subset of $\partial \Delta$ which does not depend on x.

PROOF. Suppose that $0 \notin \sigma(f(x))$ for all $x \in B$.

a) For any $w \in \Gamma$ let $g: \Delta \to A$ be defined by $g: z \mapsto f(zw)$. By Theorem 1,

 $\sigma(g(z)) = \sigma(f(zw))$ is a compact subset $K \subset \partial \Delta$ which does not depend on $z \in \Delta$. Since $\sigma(g(0)) = \sigma(f(0))$, K is the same for all $w \in \Gamma$.

b) For any $x \in B$, let M be a Moebius transformation of B mapping 0 to x. Denoting by the same symbol M the continuous extension of M to $B \cup \Gamma$, and letting $v \in M^{-1}(w)$, for any $w \in \Gamma$, the map

$$\varDelta \ni z \mapsto zv$$

is the unique complex geodesic for the Carathéodory metric of *B* whose support *S* is such that $0 \in S$ and $v \in \overline{S}$ ([13], see also [5]).

The image by M of the disc $\{zv : z \in \Delta\}$ is the only complex geodesic in B the closure of whose support contains x and w. More exactly, if Λ is the support of a complex geodesic $\lambda : \Delta \to B$ such that $x \in \Lambda$ and $w \in \overline{\Lambda}$, then $\Lambda = M(S)$ and there is a Moebius transformation φ of Δ onto Δ such that

$$M(\varphi(z)\nu) = \lambda(z) \quad \forall \ z \in \varDelta.$$

Setting

$$g: \varDelta \ni z \mapsto f \circ M(zv),$$

a) yields the conclusion.

As a consequence of Lemma 2 the following proposition holds.

PROPOSITION 5. If (12) is satisfied and if $f(x_0)$ is a linear isometry for some $x_0 \in B$, then either $f(x) \notin A^{-1}$ for some $x \in B$ or $\rho(f(x)) = 1$ for all $x \in B$, and the peripheral spectrum of f(x) is a compact subset of $\partial \Delta$ which does not depend on x.

The peripheral spectrum of f(x) covers the entire unit circle if $f(x_0)$ is not surjective and coincides with $\sigma(f(x)) = \sigma(f(x_0))$ if $f(x_0)$ is surjective. A similar argument replacing Theorem 1 by Theorem 2 yields

THEOREM 4. Let f be a holomorphic map of the open unit ball B of \mathcal{M} into the open unit ball of $\mathcal{A} \subset \mathcal{L}(\mathcal{E})$. If, condition ix) is satisfied, if there is $x_0 \in B$ for which $f(x_0)$ is invertible in \mathcal{A} and

(14)
$$||f(x_0)^{-1}|| = 1,$$

then either f(x) is not invertible at some $x \in B$ or f(x) is (the restriction to B of) a linear isometric automorphism of \mathcal{E} which does not depend on x.

If A is not unital, Proposition 2 and a similar argument to the proof of Theorem 3 leads to the following Theorem.

THEOREM 5. If the holomorphic map $f : B \to A$ is such that:

$$\sigma_{\mathcal{A}}(f(x)) \subset \Delta(1,1) \; \forall x \in B$$

for every $\varepsilon \in (0, 1)$, there is an open set $U_{\varepsilon} \supset \Gamma$ such that

$$x \in U_{\varepsilon} \cap B \Longrightarrow \sigma(f(x)) \subset \{\zeta : \zeta \in \Delta(1,1), |\zeta - 1| < \varepsilon\},\$$

then either f(x) is not quasi-regular for some $x \in B$ or, for all $x \in B$, $\sigma(f(x))$ is a compact subset of the circle $\partial \Delta(1, 1)$ which does not depend on x.

Relevant examples of J^* -algebras to which Theorems 3 and 4 apply are unital C^* algebras. Given such an algebra \mathcal{M} , which will be identified with one of its *-isomorphic images as a uniformly closed, unital, self-adjoint subalgebra of $\mathcal{L}(\mathcal{H})$ on some complex Hilbert space \mathcal{H} (see, *e.g.*, [9]), we will now assume $\mathcal{M} = \mathcal{A}$ in Theorems 3 and 4. Theorem 4 implies then

COROLLARY 2. If $f: B \to B$ is a holomorphic map satisfying condition ix) and if there is some $x_0 \in B$ for which $f(x_0)$ is invertible in the unital C*-algebra \mathcal{M} and (14) is satisfied, then either f(x) is not invertible at some $x \in B$ or f(x) is (the restriction to B of) an isometric automorphism of \mathcal{M} which does not depend on x.

If the unital C^* algebra \mathcal{M} is commutative, by the Gelfand Theorem \mathcal{M} is isometrically *-isomorphic to the function algebra C(T) of all complex-valued continuous functions on a compact Hausdorff space T, endowed with the uniform norm $||x|| = \max\{|x(t)| : t \in T\}$.

Since in this case $||x|| = \rho(x)$ for all $x \in C(T)$, the following proposition holds.

PROPOSITION 6. Let B be the open unit ball of C(T), and let $f : \overline{B} \to C(T)$ be a continuous map whose restriction to B is holomorphic. If

$$|x(t)| = 1 \ \forall \ t \in T \Longrightarrow |f(x)(t)| = 1 \ \forall \ t \in T,$$

then either f(x)(t) = 0 for some $x \in B$ and some $t \in T$ or there is $y \in C(T)$ with $|y(t)| = 1 \forall t \in T$, such that f(x) = y for all $x \in B$.

5. SPIN FACTORS

As examples of J*-algebras *stricto sensu* we will now consider spin factors. A spin factor – or Cartan factor of type four ${}^{(2)}$ – is a closed, self-adjoint linear subspace \mathcal{M} of $\mathcal{L}(\mathcal{K})$ (where \mathcal{K} is a complex Hilbert space) such that, if $u \in \mathcal{M}$, u^2 is a scalar multiple of the identity operator I in $\mathcal{L}(\mathcal{K})$:

(15)
$$u^2 = aI$$
 for some $a \in \mathbb{C}$.

The space \mathcal{M} is endowed with two norms, with respect to which it is complete:

the operator norm || || in $\mathcal{L}(\mathcal{K})$ and the Hilbert-space norm || || associated to the inner product in \mathcal{M} defined on $u, v \in \mathcal{M}$ by

$$2(u|v)I = uv^* + v^*u,$$

 $\binom{2}{2}$ See [3, 14] for definitions and basic results.

224

ON A CLASS OF INNER MAPS

where u^* is the adjoint of $v^{(3)}$.

The two norms are equivalent and are related by the formula

$$|||u|||^{2} = ||u||^{2} + \sqrt{||u||^{4} + |(u|u^{*})|^{2}}$$

Therefore the open unit ball $B = \{u \in \mathcal{M} : ||u|| < 1\}$ is defined also by

$$B = \left\{ u \in \mathcal{M} : \|u\|^2 < \frac{1 + |(u|u^*)|^2}{2} < 1 \right\}.$$

It turns out that the set Γ of all extreme points of \overline{B} , [14], is given by

$$\Gamma = \left\{ e^{i\theta} u : \theta \in \mathbb{R}, u \in \mathcal{M}, u = u^*, u^2 = I \right\}.$$

It follows from (15) that $\sigma(u)$ is contained in the set $\{-a^{1/2}, a^{1/2}\}$, and therefore $\rho(u) = |a|^{1/2}$. Furthermore, the spectrum of *u* coincides with the point-spectrum $p\sigma(u)$, [14]; moreover, if $a \neq 0$, if $a^{1/2} \in p\sigma(u)$ and if Π_u is the spectral projector associated to *u* and $\{a^{1/2}\}$, then

$$u = a^{1/2} (2 \Pi_u - I).$$

If $\sigma(u) = \{a^{1/2}\}$, then $\Pi_u = I$ and $u = a^{1/2}I$, whilst, if a = 0, *i.e.* $\sigma(u) = \{0\}$, then u = 0. Theorems 3 and 4 imply

THEOREM 6. Let f be a holomorphic map of the open unit ball B of \mathcal{M} into $\mathcal{L}(\mathcal{K})$ with $\rho(f(x)) \leq 1$ for all $x \in B$. If, for every $\varepsilon \in (0, 1)$, there is an open set $U_{\varepsilon} \supset \Gamma$ such that

$$x \in U_{\varepsilon} \cap B \Longrightarrow \rho(f(x)) > 1 - \varepsilon,$$

then, either f(x) = 0 for some $x \in B$ or there exists $v \in M$ with

$$b \in \sigma(v) \subset \{b, -b\}$$

for some $b \in \partial \Delta$, such that, for all $x \in B$,

$$f(x) = b(2 \Pi_v - I) = b \begin{pmatrix} I_1 & 0 \\ 0 & -I_2 \end{pmatrix},$$

for all $x \in B$, where Π_v is the spectral projector associated to b and to v.

PROOF. By Theorem 3 there is $b \in \partial \Delta$ such that

(16)
$$f(x) = b(2 \Pi_{f(x)} - I) = b \begin{pmatrix} I_1 & 0 \\ 0 & -I_2 \end{pmatrix},$$

where: $\Pi_{f(x)}$ is the spectral projector associated to *b* and f(x); I_1 and I_2 are the identity operators on $\mathcal{K}_1 = \text{Ran } \Pi_{f(x)}$ and $\mathcal{K}_2 = \text{Ker } \Pi_{f(x)}$.

(³) Since

$$(u+v^*)^2 = u^2 + (v^*)^2 + uv^* + v^*u,$$

 $uv^* + v^*u$ is a scalar multiple of *I*.

Since

$\mathcal{K}=\mathcal{K}_1\oplus\mathcal{K}_2,$

setting, for $\xi \in \mathcal{K}$, $\xi_1 = \prod_{f(x)} \xi$, $\xi_2 = \xi - \prod_{f(x)} \xi$, then, by (16),

$$\|f(x)\xi\|_{\mathcal{K}}^{2} = \|\xi_{1}\|_{\mathcal{K}_{1}}^{2} + \|\xi_{2}\|_{\mathcal{K}_{2}}^{2} = \|\xi\|_{\mathcal{K}}^{2}$$

for all $\xi \in \mathcal{K}$. Theorem 4 yields the conclusion.

References

- [1] B. AUPETIT, Propriétés spectrales des algèbres de Banach. Lecture Notes in Mathematics, 735, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
- [2] T. FRANZONI E. VESENTINI, Holomorphic maps and invariant distances. North Holland, Amsterdam-New York-Oxford, 1980.
- [3] L.A. HARRIS, Bounded symmetric homogeneous domains in infinite dimensional spaces. In: T.L. HAYDEN -T.J. SUFFRIDGE (eds.), Proceedings on infinite dimensional holomorphy, University of Kentucky 1973. Lecture Notes in Mathematics, 364, Springer, Berlin 1974, 13-40.
- [4] K. HOFFMAN, Banach spaces of analytic functions. Prentice-Hall, Englewood Cliffs, N.J., 1962.
- [5] M. JARNICKI P. PFLUG, Invariant distances and metrics in complex analysis. Walter de Gruyter, Berlin-New York 1993.
- [6] K. OKA, Note sur les familles de fonctions analytiques multiformes etc. J. Sci. Hiroshima Univ. Ser. A, 4, 1934, 93-98.
- [7] W. RUDIN, Function theory in the unit ball of \mathbb{C}^n . Springer-Verlag, New York-Heidelberg-Berlin 1980.
- [8] W. RUDIN, New constructions of functions holomorphic in the unit ball of Cⁿ. Conference Board Math. Sci., 63, 1985.
- [9] S. SAKAI, C*-algebras and W*-algebras. Springer-Verlag, New York-Heidelberg-Berlin 1971.
- [10] Z. SLODKOWSKI, Analytic set-valued functions and spectra. Math. Ann., 256, 1981, 363-386.
- [11] E. VESENTINI, Maximum theorems for spectra. Essays on topology and related topics, Memoires dédiés à Georges de Rham, Springer-Verlag, Berlin-Heidelberg-New York 1970, 111-117.
- [12] E. VESENTINI, Maximum theorems for vector valued holomorphic functions. University of Maryland Technical Report, 69-132, 1969; Rend. Sem. Mat. Fis. Milano, 40, 1970, 1-34.
- [13] E. VESENTINI, Complex geodesics. Compositio Math., 44, 1981, 375-394.
- [14] E. VESENTINI, *Holomorphic isometries of spin-factors*. Rend. Sem. Mat. Univ. Politec. Torino, 50, 4, 1992, 427-455.

Dipartimento di Matematica Politecnico di Torino Corso Duca degli Abruzzi, 24 - 10129 Torino

226