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IOANNIS ATHANASOPOULOS

FREE BOUNDARY REGULARITY IN STEFAN TYPE PROBLEMS

ABSTRACT. — Regularity results of free boundaries for Stefan type problems are discussed. The in-
fluence that curvature may have on the behavior of the free boundary is studied and various open pro-
blems are also mentioned.
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1. INTRODUCTION

In this Note I would like to present various results, which were obtained in colla-
boration with L.A. Caffarelli and S. Salsa, and mention some open problems about re-
gularity of free boundaries for Stefan-type problems whose speed may or may not de-
pend on its curvature. The problems are of local nature and classical solutions can be
described as follows:

On a unit cylinder Q14B13 (21, 1) we have two complementary domains V
and Q1 0V separated by a smooth surface S4¯VOQ1 . In V and Q1 0V we have two
smooth solutions u1 and u2 of the heat equations

Du12Dt u140 4Du22Dt u2

with u2G0 Gu1 . The functions u1 are C 1 up to S and along S both ui40 and the in-
terphase energy balance conditions

( I )
(ui )t

(ui )n
4G((x , t), n , (u1 )n , (u2 )n )

or

( II )
(ui )t

(ui )n
4G((x , t), n , (u1 )n , (u2 )n , k)

sre satisfied for some appropriate G (see below).
The best known example of these problems is, of course, the Stefan problem i.e.

when G4 (u2)n2 (u1)n . Problems of type II i.e. when G depends also on the curvature
of the free boundary may be not connected to phase field models but they do occur natu-
rally in certain biological models; see for example the work of Rubinstein [9].

To treat such problems one must start with a «weak» solution which should be
constructed for all times and then would like to obtain optimal regularity for such solu-
tions. In the case of the Stefan problem weak solutions to the inclusion

Du�b(u)t

with b(u) 4u 14u 21sgn u are well known to exist and in 1983 were proved (see
[6]) to be continuous with logarithmic modulus of continuity. Then heuristically u14

4u 1 in V4 ]uD0(, u242u 2 in V c4 ]uG0( and ¯V4 ]uD0( becomes the free
boundary.
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Once the optimal or adequate regularity of the solution is known the regularity of
free boundaries may be approached in a fashion similar to that of minimal surface
theory:

1. Lipschitz free boundaries are smooth.

2. «Flat» free boundaries are smooth.

3. Free boundaries are «surfaces» in some generalized sense and are smooth ex-
cept on some small set.

Before discussing case 1 and 2 separately in the sections to be followed let me men-
tion that except for the (classical) Stefan problem i.e. when G4un

12un
2 where free

boundaries have been shown to be locally boundaries of sets of finite perimeter noth-
ing has been done so far in case 3. Concluding this introduction let me be more pre-
cise about the notion of a weak solution. It is given in the sense of a viscosity solution
which requires the definition of a classical super and sub-solution. In the sequel, if it is
not necessary, we do not distinguish interphase condition (I) from (II), since (II) in-
cludes (I).

DEFINITION 1.1. Let v be a continuous function in Q1 »4B13 (21, 1), where
B1 »4B1 (0) 4 ]x�Rn : NxNE1( Then v is called a classical subsolution (supersolu-
tion) to a free boundary problem if

i) Dv2vtF0 (G0) in V1 »4Q1O ]vD0(

ii) Dv2vtF0 (G0) in V2 »4Q1O ]vE0(

iii) v�C 1 (V1OC 1 (V2 )

iv) for any (x, t)�¯V1OQ1 , ˜xv 1(x, t))c0, and VnF2G((x, t), n, v 1
n , v 2

n , k)(G)

where Vn is the speed of the surface Ft »4¯V1O ]t( in the direction n»4
˜x v 1

N˜x v 1N
,

k the curvature of Ft (taken positive if Ft is convex in the direction of n) and G is
increasing in v 1

n , decreasing in v 2
n and k , continuous in all of the arguments with

GK1Q if v 1
n 2v 2

n 2kK1Q .
We say that v is a classical solution to a free boundary problem if it is both a subso-

lution and a supersolution. The set ¯V1OQ1 is called the free boundary.

REMARK. In the above definition condition (iv) can be replaced by

v 1
t

v 1
n

GG( (x , t), n , v 1
n , v 2

n , k)(F).

DEFINITION 1.2. Let u be a continuous function in Q1 . Then u is called a viscosity
subsolution (supersolution) to a free boundary problem if, for any subcylinder Q of
Q1 and every classical supersolution (subsolution) v in Q with uGv (uFv) on ¯p Q
(¯p-parabolic boundary) implies that uGv (uFv) in Q . The function u is called a
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viscosity solution if it is both a viscosity subsolution and a viscosity supersolution.
Notice that the above mentioned weak solution to the Stefan problem is also a sol-

ution in the viscosity sense.

Notation: In the next sections we use x 14 max (x , 0 ), x 242min (x , 0 ) but
when 1 or 2 appear as indices have no independent meaning.

2. LIPSCHITZ FREE BOUNDARIES

Why one would like to start with Lipschitz? One of the reasons is that the techni-
ques developed under this assumption may be refined to be applied to the other cases.
Of course, it has also its own interest since under special geometry of the domain
and/or initial data lead to solutions which provide directly Lipschitz free boundaries
(i.e. monotone solution along some space directions).

By Lipschitz free boundaries we mean Lipschitz in space and time. This is not the
natural homogeneity balance for the study of parabolic equations but it is so for the
study of the phase transition relations of the form

F(u 1
n , u 2

n , Vn ) 40

along ¯V1 .
Under this hypothesis one can obtain the optimal regularity of the solution i.e.

Lipschitz continuity. It is the optimal since the jump conditions (I) or (II) hold across
the free boundary. The main ingredients for the proof of this result are local proper-
ties given below that nonnegative solutions to the heat equation possess in Lipschitz
domains for their proof we refer to [2]. The first one is that the solution is monotone
in a space-time cone determined by the Lipschitz constant of the free boundary i.e.

CONE OF MONOTONICITY. Any nonnegative solution u to the heat equation in
Q1OV with u40 on Q1O¯V is increasing along every direction m�G(en , u) »4

»4 ]m�Rn11 : NmN41, m QenEcos u( where u 4
1
2

cot21 (L) in QdOV for d4

4dgn , L , m
M

, V˜uVL 2h small enough where n is the dimension, L the Lipschitz constant

of ¯V»4 ]xn4 f (x 8 , t) : x 8�Rn21(, 0 Em»4u(x0 , t0 ) for (x0 , t0 ) a fixed point away
from ¯V , and M the supremum of u.

This cone of monotonicity allows one to control the time derivative by the space
gradient and this establishes the «almost harmonicity» of u at each time level, more
precisely:
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ALMOST HARMONICITY. Let u be as above, then there exists eD0 and dD0 depend-
ing only on n and L such that

w1 »4u1u 11e w2 »4u2u 11e

are subharmonic and superharmonic, respectively, in QdOVO ]t40(.

An important consequence of this is that the monotonicity formula of [1] will
hold in our situation.

MONOTONICITY FORMULA. Let w1 , w2 be continuous subharmonic functions in the
unit ball B1%Rn such that w1 (0) 4w2 (0) 40 and w1 Qw240 in B1. Then

g(r) »4
1
r 4
�

Br

N˜w1N2

NxNn22
dx�

Br

N˜w2N2

NxNn22
dx

is an increasing function of r. Moreover, if w»4w11w2 for rE
1
2

we have
g(r) Gc(n)VwVL Q

4 .

By setting w1 »4u 11 (u 1 )11e and w2 »4u 21 (u 2 )12e one can easily see that
the monotonicity formula applies.

Finally, the careful analysis of the behavior of the solution near particular points of
the free boundary is required.

ASYMPTOTIC DEVELOPMENT. Let u be a viscosity solution and monotone for every
s�G(en , u). If there is an (n11)-dimensional ball B%V1 (resp. B%V2) such that
BO¯V14 ](0 , 0 )( then

u(x , t) F (bt1aax , nb)11o(d(x , t) )

( resp . u(x , t) G (bt1aax , nb)11o(d(x , t) )

for some b�R , a� (0 , Q] (resp. a� [0 , Q) ) where n denotes the inward (resp. out-
ward) radial direction of BO ]t40( at (0 , 0 ), d(x , t) the distance between (x , t) and
(0 , 0 ), and E Q , QD the inner product. Furthermore, equality holds on the hyperplane
t40.

Now, we have everything we need to prove the Lipschitz continuity of our solu-
tion. In general, a solution to a free boundary problem of parabolic type is not expect-
ed to be Lipschitz continuous (see for example [6]). The idea of the proof of both cas-
es i.e. (I) and (II) is essentially the same. The difference lies only in the construction of
a certain classical subsolution. We sketch their proof below (for complete proofs see
[2] and [5]).

THEOREM 2.1. Let u be a viscosity solution to our free boundary problem (I) or (II)
in Q1. If ¯V1 is Lipschitz in some space direction then u is Lipschitz in Q1/2.
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SKETCH OF PROOF. Type (I). Since we have a cone of monotonicity for the solution
it is enough to prove that the space gradient is bounded. We suppose that at point
(x0 , 0 ) of distance h from the free boundary at t40 level, u(x0 , 0 ) 4Mh . We want to
bound M independently. For this purpose we construct locally about the origin a clas-
sical subsolution y (see [2]).

At t40 level in Bd (0) for dD0 small we have ]yD0(OBd (0)%
%Bh (x0)%]uD0( with ¯]yD0( touching ¯]uD0( at the origin and y1

n (0,0)4M.
On the complement of ]yD0(OBd (0) in Bd (0) y is negative and y2

n (0 , 0 ) 4a
where a is the coefficient of the first order term of the asymptotic development of our
solution u . Since by the monotonicity formula M 2 a 2Ec , a will be small if M is
large.

Finally, the speed of its free boundary at the origin is given by
b
M

where b is cho-

sen so that
b
M

AG((0 , 0 ), n , M , a) . Now, we have a classical subsolution y whose

free boundary touches at the origin from the right the free boundary of u . If M is large
then a is small and the speed of the free boundary of y at (0 , 0 ) is large. Since the
speed of the free boundary of the solution is bounded, the free boundaries will cross
each other. A contradiction, since y is a subsolution for small times.

Type (II). The idea of the proof here is the same. The difference lies in the extra
care of the free boundary of y . The free boundary surface must be constructed in such
a way that it has bounded mean curvature independently of M . This is done using the
distance function (see [5]). o

Now knowing that u is Lipschitz we can make sense in a weak way the free bound-
ary relation at good points of the free boundary.

FREE BOUNDARY RELATION. Let u be a viscosity solution to a free boundary problem
in D14B1 (0)3 (21, 1) with Lipschitz free boundary and (0 , 0 ) �¯]uD0(. Suppose
that near the origin and for tG0, the following asymptotic inequality holds:

(1)

.
`
/
`
´

u(x , t) F (a 1 (x , n)1b 1 t)12 (a 2 (x , n)1bt)21ogkNxN21 t 2h
with a 1D0, a 2F0

( resp . u(x , t) G (a 1 (x , n)1b 1 t)12 (a 2 (x , n)1b 2 t)21ogkNxN21 t 2h
with a 1F0, a 2D0)

with equality holding when t40. Then

b 1

a 1
FG( (0 , 0 ), n , a 1 , a 2 ), gresp .

b 2

a 2
GG(0 , 0 ), n , a 1 , a 2 )h ,(2)

when n denotes an inward (resp. outward) spatial direction with respect to ]uD0( at
(0 , 0 ).
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2.1. Type (I).

Now, we have all we need to start the free boundary regularity. In problems with
free boundary condition (I) though we are confronted with a «hyperbolic» phe-
nomenon i.e. free boundaries may not regularize instantaneously. Such phenomena
were known to occur in degenerate parabolic equation but not in linear ones. For sim-
plicity we give a counterexample for the one-phase Stefan problem, for a two-phase
counterexample see §10 of [3].

COUNTEREXAMPLE. Let n42 and f (t) be a real value function such that f (t) D2
and f 8 (t) G0 for every tF0. Define in polar coordinates,

y(r , u) »4 gr f (t)cos g f (t)uhh1

One can easily check that this function is a supersolution to the one-phase Stefan
problem for rG ro , with ro small and any tF0. Now, let u be the solution to the one-
phase Stefan problem in Bro

3(0, T] with initial and boundary values equal to those of y
when testricted to the parabolic boundary of Bro

3(0, T]. It is clear that the free bound-
ary of u which goes through the origin must stay to the right of the free boundary of y .
Since for the one-phase problem we have utF0, the free boundary of u can move only to
the left. Therefore the «corner» stays a «corner» or not depends on f(t).

Once the corner becomes «flat» enough then it smooths out (see Section 3 of this
Note). At which angles this really occurs is an open question! Consequently we have
to assume some kind of «non-degeneracy» in order to avoid the situation just de-
scribed. This is condition (ii) or (ii)8 in the following theorem.

THEOREM 2.2. Let u be a viscosity solution of a free boundary problem in Q2 , whose
free boundary, F , is given by the graph of a Lipschitz function xn4 f (x 8 , t) with Lips-

chitz constant L. Assume that M4 sup
Q2

u gen , 2
3
2
h41, (0 , 0 ) �F , and that

(i) G4G(n , a , b) : ¯B13R2K R is a Lipschitz function in all of its arguments, with
Lipschitz constant LG , and for some positive number c * ,

Da GFc * and Db GG2c * ,

(ii) (non-degeneracy condition) there exists mD0 such that, if (x0 , t0 ) �F is a regular
point from the right or from the left, then, for any small r ,

�–
Br (x0 )

NuNFmr

or

(ii)8 there exists L04L0 (n) such that the Lipschitz constant in space of f L1GL0 .

Then, the following conclusion hold:
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(1) In Q1 the free boundary is a C 1 graph in space and time. Moreover, for any h ,
0 Eh , there exists a positive constant C14C1 (n , L , M , LG , c x , m , a , a2 , h) such
that, for every (x 8 , xn , t), (y 8 , yn , s) �F ,

N˜x 8 f (x 8 , t)2˜x 8 f (y 8 , t)NGC1 (2 log Nx 82y 8N)
2 3

21h ,(1)

NDt f (x 8 , t)2Dt f (x 8 , s)NGC1 (2 log Nt2 sN)
2 1

21h(2)

(2) u�C 1 (V1 )NC 1 (V2 ) and on FOQ1 .

un
1FC2D0

with C24C2 (n , L , M , LG , c * , m , a1 , a2 , h).
Therefore u is a classical solution.

SKETCH OF THE PROOF. The result under assumption (ii)8 is really a corollary to
Theorem 3.1 of the next section. Thus we restrict ourselves to the assumption (ii). As
we have seen the Lipschitz assumption of the free boundary determines a cone of
monotonicity. To prove that the free boundary is C 1 it is enough to prove the exis-
tence of a tangent hyperplane uniformly at each point of the free boundary (or of any
level surface) which is equivalent to having a cone of monotonicity at that point of
aperture p . Therefore the proof consists in showing that on a sequence of dyadically
shrinking cylinders around a free boundary point u becomes monotone on a sequence
of cones of increasing aperture which in the limit is p .

The free boundary relation scales hyperbolically and the heat equation scales
parabolically. To balance both homogeneities the choice of the shrinking cylinders is
neither hyperbolic nor parabolic. This is a delicate matter and is reflected in the esti-
mates of each step.

Briefly, each step is achieved as follows: Away from the free boundary in a region
of parabolic size via the parabolic interior Hournack inequality we can have a uniform
increase of the cone. One has to refine then the estimates so that this increase remains
valid in a hyperbolic region. Next this information has to be propagated to the free
boundary. This is done via a family of perturbations to the free boundary.

Finally, to have uC 1 up to the free boundary, we observe that at each time level i.e.
t0� (21, 1), V6O ]t4 t0( is a Liapunov-Dini domain. Since ut is bounded the re-
sults of K.-O. Widman [11] apply and therefore ˜x u 6 are continuous up to the free
boundary at each time level. Finally using the boundary condition the result
follows. o

2.2. Type (II).

The presence of curvature in the free boundary condition (II) does not allow any
kind of waiting time phenomena to occur such as the one encountered in the previous
section. Actually, since we have Lipschitz continuity of the free boundary, the curva-
ture plays a more predominant role with respect to the caloric part of the solution. As
a corollary to the Theorem 2.1 we have:
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COROLLARY. The mean curvature of the free boundary is bounded for every t in the
viscosity sense.

The proof of this Corollary is done by contradiction in a similar fashion as that of
the Lipschitz continuity of u i.e. Theorem 2.1. As a matter of fact, if the curvature of
the free boundary is large enough in the viscosity sense we construct a classical subso-
lution whose free boundary touches at a point from one side the free boundary of the
solution. At later times though, if the curvature is large, the free boundaries cross each
other, a contradiction.

Since the mean curvature is bounded in the viscosity sense for each t , we apply the
result in [7] to conclude that the free boundary is a C 1, a surface in Rn for each t .
Hence, since by assumption it is also Lipschitz in time, the solution u is C 1, a in space
and C b in time up to the free boundary from both sides in a neighborhood of the free
boundary. Furthermore, this implies that the space gradient of u is Holder continuous
in time, too.

In order to proceed further we need additional structure assumptions on G i.e. we
suppose that

Gg(x , t), n , y n
1 (x , t), y n

2 (x , t), kh42Hg(x , t), n , Mh1g(x , t)

where g records the dependence on y n
1 and y n

2 , and M is an n3n matrix representa-
tion of the second fundamental form for the free boundary for each time t . H is as-
sumed to be uniformly elliptic i.e. for mD0, e»n , NeN41

lmGHgM1m(e7e), n , (x , t)h2HgM , n , (x , t)hGLm

where l , L positive constant and H is Lipschitz continuous in n .
Now, we can write our free boundary condition as

ft2H(D 2 f , Df , x , t) 4g(x , t)

where f is the function representing the free boundary, i.e. xn4 f (x 8 , t) for x 8�Rn21 ,
and g�C g . Hence, by [10], f is C 1, a in space and time and by classical results we con-
clude that u is C 1, b in space and time.

Therefore we have shown the following.

THEOREM 2.3. Under the above assumptions on G the free boundary is a C 1, a sur-
face and the solution is C 1, b up to the free boundary from both sides. Thus we have a
classical solution.

3. «FLAT» FREE BOUNDARIES

The nondegeneracy condition (ii) of Theorem 2.2 actually prevents simultaneous
vanishing of the heat flow from both sides of the free boundary. On the other hand,
condition (ii)8 of the same theorem says that obtuse enough angles do not persist i.e.
we are in a «nondegenerate» situation enough for regularization. Also, according to
Theorem 2.3 when the curvature is present in the free boundary condition we are
again in a «nondegenerate» situation, enough for regularization.
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It turns out that we can refine our techniques so that we do not require for a free
boundary to be a Lipschitz graph or a graph at all. It is enough to have a suitable flat-
ness condition which we express it as an e-monotonicity:

Given an eD0, a function u is called e-monotone in the direction t if u(p1lt) F

Fu(p) ( lFe.

Actually, if a free boundary «surface» is flat in the context of minimal surface
theory, then one can easily see that its solution is e-monotone in a cone of
directions.

Under this flatness condition we have smoothness of the free boundary for type (I)
(Theorem 3.1), but for type (II) this is still an open problem! It is interesting to notice
that, with the presence of curvature, the proof of «Lipschitz free boundaries are
smooth» is in some sense «easier» than the one when the curvature is absent. But
when one considers «flat» free boundaries the situation seems to be reversed.

THEOREM 3.1. Let u be a viscosity solution of a free boundary problem in Q2 that is
e-monotone along all directions t�G x (u 0

x , en )NG t (u 0
t , n) with u 0

t 2a(en , n) f

fu*D0. Assume that M04 sup
Q2

u , u gen , 2
3
2
h41, (0 , 0 ) �F , and G4G(n , a , b) :

¯B13R2KR is a Lipschitz function in all its arguments with Lipschitz constant LG

and, for some positive number c * ,

Da GFc * , Db GG2c * .

Then if e and d 0 »4
p
2

2u 0
x are small enough, depending on n and u* , the following

conclusion hold:

1. In Q1 the free boundary is a C 1 graph in space and time. Moreover, there exists a po-
sitive constant C14C1 (n , M0 , LG , c * , a1 , a2 , u*) such that, for every (x 8 , xn , t),
(y 8 , yn , s) �F ,

(a) N˜x 8 f (x 8 , t)2˜x 8 f (y 8 , t)NGC1 (2 log Nx 82y 8N)24/3

(b) Dt f (x 8 , t)2Dt f (x 8 , s)NGC1 (log Nt2 sN)21/3 .

2. u�C 1 (V1 )NC 1 (V2 ) and, on FOQ1 ,

un
1FC2D0

with C24C2 (n , M0 , LG , c * , a1 , a2 , u*).

Therefore u is a classical solution.

In particular, the theorem holds for 0-monotone situations i.e. fully monotone.
Thus Theorem 2.1 under assumption (ii)8 is a corollary to this theorem.

SKETCH OF THE PROOF (see [4] for complete proof). Having an e-monotonicity in a
cone of direction one tries to get in a smaller region a larger cone. Away from the free
boundary, this is done actually for every eD0. To transfer this information to the free
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boundary we need an estimate for the normal derivative of u at «regular» points of the
free boundary to counterbalance the lack of nondegenerecy. Since e-monotonicity im-
plies full monotonicity ke away from the free boundary, one can improve e-mono-
tonicity everywhere by giving up a small portion of the enlarged cone. For this de-
crease in e one needs to construct a different family of subsolutions. With these tools
at hand, we can perform a double-iteration that consists at each step of a cone enlarge-
ment and of an e-monotonicity improvement in a sequence of shrinking domains that
are neither hyperbolic nor parabolic and this gives rise to the logarithmic modulus of
continuity. o

To illustrate when can this e-monotonicity occur we give two examples for the
Stefan problem i.e. when G4un

12un
2 . Note that harmonic functions are stationary

solutions of the Stefan problem.

EXAMPLE 1. Suppose u is a solution of the two-phase Stefan problem in B13[0,1Q)
converging for tK1Q to a harmonic function uQ4uQ (x), x�B1 , uniformly in any
compact subset of B2. Suppose that at x0�F(uQ ), N˜uQ (x0 )Nc0. Then there exists
T *D0 and a neighborhood V of x0 such that in V3 [T * , 1Q), F(u) is a C 1 graph and
u is a classical solution.

PROOF. In a neighborhood V of x0 , uQ is monotone along the directions in a cone
G(uQ , n), with d QEd 0 , d 0 small as in Theorem 3.1; therefore, choosing V such that
N˜uQ (x)NFcD0 in V , if T * is large enough, u(x , t), tFT * , is e-monotone along the
directions of G(uQ , n) and the directions of a space-time cone G t (u t , n) (with the
same n and with u t also large). The conclusions follow now from the main
theorem. o

EXAMPLE 2. Let u(x , 0 ) be a compact perturbation of a traveling wave initial data;
i.e., there exists

u0 (x , 0 ) 4 (A11)(e 2xn 21)12A(e 2xn 21)2

and a W 0 (x) with compact support such that

u0 (x , 0 )2W 0 (x) Gu(x , 0 ) Gu0 (x , 0 )1W 0 (x).

Then, after a finite time T * , T *(u0 , W 0 ), the free boundary of the solution, u(x , t) to
the Stefan problem, with initial data u(x , 0 ) is a smooth graph

xn4g(x 8 , t).

Its proof relies to the fact that the solution will stay L Q close to

u0 (x , t) 4 (A11)(e t2xn 21)12A(e t2xn 21)2

i.e. a traveling wave for the Stefan problem with the stated initial value u0 (x , 0 )
(see [4]).
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