ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

GIUSEPPE DA PRATO, ALESSANDRA LUNARDI

On a class of elliptic operators with unbounded coefficients in convex domains

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. **15** (2004), n.3-4, p. 315–326.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_2004_9_15_3-4_315_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 2004.

GIUSEPPE DA PRATO - ALESSANDRA LUNARDI

ON A CLASS OF ELLIPTIC OPERATORS WITH UNBOUNDED COEFFICIENTS IN CONVEX DOMAINS

ABSTRACT. — We study the realization A of the operator $\mathbb{C} = \frac{1}{2}\Delta - \langle DU, D \cdot \rangle$ in $L^2(\Omega, \mu)$, where Ω is a possibly unbounded convex open set in \mathbb{R}^N , U is a convex unbounded function such that $\lim_{x \to \partial \Omega, x \in \Omega} U(x) = +\infty$ and $\lim_{|x| \to +\infty, x \in \Omega} U(x) = +\infty$, DU(x) is the element with minimal norm in the subdifferential of U at x, and $\mu(dx) = c \exp(-2U(x))dx$ is a probability measure, infinitesimally invariant for \mathbb{C} . We show that A, with domain $D(A) = \{u \in H^2(\Omega, \mu) : \langle DU, Du \rangle \in L^2(\Omega, \mu)\}$ is a dissipative self-adjoint operator in $L^2(\Omega, \mu)$. Note that the functions in the domain of A do not satisfy any particular boundary condition. Log-Sobolev and Poincaré inequalities allow then to study smoothing properties and asymptotic behavior of the semigroup generated by A.

KEY WORDS: Kolmogorov operators; Unbounded coefficients; Convex domains.

1. INTRODUCTION

In this paper we give a contribution to the theory of second order elliptic operators with unbounded coefficients, that underwent a great development in the last few years. See *e.g.* [1, 5-8, 12, 13].

Here we consider the operator

(1.1)
$$\mathfrak{A} u = \frac{1}{2} \Delta u - \langle DU, Du \rangle$$

in a convex open set $\Omega \subset \mathbb{R}^N$, where U is a convex function such that

(1.2)
$$\lim_{x \to \partial \Omega, x \in \Omega} U(x) = +\infty, \qquad \lim_{|x| \to +\infty, x \in \Omega} U(x) = +\infty.$$

Since we do not impose any growth condition on U, the usual L^p and Sobolev spaces with respect to the Lebesgue measure are not the best setting for the operator \mathcal{C} . It is more convenient to introduce the measure

(1.3)
$$\mu(dx) = \left(\int_{\Omega} e^{-2U(x)} dx\right)^{-1} e^{-2U(x)} dx,$$

which is infinitesimally invariant for A, i.e.

$$\int_{\Omega} \mathcal{C} u(x) \mu(dx) = 0, \qquad u \in C_0^{\infty}(\mathbb{R}^N),$$

and lets \mathfrak{A} be formally self-adjoint in $L^2(\Omega, \mu)$, as an easy computation shows. We prove in fact that the realization A of \mathfrak{A} in $L^2(\Omega, \mu)$, with domain

 $D(A) = \{u \in H^2(\Omega, \mu) : \mathfrak{Cl} u \in L^2(\Omega, \mu)\} = \{u \in H^2(\Omega, \mu) : \langle DU, Du \rangle \in L^2(\Omega, \mu)\}$ is a self-adjoint and dissipative operator, provided $C_0^{\infty}(\Omega)$ is dense in $H^1(\Omega, \mu)$. We recall that $H^1(\Omega, \mu)$ is naturally defined as the set of all $u \in H^1_{loc}(\Omega)$ such that u, $D_i u \in L^2(\Omega, \mu)$, for i = 1, ..., N. While it is easy to see that $C_0^{\infty}(\Omega)$ is dense in $L^2(\Omega, \mu)$, well-known counterexamples show that $C_0^{\infty}(\Omega)$ is not dense in $H^1(\Omega, \mu)$ in general. A sufficient condition in order that $C_0^{\infty}(\Omega)$ be dense in $H^1(\Omega, \mu)$ is

$$(1.4) DU \in L^2(\Omega, \mu).$$

Once we know that $C_0^{\infty}(\Omega)$ is dense in $H^1(\Omega, \mu)$, it is not hard to show that for each $u \in D(A)$ and $\psi \in H^1(\Omega, \mu)$ we have

$$\int_{\Omega} (\mathfrak{Cl} u)(x) \psi(x) \mu(dx) = -\frac{1}{2} \int_{\Omega} \langle Du(x), D\psi(x) \rangle \mu(dx).$$

This crucial integration formula implies that *A* is symmetric and dissipative. The next step is to prove that $\lambda I - A$ is onto for $\lambda > 0$, so that *A* is m-dissipative. This is done by approximation, solving first, for each $\lambda > 0$ and $f \in C_0^{\infty}(\Omega)$,

(1.5)
$$\lambda u_a(x) - (\mathfrak{C}_a u_a)(x) = f(x), \qquad x \in \mathbb{R}^N,$$

where A_a is defined as \mathfrak{C} , with U replaced by its Moreau-Yosida approximation U_a . To be more precise, first we extend f and U to the whole \mathbb{R}^N setting f(x) = 0 and $U(x) = +\infty$ for x outside Ω ; since the extension of U is lower semicontinuous and convex the Moreau-Yosida approximations U_a are well defined and differentiable with Lipschitz continuous gradient in \mathbb{R}^N . Then (1.5) has a unique solution $u_a \in H^2(\mathbb{R}^N, \mu_a)$, with $\mu_a(dx) = \left(\int_{\mathbb{R}^N} e^{-2U_a(x)} dx\right)^{-1} e^{-2U_a(x)} dx$, and the norm of u_a in $H^2(\mathbb{R}^N, \mu_a)$ is bounded by $C(\lambda) ||f||_{L^2(\mathbb{R}^N, \mu_a)}$, where the constant $C(\lambda)$ is independent of a, due to the estimates for equations in the whole \mathbb{R}^N already proved in [5]. Using the convergence properties of U_a and of DU_a to U and to DU respectively, we arrive at

a solution $u \in H^2(\Omega, \mu)$ of

(1.6)
$$\lambda u(x) - (\mathfrak{A} u)(x) = f(x), \qquad x \in \Omega,$$

that belongs to D(A), satisfies $\|\mu\|_{H^2(\Omega, \mu)} \leq C(\lambda) \|f\|_{L^2(\Omega, \mu)}$ and is the unique solution to the resolvent equation because A is dissipative. If f is just in $L^2(\Omega, \mu)$, (1.6) is solved approaching f by a sequence of functions in $C_0^{\infty}(\Omega)$.

A lot of nice consequences follow: A generates an analytic contraction semigroup T(t) in $L^2(\Omega, \mu)$, which is a Markov semigroup and it may be extended in a standard way to a contraction semigroup in $L^p(\Omega, \mu)$ for each $p \ge 1$. The measure μ is invariant for T(t), *i.e.*

$$\int_{\Omega} (T(t) f)(x) \mu(dx) = \int_{\Omega} f(x) \mu(dx), \qquad f \in L^{1}(\Omega, \mu),$$

and moreover T(t) *f* converges to the mean value $\overline{f} = \int_{\Omega} f(x)\mu(dx)$ of *f* as $t \to +\infty$, for each $f \in L^2(\Omega, \mu)$.

If, in addition, $U - \omega |x|^2/2$ is still convex for some $\omega > 0$, T(t) enjoys further properties. 0 comes out to be a simple isolated eigenvalue in $\sigma(A)$, the rest of the spectrum is contained in $(-\infty, -\omega]$, and T(t) f converges to \overline{f} at an exponential rate as $t \to +\infty$. Moreover, T(t) is a bounded operator (with norm not exceeding 1) from $L^p(\Omega, \mu)$ to $L^{q(t)}(\Omega, \mu)$, with $q(t) = 1 + (p-1)e^{2\omega t}$. This hypercontractivity proper-

ty is the best we can expect in weighted Lebesgue spaces with general weight, and there is no hope that T(t) maps, say, $L^2(\Omega, \mu)$ into $L^{\infty}(\Omega)$. Similarly, Sobolev embeddings are not available in general. The best we can prove is a logarithmic Sobolev inequality,

$$\int_{\Omega} f^{2}(x) \log (f^{2}(x)) \mu(dx) \leq \frac{1}{\omega} \int_{\Omega} |Df(x)|^{2} \mu(dx) + \overline{f^{2}} \log (\overline{f^{2}}), \quad f \in H^{1}(\Omega, \mu).$$

2. Preliminaries: operators in the whole \mathbb{R}^N

Let
$$U: \mathbb{R}^N \mapsto \mathbb{R}$$
 be a convex C^1 function, satisfying
(2.1)
$$\lim_{|x| \to +\infty} U(x) = +\infty.$$

Then there are $a \in \mathbb{R}$, b > 0 such that $U(x) \ge a + b|x|$, for each $x \in \mathbb{R}^N$. It follows that the probability measure $v(dx) = e^{-2U(x)} dx / \int e^{-2U(x)} dx$ is well defined.

The spaces $H^1(\mathbb{R}^N, \nu)$ and $H^2(\mathbb{R}^N, \nu)$, consist of the functions $u \in H^1_{loc}(\mathbb{R}^N)$ (respectively, $u \in H^2_{loc}(\mathbb{R}^N)$) such that u and its first (resp., first and second) order derivatives are in $L^2(\mathbb{R}^N, \nu)$.

We recall some results proved in [5] on the realization A of \mathcal{C} in $L^2(\mathbb{R}^N, \nu)$. It is defined by

(2.2)
$$\begin{cases} D(A) = \left\{ u \in H^2(\mathbb{R}^N, v) : \mathfrak{C} u \in L^2(\mathbb{R}^N, v) \right\} \\ = \left\{ u \in H^2(\mathbb{R}^N, v) : \langle DU, Du \rangle \in L^2(\mathbb{R}^N, v) \right\}, \\ (Au)(x) = \mathfrak{C} u(x), \quad x \in \mathbb{R}^N. \end{cases}$$

THEOREM 2.1. Let $U: \mathbb{R}^N \mapsto \mathbb{R}$ be a convex function satisfying assumption (2.1). Then the resolvent set of A contains $(0, +\infty)$ and

(2.3)
$$\begin{cases} (i) & \|R(\lambda, A) f\|_{L^{2}(\mathbb{R}^{N}, \nu)} \leq \frac{1}{\lambda} \|f\|_{L^{2}(\mathbb{R}^{N}, \nu)}, \\ (ii) & \||DR(\lambda, A) f|\|_{L^{2}(\mathbb{R}^{N}, \nu)} \leq \frac{2}{\sqrt{\lambda}} \|f\|_{L^{2}(\mathbb{R}^{N}, \nu)}, \\ (iii) & \||D^{2}R(\lambda, A) f|\|_{L^{2}(\mathbb{R}^{N}, \nu)} \leq 4 \|f\|_{L^{2}(\mathbb{R}^{N}, \nu)}. \end{cases}$$

THEOREM 2.2. Let $U : \mathbb{R}^N \mapsto \mathbb{R}$ satisfy (2.1), and be such that $x \mapsto U(x) - \omega |x|^2/2$ is convex, for some $\omega > 0$. Then, setting $\overline{u} = \int_{\mathbb{R}^N} u(x) \nu(dx)$, we have

$$\int_{\mathbb{R}^{N}} |u(x) - \overline{u}|^{2} \nu(dx) \leq \frac{1}{2\omega} \int_{\mathbb{R}^{N}} |Du(x)|^{2} \nu(dx),$$
$$\int_{\mathbb{R}^{N}} u^{2}(x) \log (u^{2}(x)) \nu(dx) \leq \frac{1}{\omega} \int_{\mathbb{R}^{N}} |Du(x)|^{2} \nu(dx) + \overline{u^{2}} \log (\overline{u^{2}})$$

for each $u \in H^1(\mathbb{R}^N, v)$ (we adopt the convention $0 \log 0 = 0$).

G. DA PRATO - A. LUNARDI

3. The operator A

Let $U: \Omega \mapsto \mathbb{R}$ be a convex function satisfying assumption (1.2), and let us extend it to the whole \mathbb{R}^N setting

$$(3.1) U(x) = +\infty, x \notin \Omega.$$

The extension, that we shall still call U, is lower semicontinuous and convex. For each $x \in \mathbb{R}^N$, the subdifferential $\partial U(x)$ of U at x is the set $\{y \in \mathbb{R}^N : U(\xi) \ge U(x) + \langle y, \xi - x \rangle, \forall \xi \in \mathbb{R}^N\}$. At each $x \in \Omega$, since U is real valued and continuous, $\partial U(x)$ is not empty and it has a unique element with minimal norm, that we denote by DU(x). Of course if U is differentiable at x, DU(x) is the usual gradient. At each $x \notin \Omega$, $\partial U(x)$ is empty and DU(x) is not defined.

LEMMA 3.1. There are $a \in \mathbb{R}$, b > 0 such that $U(x) \ge a + b|x|$ for each $x \in \Omega$.

PROOF. The statement is obvious if Ω is bounded. If Ω is unbounded, we may assume without loss of generality that $0 \in \Omega$. Assume by contradiction that there is a sequence x_n with $|x_n| \to +\infty$ such that $\lim_{n \to \infty} U(x_n)/|x_n| = 0$. Let R be so large that $\min \{U(x) - U(0) : x \in \Omega, |x| = R\} > 0$. Since U is convex, for n large enough we have

$$U\left(\frac{R}{|x_n|}x_n\right) \leq \frac{R}{|x_n|}U(x_n) + \left(1 - \frac{R}{|x_n|}\right)U(0)$$

so that

$$\limsup_{n \to \infty} U\left(\frac{R}{|x_n|} x_n\right) - U(0) \leq \lim_{n \to \infty} \frac{R}{|x_n|} U(x_n) - \frac{R}{|x_n|} U(0) = 0,$$

a contradiction.

We set as usual $e^{-\infty} = 0$. The function

$$x \mapsto e^{-2U(x)}, \qquad x \in \mathbb{R}^N$$

is continuous, it is positive in Ω , and it vanishes outside Ω . Lemma 3.1 implies that it is in $L^1(\Omega)$. Therefore, the probability measure (1.3) is well defined, and it has Ω as support.

LEMMA 3.2. $C_0^{\infty}(\mathbb{R}^N)$ is dense in $L^2(\mathbb{R}^N, \mu)$, in $H^1(\mathbb{R}^N, \mu)$ and in $H^2(\mathbb{R}^N, \mu)$. Moreover,

- (i) $C_0^{\infty}(\Omega)$ is dense in $L^2(\Omega, \mu)$;
- (ii) If (1.4) holds, then $C_0^{\infty}(\Omega)$ is dense in $H^1(\Omega, \mu)$.

PROOF. The proof of the first statement is identical to the proof of [5, Lemma 2.1], and we omit it.

Let $\theta_n: \mathbb{R} \mapsto \mathbb{R}$ be a sequence of smooth functions such that $0 \leq \theta_n(y) \leq 1$ for

each y, $\theta_n \equiv 1$ for $y \leq n$, $\theta_n \equiv 0$ for $y \geq 2n$, and such that

$$|\theta'_n(y)| \leq \frac{C}{n}, \quad y \in \mathbb{R}$$

For each $u \in L^2(\Omega, \mu)$ set

(3.2)
$$u_n(x) = u(x)\theta_n(U(x)), \quad x \in \Omega, \qquad u_n(x) = 0, \quad x \notin \Omega.$$

Then u_n has compact support, and $u_n \rightarrow u$ in $L^2(\mathbb{R}^N, \mu)$. Indeed,

$$\int_{\mathbb{R}^N} |u_n - u|^2 \mu(dx) \leq \int_{\{x \in \Omega: \ U(x) \ge n\}} |u|^2 \mu(dx)$$

which goes to 0 as $n \to \infty$. In its turn, u_n may be approximated in $L^2(\Omega)$ by a sequence of $C_0^{\infty}(\Omega)$ functions obtained by convolution with smooth mollifiers. Since u_n has compact support, such a sequence approximates u_n also in $L^2(\Omega, \mu)$, and statement (*i*) follows.

Statement (*ii*) is proved in three steps. First, we note that any $u \in H^1(\Omega, \mu)$ may be approached by functions in $H^1(\Omega, \mu) \cap L^{\infty}(\Omega)$. Then we approach any function in $H^1(\Omega, \mu) \cap L^{\infty}(\Omega)$ by functions in $H^1(\Omega, \mu)$ with compact support. Third, any function in $H^1(\Omega, \mu)$ with compact support is approximated by a sequence of $C_0^{\infty}(\Omega)$ functions obtained as above by convolution with smooth mollifiers.

For any $u \in H^1(\Omega, \mu)$ we set

$$u_{\varepsilon}(x) = \frac{u(x)}{1 + \varepsilon u(x)^2} \,.$$

Then

$$\int_{\Omega} |u - u_{\varepsilon}|^2 \mu(dx) = \int_{\Omega} u^2 \left(1 - \frac{1}{1 + \varepsilon u^2}\right)^2 \mu(dx)$$

goes to 0 as $\varepsilon \rightarrow 0$, and

$$Du_{\varepsilon} = \frac{Du}{1 + \varepsilon u^2} - \frac{2\varepsilon u^2 Du}{(1 + \varepsilon u^2)^2}$$

so that $|Du - Du_{\varepsilon}|$ goes to 0 in $L^{2}(\Omega, \mu)$ as well. So, *u* is approximated by a sequence of bounded H^{1} functions.

Now, let $u \in H^1(\Omega, \mu) \cap L^{\infty}(\Omega)$, and define u_n by (3.2).

Since U is convex, it is locally Lipschitz continuous, so that it is differentiable almost everywhere with locally L^{∞} gradient. It follows that u_n is differentiable a.e. and for almost each x in Ω we have

$$Du_n(x) = Du(x)\theta_n(U(x)) + u(x)\theta'_n(U(x))DU(x).$$

Here $Du\theta_n(U)$ goes to Du in $L^2(\Omega,\mu)$, and $u\theta'_n(U)DU$ goes to 0 in $L^2(\Omega,\mu)$ as $n \to \infty$ because $u \in L^{\infty}$, $DU \in L^2(\Omega,\mu)$ and $|\theta'_n| \leq C/n$. Statement (*ii*) follows. \Box

We remark that in general $C_0^{\infty}(\Omega)$ is not dense in $H^1(\mathbb{R}^N, \mu)$. See next Example 4.1. We introduce now the main tool in our study, *i.e.* the *Moreau-Yosida approxima*- tions of U,

$$U_{\alpha}(x) = \inf \left\{ U(y) + \frac{1}{2\alpha} |x - y|^2 \colon y \in \mathbb{R}^N \right\}, \qquad x \in \mathbb{R}^N, \quad \alpha > 0,$$

that are real valued on the whole \mathbb{R}^N and enjoy good regularity properties: they are convex, differentiable, and for each $x \in \mathbb{R}^N$ we have (see *e.g.* [2, Prop. 2.6, Prop. 2.11])

$$\begin{split} U_{\alpha}(x) &\leq U(x), \ \left| DU_{\alpha}(x) \right| \leq \left| DU(x) \right|, \quad \lim_{a \to 0} U_{\alpha}(x) = U(x), \quad x \in \mathbb{R}^{N}, \\ \lim_{a \to 0} DU_{\alpha}(x) = DU(x), \quad x \in \Omega; \quad \lim_{a \to 0} \left| DU_{\alpha}(x) \right| = +\infty, \quad x \notin \Omega. \end{split}$$

Moreover DU_{α} is Lipschitz continuous for each α , with Lipschitz constant $1/\alpha$.

Let us define now the realization A of \mathfrak{A} in $L^2(\Omega, \mu)$ by

(3.3)
$$\begin{cases} D(A) = \{ u \in H^2(\Omega, \mu) : \langle DU, Du \rangle \in L^2(\Omega, \mu) \}, \\ (Au)(x) = \mathfrak{Cl} u(x), \quad x \in \Omega. \end{cases}$$

We shall show that A is a self-adjoint dissipative operator, provided $C_0^{\infty}(\Omega)$ is dense in $H^1(\mathbb{R}^N, \mu)$. The fact that A is symmetric is a consequence of the next lemma.

LEMMA 3.3. If $C_0^{\infty}(\Omega)$ is dense in $H^1(\mathbb{R}^N, \mu)$, then for each $u \in D(A)$, $\psi \in H^1(\mathbb{R}^N, \mu)$ we have

(3.4)
$$\int_{\Omega} (\mathfrak{Cl} u)(x) \psi(x) \nu(dx) = -\frac{1}{2} \int_{\Omega} \langle Du(x), D\psi(x) \rangle \mu(dx).$$

PROOF. Since $C_0^{\infty}(\mathbb{R}^N)$ is dense in $H^1(\mathbb{R}^N, \mu)$ it is sufficient to show that (3.4) hold for each $\psi \in C_0^{\infty}(\mathbb{R}^N)$.

If $\psi \in C_0^{\infty}(\Omega)$, then the function $\psi \exp(-2U)$ is continuously differentiable and it has compact support in Ω . Integrating by parts $(\Delta u)(x)\psi(x) \exp(-2U(x))$ we get

$$\frac{1}{2} \int_{\Omega} (\Delta u)(x) \psi(x) e^{-2U(x)} dx = -\frac{1}{2} \int_{\Omega} \langle Du(x), D(\psi(x) e^{-2U(x)}) \rangle dx =$$
$$= -\frac{1}{2} \int_{\Omega} \langle Du(x), D\psi(x) \rangle e^{-2U(x)} dx + \frac{1}{2} \int_{\Omega} \langle Du(x), 2DU(x) \rangle \psi(x) e^{-2U(x)} dx$$

so that (3.4) holds.

Taking $\psi = u$ in (3.4) shows that A is symmetric.

Once we have the integration formula (3.4) and the powerful tool of the Moreau-Yosida approximations at our disposal, the proof of the dissipativity of A is similar to the proof of Theorem 2.4 of [5]. However we write down all the details for the reader's convenience.

320

THEOREM 3.4. Let $U: \Omega \mapsto \mathbb{R}$ be a convex function satisfying assumption (1.2), and be such that $C_0^{\infty}(\Omega)$ is dense in $H^1(\Omega, \mu)$. Then the resolvent set of A contains $(0, +\infty)$ and

(3.5)
$$\begin{cases} (i) & \|R(\lambda, A) f\|_{L^{2}(\Omega, \mu)} \leq \frac{1}{\lambda} \|f\|_{L^{2}(\Omega, \mu)}, \\ (ii) & \|\|DR(\lambda, A) f\|_{L^{2}(\Omega, \mu)} \leq \frac{2}{\sqrt{\lambda}} \|f\|_{L^{2}(\Omega, \mu)}, \\ (iii) & \|\|D^{2}R(\lambda, A) f\|_{L^{2}(\Omega, \mu)} \leq 4 \|f\|_{L^{2}(\Omega, \mu)}. \end{cases}$$

Moreover the resolvent $R(\lambda, A)$ is positivity preserving, and $R(\lambda, A) \mathbb{1} = 1/\lambda$.

PROOF. For $\lambda > 0$ and $f \in L^2(\Omega, \mu)$ consider the resolvent equation

$$\lambda u - Au = f.$$

It has at most a solution, because if $u \in D(A)$ satisfies $\lambda u = Au$ then by (3.4) we have

$$\int_{\Omega} \lambda(u(x))^2 \mu(dx) = \int_{\Omega} (Au)(x) u(x) \mu(dx) = -\frac{1}{2} \int_{\Omega} |Du(x)|^2 \mu(dx) \le 0$$

so that u = 0.

To find a solution to (3.6), we approximate U by the Moreau-Yosida approximations U_a defined above, we consider the measures $\nu_{\alpha}(dx) = e^{-2U_{\alpha}(x)} dx / \int e^{-2U_{\alpha}(x)} dx$ in \mathbb{R}^N and the operators \mathfrak{A}_{α} defined by $\mathfrak{A}_{\alpha} u = \Delta u/2 - \langle DU_{\alpha}, Du \rangle$.

Since the functions U_a are convex and satisfy (2.1), the results of Theorem 2.1 hold for the operators A_a : $D(A_a) = H^2(\mathbb{R}^N, \nu_a) \mapsto L^2(\mathbb{R}^N, \nu_a)$. In particular, for each $f \in C_0^{\infty}(\mathbb{R}^N)$ with support contained in Ω , the equation

$$\lambda u_{\alpha} - A_{\alpha} u_{\alpha} = f,$$

has a unique solution $u_a \in D(A_a)$. Moreover, each u_a is bounded with bounded and Hölder continuous second order derivatives, thanks to the Schauder estimates and the maximum principle that hold for operators with Lipschitz continuous coefficients, see [10].

Estimates (2.3) imply that

(3.8)
$$\begin{cases} \|u_{\alpha}\|_{L^{2}(\mathbb{R}^{N}, \nu_{\alpha})} \leq \frac{1}{\lambda} \|f\|_{L^{2}(\mathbb{R}^{N}, \nu_{\alpha})}, \\ \||Du_{\alpha}|\|_{L^{2}(\mathbb{R}^{N}, \nu_{\alpha})} \leq \frac{2}{\sqrt{\lambda}} \|f\|_{L^{2}(\mathbb{R}^{N}, \nu_{\alpha})}, \\ \||D^{2}u_{\alpha}|\|_{L^{2}(\mathbb{R}^{N}, \nu_{\alpha})} \leq 4 \|f\|_{L^{2}(\mathbb{R}^{N}, \nu_{\alpha})}, \end{cases}$$

so that

$$\|u_{a}\|_{H^{2}(\mathbb{R}^{N}, \nu_{a})} \leq C \|f\|_{L^{2}(\mathbb{R}^{N}, \nu_{a})}$$

with $C = C(\lambda)$ independent of α . Since $U_{\alpha}(x)$ goes to U(x) monotonically as $\alpha \to 0$, then $\exp(-2U_{\alpha}(x))$ goes to $\exp(-2U(x))$ monotonically, and $\left(\int_{\mathbb{D}^{N}} e^{-2U_{\alpha}(x)} dx\right)^{-1}$

goes to $\left(\int_{\mathbb{R}^{N}} e^{-2U(x)} dx\right)^{-1}$, $||f||_{L^{2}(\mathbb{R}^{N}, \nu_{\alpha})}$ goes to $||f||_{L^{2}(\mathbb{R}^{N}, \mu)}$ as $\alpha \to 0$. It follows that the norm $||u_{\alpha}||_{H^{2}(\mathbb{R}^{N}, \mu)}$ is bounded by a constant independent of α , and consequently also the norm $||u_{\alpha}||_{H^{2}(\mathbb{R}^{N}, \mu)}$ is bounded by a constant independent of α . Therefore there is a

the norm $\|u_{\alpha}\|_{H^2(\mathbb{R}^N,\mu)}$ is bounded by a constant independent of α . Therefore there is a sequence u_{α_n} that converges weakly in $H^2(\mathbb{R}^N,\mu)$ to a function $u \in H^2(\mathbb{R}^N,\mu)$, and converges to u in $H^1(K)$ for each compact subset $K \subset \Omega$. This implies easily that u solves (3.6). Indeed, let $\phi \in C_0^{\infty}(\Omega)$. For each $n \in \mathbb{N}$ we have

$$\int_{\mathbb{R}^{N}} \left(\lambda u_{\alpha_{n}} - \frac{1}{2} \Delta u_{\alpha_{n}} + \langle DU_{\alpha_{n}}, Du_{\alpha_{n}} \rangle - f \right) \phi e^{-2U} dx = 0.$$

Letting $n \to \infty$, we get immediately that $\int_{\mathbb{R}^N} (\lambda u_{\alpha_n} - \frac{1}{2} \Delta u_{\alpha_n}) \phi e^{-2U(x)} dx$ goes to $\int_{\mathbb{R}^N} (\lambda u - \frac{1}{2} \Delta u) \phi e^{-2U(x)} dx$. Moreover $\int_{\mathbb{R}^N} \langle DU_{\alpha_n}, Du_{\alpha_n} \rangle \phi e^{-2U(x)} dx$ goes to $\int_{\mathbb{R}^N} \langle DU, Du \rangle \phi e^{-2U(x)} dx$ because DU_{α_n} goes to DU in $L^2(\operatorname{supp} \phi)$. Therefore letting $n \to \infty$ we get

$$\int_{\mathbb{R}^N} (\lambda u - \mathfrak{Cl} u - f) \phi e^{-2U} dx = 0$$

for each $\phi \in C_0^{\infty}(\mathbb{R}^N)$, and hence $\lambda u - \mathcal{C} u = f$ almost everywhere in Ω . So, $u_{|\Omega} \in D(A)$ is the solution of the resolvent equation, and letting $\alpha \to 0$ in (3.8) we get

(3.9)
$$\begin{cases} \|u\|_{L^{2}(\Omega, \mu)} \leq \frac{1}{\lambda} \|f\|_{L^{2}(\Omega, \mu)}, \quad \||Du|\|_{L^{2}(\Omega, \mu)} \leq \frac{2}{\sqrt{\lambda}} \|f\|_{L^{2}(\Omega, \nu)} \\ \||D^{2}u|\|_{L^{2}(\Omega, \mu)} \leq 4 \|f\|_{L^{2}(\Omega, \mu)}. \end{cases}$$

Let now $f \in L^2(\Omega, \mu)$ and let f_n be a sequence of $C_0^{\infty}(\Omega)$ functions going to f in $L^2(\Omega, \mu)$ as $n \to \infty$. Thanks to estimates (3.9), the solutions u_n of

$$\lambda u_n - A u_n = f_n$$

are a Cauchy sequence in $H^2(\Omega, \mu)$, and converge to a solution $u \in H^2(\Omega, \mu)$ of (3.6). Due again to estimates (3.9), u satisfies (3.5).

If in addition $f(x) \ge 0$ a.e. in Ω , we may take $f_n(x) \ge 0$ in Ω , see the proof of Lemma 3.2. Each u_α , solution to (3.7) with f replaced by f_n , has nonnegative values thanks to the maximum principle for elliptic operators with Lipschitz continuous coefficients proved in [10]. Our limiting procedure gives $R(\lambda, A) f_n(x) \ge 0$ for each x, and $R(\lambda, A) f(x) \ge 0$ for each x. So, $R(\lambda, A)$ is a positivity preserving operator. \Box

4. Examples and consequences

EXAMPLE 4.1. Let Ω be the unit open ball in \mathbb{R}^N , and let $U(x) = -\frac{\alpha}{2}\log(1-|x|)$ for $x \in \Omega$, with $\alpha > 0$. Then

$$\exp(-2U(x)) = (1 - |x|)^{\alpha}, \quad DU(x) = \frac{\alpha x}{2|x|(1 - |x|)}, \quad 0 < |x| < 1,$$

and it is known that $C_0^{\infty}(\Omega)$ is dense in $H^1(\Omega, \mu)$ iff $\alpha \ge 1$. See *e.g.* [14, Theorem 3.6.1]. In this case the result of Theorem 3.4 holds, and *A* is a self-adjoint dissipative operator in $L^2(\Omega, \mu)$.

Note that assumption (1.4) is satisfied only for $\alpha > 1$. This shows that assumption (1.4) is not equivalent to the fact that $C_0^{\infty}(\Omega)$ is dense in $H^1(\mathbb{R}^N, \mu)$, however it is not very far. \Box

Under the assumptions of Theorem 3.4, A is the infinitesimal generator of an analytic contraction semigroup T(t) in $L^2(\Omega, \mu)$.

Since the resolvent $R(\lambda, A)$ is positivity preserving for $\lambda > 0$, also T(t) is positivity preserving. Since $R(\lambda, A) = 1/\lambda$, then T(t) = 1 for each t > 0. Therefore, T(t) is a Markov semigroup and it may be extended in a standard way to a contraction semigroup (that we shall still call T(t)) in $L^p(\Omega, \mu)$, $1 \le p \le \infty$. T(t) is strongly continuous in $L^p(\Omega, \mu)$ for $1 \le p < \infty$, and it is analytic for 1 . See*e.g.*[4, Chapter 1].The infinitesimal generator of <math>T(t) in $L^p(\Omega, \mu)$ is denoted by A_p . The characterization of the domain of A_p in $L^p(\Omega, \mu)$ for $p \ne 2$ is an interesting open problem.

An important optimal regularity result for evolution equations follows, see [9].

COROLLARY 4.2. Let 1 , <math>T > 0. For each $f \in L^p((0, T); L^p(\Omega, \mu))$ (i.e. $(t, x) \mapsto f(t)(x) \in L^p((0, T) \times \Omega; dt \times \mu))$ the problem

$$\begin{cases} u'(t) = A_p u(t) + f(t), & 0 < t < T, \\ u(0) = 0, \end{cases}$$

has a unique solution $u \in L^p((0, T); D(A_p)) \cap W^{1, p}((0, T); L^p(\Omega, \mu)).$

From Lemma 3.3 we get, taking $\psi \equiv 1$,

$$\int_{\Omega} A u \,\mu(dx) = 0, \qquad u \in D(A),$$

and hence,

$$\int_{\Omega} T(t) f \mu(dx) = \int_{\Omega} f \mu(dx), \quad t > 0,$$

for each $f \in L^2(\Omega, \mu)$. Since $L^2(\Omega, \mu)$ is dense in $L^1(\Omega, \mu)$, the above equality holds for each $f \in L^1(\Omega, \mu)$. In other words, μ is an invariant measure for the semigroup T(t).

From Lemma 3.3 we get also

$$u \in D(A), \quad Au = 0 \implies Du = 0,$$

and hence the kernel of A consists of the constant functions. Let us prove now that

(4.1)
$$\lim_{t \to +\infty} T(t) f = \int_{\Omega} f(y) \mu(dy) \quad \text{in } L^{2}(\Omega, \mu),$$

for all $f \in L^2(\Omega, \mu)$.

Indeed, since the function $t \to \varphi(t) = \int_{\Omega} (T(t)f)^2 \mu(dx)$ is nonincreasing and bounded, there exists the limit $\lim_{t \to +\infty} \varphi(t) = \lim_{t \to +\infty} \langle T(2t)f, f \rangle_{L^2(\Omega,\mu)}$. By a standard argument it follows that there exists a symmetric nonnegative operator $Q \in \mathcal{L}(L^2(\Omega,\mu))$ such that

$$\lim_{t \to +\infty} T(t) f = Qf, \quad f \in L^2(H, \mu).$$

On the other hand, using the Mean Ergodic Theorem in Hilbert space (see *e.g.* [11, p. 24]) we get easily

$$\lim_{t \to +\infty} T(t) f = P\left(\int_{0}^{1} T(s) f ds\right),$$

where P is the orthogonal projection on the kernel of A. Since the kernel of A consists of the constant functions, (4.1) follows.

From now on we make a strict convexity assumption on U:

(4.2)
$$\exists \omega > 0 \text{ such that } x \mapsto U(x) - \omega |x|^2 / 2 \text{ is convex}.$$

This will allow us to prove further properties for T(t), through Poincaré and Log-Sobolev inequalities.

If (Λ, m) is any measure space and $u \in L^1(\Lambda, m)$ we set

(4.3)
$$\overline{u}_m = \int_{\Lambda} u(x) m(dx).$$

PROPOSITION 4.3. Let the assumptions of Theorem 3.4 and (4.2) hold. Then

(4.4)
$$\int_{\Omega} |u(x) - \overline{u}_{\mu}|^2 \mu(dx) \leq \frac{1}{2\omega} \int_{\Omega} |Du(x)|^2 d\mu(dx), \quad u \in H^1(\Omega, \mu)$$

and

(4.5)
$$\int_{\Omega} u^{2}(x) \log (u^{2}(x)) \mu(dx) \leq \frac{1}{\omega} \int_{\Omega} |Du(x)|^{2} \mu(dx) + \frac{1}{u^{2}} \log (\overline{u^{2}}_{\mu}), \quad u \in H^{1}(\Omega, \mu).$$

PROOF. Let $u \in C_0^{\infty}(\mathbb{R}^N)$ have support in Ω . Let U_a be the Moreau-Yosida approximations of U, and set as usual $\nu_{\alpha}(dx) = \left(\int_{\mathbb{R}^N} e^{-2U_a(x)} dx\right)^{-1} e^{-2U_a(x)} dx$. Since $x \mapsto U_a(x) - \omega(1-\alpha) |x|^2$ is convex in the whole \mathbb{R}^N , by Theorem 2.2 we have, for $\alpha \in (0, 1)$,

(4.6)
$$\int_{\mathbb{R}^N} |u(x) - \overline{u}_{\alpha}|^2 \nu_{\alpha}(dx) \leq \frac{1}{2\omega(1-\alpha)} \int_{\mathbb{R}^N} |Du(x)|^2 \nu_{\alpha}(dx),$$

(where \overline{u}_{α} stands for $\overline{u}_{\nu_{\alpha}}$) and

$$(4.7) \int_{\mathbb{R}^{N}} u^{2}(x) \log (u^{2}(x)) v_{a}(dx) \leq \frac{1}{\omega(1-\alpha)} \int_{\mathbb{R}^{N}} |Du(x)|^{2} v_{a}(dx) + \overline{u^{2}}_{a} \log (\overline{u^{2}}_{a}).$$

Since

$$\lim_{a \to 0} U_a(x) = \begin{cases} U(x) & \text{if } x \in \Omega \\ +\infty & \text{if } x \notin \Omega \end{cases},$$

then \overline{u}_{α} goes to $\overline{u}_{\mu} = \int_{\Omega} u(x)\mu(dx)$, $\overline{u}_{\alpha}^{2}$ goes to \overline{u}_{μ}^{2} as α goes to 0, and letting α go to 0 in (4.6), (4.7) we obtain that u satisfies (4.4) and (4.5). Since $C_{0}^{\infty}(\Omega)$ is dense in $H^{1}(\Omega, \mu)$, the statement follows. \Box

Proposition 4.3 yields other properties of T(t), listed in the next corollary. The proof is identical to the proof of [5, Corollary 4.3], and we omit it.

COROLLARY 4.4. Let the assumptions of Theorem 3.4 and (4.2) hold. Then 0 is a simple isolated eigenvalue of A. The rest of the spectrum, $\sigma(A) \setminus \{0\}$ is contained in $(-\infty, -\omega]$, and

(4.8) $||T(t)u - \overline{u}_{\mu}||_{L^{2}(\Omega, \mu)} \leq e^{-\omega t} ||u - \overline{u}_{\mu}||_{L^{2}(\Omega, \mu)}, \quad u \in L^{2}(\Omega, \mu), \quad t > 0.$

Moreover we have

(4.9)
$$\|T(t)\varphi\|_{L^{q(t)}(\Omega,\mu)} \leq \|\varphi\|_{L^{p}(\Omega,\mu)}, \quad p \geq 2, \quad \varphi \in L^{p}(\Omega,\mu),$$

where

(4.10)
$$q(t) = 1 + (p-1)e^{2\omega t}, \quad t > 0.$$

References

- V.I. BOGACHEV N.V. KRYLOV M. RÖCKNER, On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions. Comm. Part. Diff. Eqns., 26, 2001, 2037-2080.
- [2] H. BRÉZIS, Opérateurs maximaux monotones. North-Holland, Amsterdam 1973.
- [3] S. CERRAI, Second order PDE's in finite and infinite dimensions. A probabilistic approach. Lecture Notes in Mathematics, 1762, Springer-Verlag, Berlin 2001.
- [4] E.B. DAVIES, Heat kernels and spectral theory. Cambridge Univ. Press, Cambridge 1989.
- [5] G. DA PRATO A. LUNARDI, Elliptic operators with unbounded drift coefficients and Neumann boundary condition. J. Diff. Eqns., 198, 2004, 35-52.
- [6] G. DA PRATO M. RÖCKNER, Singular dissipative stochastic equations in Hilbert spaces. Probab. Theory Relat. Fields, 124, 2002, 261-303.
- [7] A. EBERLE, Uniqueness and non-uniqueness of singular diffusion operators. Lecture Notes in Mathematics, 1718, Springer-Verlag, Berlin 1999.
- [8] N.V. KRYLOV, On Kolmogorov's equations for finite-dimensional diffusions. In: G. DA PRATO (ed.), Stochastic PDE's and Kolmogorov Equations in Infinite Dimensions. Lecture Notes in Mathematics, 1715, Springer-Verlag, Berlin 1999, 1-64.
- [9] D. LAMBERTON, Equations d'évolution linéaires associées à des semi-groupes de contractions dans les espaces L^p. J. Funct. Anal., 72, 1987, 252-262.

- [10] A. LUNARDI V. VESPRI, Optimal L[∞] and Schauder estimates for elliptic and parabolic operators with unbounded coefficients. In: G. CARISTI - E. MITIDIERI (eds.), Proceedings of the Conference Reaction-Diffusion Systems' (Trieste 1995). Lect. Notes in Pure and Applied Math., 194, M. Dekker, New York 1998, 217-239.
- [11] K. PETERSEN, Ergodic Theory. Cambridge Univ. Press, Cambridge 1983.
- [12] M. RÖCKNER, L^p-analysis of finite and infinite dimensional diffusion operators. In: G. DA PRATO (ed.), Stochastic PDE's and Kolmogorov Equations in Infinite Dimensions. Lecture Notes in Mathematics, 1715, Springer-Verlag, Berlin 1999, 65-116.
- [13] W. STANNAT, (Nonsymmetric) Dirichlet operators on L¹: existence, uniqueness and associated Markov processes. Ann. Sc. Norm. Sup. Pisa, Ser. IV, 28, 1999, 99-140.
- [14] H. TRIEBEL, Interpolation theory, function spaces, differential operators. North-Holland, Amsterdam 1978.

G. Da Prato: Scuola Normale Superiore Piazza dei Cavalieri, 7 - 56126 PISA daprato@sns.it

A. Lunardi: Dipartimento di Matematica Università degli Studi di Parma Via D'Azeglio, 85/A - 43100 PARMA lunardi@unipr.it http://prmat.math.unipr.it/~lunardi