Rendiconti Lincei

 Matematica E ApplicazioniGiuseppe Da Prato, Alessandra Lunardi

On a class of elliptic operators with unbounded coefficients in convex domains

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 15 (2004), n.3-4, p. 315-326.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_2004_9_15_3-4_315_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://ww.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 2004.

Giuseppe Da Prato - Alessandra Lunardi
 ON A CLASS OF ELLIPTIC OPERATORS WITH UNBOUNDED COEFFICIENTS IN CONVEX DOMAINS

Abstract. - We study the realization A of the operator $\mathfrak{A}=\frac{1}{2} \Delta-\langle D U, D \cdot\rangle$ in $L^{2}(\Omega, \mu)$, where Ω is a possibly unbounded convex open set in \mathbb{R}^{N}, U is a convex unbounded function such that $\lim _{x \rightarrow \partial \Omega, x \in \Omega} U(x)=+\infty$ and $\lim _{|x| \rightarrow+\infty, x \in \Omega} U(x)=+\infty, D U(x)$ is the element with minimal norm in the subdifferential of U at x, and $\mu(d x)=c \exp (-2 U(x)) d x$ is a probability measure, infinitesimally invariant for \mathfrak{G}. We show that A, with domain $D(A)=\left\{u \in H^{2}(\Omega, \mu):\langle D U, D u\rangle \in L^{2}(\Omega, \mu)\right\}$ is a dissipative self-adjoint operator in $L^{2}(\Omega, \mu)$. Note that the functions in the domain of A do not satisfy any particular boundary condition. Log-Sobolev and Poincaré inequalities allow then to study smoothing properties and asymptotic behavior of the semigroup generated by A.

Key words: Kolmogorov operators; Unbounded coefficients; Convex domains.

1. Introduction

In this paper we give a contribution to the theory of second order elliptic operators with unbounded coefficients, that underwent a great developement in the last few years. See e.g. [1, 5-8, 12, 13].

Here we consider the operator

$$
\begin{equation*}
\mathcal{G} u=\frac{1}{2} \Delta u-\langle D U, D u\rangle \tag{1.1}
\end{equation*}
$$

in a convex open set $\Omega \subset \mathbb{R}^{N}$, where U is a convex function such that

$$
\begin{equation*}
\lim _{x \rightarrow \partial, x \in \Omega} U(x)=+\infty, \quad \lim _{|x| \rightarrow+\infty, x \in \Omega} U(x)=+\infty . \tag{1.2}
\end{equation*}
$$

Since we do not impose any growth condition on U, the usual L^{p} and Sobolev spaces with respect to the Lebesgue measure are not the best setting for the operator \mathcal{G}. It is more convenient to introduce the measure

$$
\begin{equation*}
\mu(d x)=\left(\int_{\Omega} e^{-2 U(x)} d x\right)^{-1} e^{-2 U(x)} d x \tag{1.3}
\end{equation*}
$$

which is infinitesimally invariant for \mathcal{G}, i.e.

$$
\int_{\Omega} \mathfrak{G} u(x) \mu(d x)=0, \quad u \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)
$$

and lets \mathcal{Q} be formally self-adjoint in $L^{2}(\Omega, \mu)$, as an easy computation shows. We prove in fact that the realization A of \mathfrak{G} in $L^{2}(\Omega, \mu)$, with domain

$$
D(A)=\left\{u \in H^{2}(\Omega, \mu): \mathcal{G} u \in L^{2}(\Omega, \mu)\right\}=\left\{u \in H^{2}(\Omega, \mu):\langle D U, D u\rangle \in L^{2}(\Omega, \mu)\right\}
$$

is a self-adjoint and dissipative operator, provided $C_{0}^{\infty}(\Omega)$ is dense in $H^{1}(\Omega, \mu)$. We recall that $H^{1}(\Omega, \mu)$ is naturally defined as the set of all $u \in H_{l o c}^{1}(\Omega)$ such that u,
$D_{i} u \in L^{2}(\Omega, \mu)$, for $i=1, \ldots, N$. While it is easy to see that $C_{0}^{\infty}(\Omega)$ is dense in $L^{2}(\Omega, \mu)$, well-known counterexamples show that $C_{0}^{\infty}(\Omega)$ is not dense in $H^{1}(\Omega, \mu)$ in general. A sufficient condition in order that $C_{0}^{\infty}(\Omega)$ be dense in $H^{1}(\Omega, \mu)$ is

$$
\begin{equation*}
D U \in L^{2}(\Omega, \mu) \tag{1.4}
\end{equation*}
$$

Once we know that $C_{0}^{\infty}(\Omega)$ is dense in $H^{1}(\Omega, \mu)$, it is not hard to show that for each $u \in D(A)$ and $\psi \in H^{1}(\Omega, \mu)$ we have

$$
\int_{\Omega}(\mathcal{A} u)(x) \psi(x) \mu(d x)=-\frac{1}{2} \int_{\Omega}\langle D u(x), D \psi(x)\rangle \mu(d x) .
$$

This crucial integration formula implies that A is symmetric and dissipative. The next step is to prove that $\lambda I-A$ is onto for $\lambda>0$, so that A is m -dissipative. This is done by approximation, solving first, for each $\lambda>0$ and $f \in C_{0}^{\infty}(\Omega)$,

$$
\begin{equation*}
\lambda u_{\alpha}(x)-\left(\mathcal{Q}_{\alpha} u_{\alpha}\right)(x)=f(x), \quad x \in \mathbb{R}^{N}, \tag{1.5}
\end{equation*}
$$

where A_{α} is defined as \mathcal{G}, with U replaced by its Moreau-Yosida approximation U_{α}. To be more precise, first we extend f and U to the whole \mathbb{R}^{N} setting $f(x)=0$ and $U(x)=+\infty$ for x outside Ω; since the extension of U is lower semicontinuous and convex the Moreau-Yosida approximations U_{α} are well defined and differentiable with Lipschitz continuous gradient in \mathbb{R}^{N}. Then (1.5) has a unique solution $u_{\alpha} \in H^{2}\left(\mathbb{R}^{N}, \mu_{\alpha}\right)$, with $\mu_{\alpha}(d x)=\left(\int_{R^{N}} e^{-2 U_{\alpha}(x)} d x\right)^{-1} e^{-2 U_{\alpha}(x)} d x$, and the norm of u_{α} in $H^{2}\left(\mathbb{R}^{N}, \mu_{\alpha}\right)$ is bounded by $C(\lambda)\|f\|_{L^{2}\left(\mathbb{R}^{N}, \mu_{\alpha}\right)}$, where the constant $C(\lambda)$ is independent of α, due to the estimates for equations in the whole \mathbb{R}^{N} already proved in [5]. Using the convergence properties of U_{α} and of $D U_{\alpha}$ to U and to $D U$ respectively, we arrive at a solution $u \in H^{2}(\Omega, \mu)$ of

$$
\begin{equation*}
\lambda u(x)-(\mathcal{Q} u)(x)=f(x), \quad x \in \Omega, \tag{1.6}
\end{equation*}
$$

that belongs to $D(A)$, satisfies $\|u\|_{H^{2}(\Omega, \mu)} \leqslant C(\lambda)\|f\|_{L^{2}(\Omega, \mu)}$ and is the unique solution to the resolvent equation because A is dissipative. If f is just in $L^{2}(\Omega, \mu),(1.6)$ is solved approaching f by a sequence of functions in $C_{0}^{\infty}(\Omega)$.

A lot of nice consequences follow: A generates an analytic contraction semigroup $T(t)$ in $L^{2}(\Omega, \mu)$, which is a Markov semigroup and it may be extended in a standard way to a contraction semigroup in $L^{p}(\Omega, \mu)$ for each $p \geqslant 1$. The measure μ is invariant for $T(t)$, i.e.

$$
\int_{\Omega}(T(t) f)(x) \mu(d x)=\int_{\Omega} f(x) \mu(d x), \quad f \in L^{1}(\Omega, \mu),
$$

and moreover $T(t) f$ converges to the mean value $\bar{f}=\int_{\Omega} f(x) \mu(d x)$ of f as $t \rightarrow+\infty$, for each $f \in L^{2}(\Omega, \mu)$.

If, in addition, $U-\omega|x|^{2} / 2$ is still convex for some $\omega>0, T(t)$ enjoys further properties. 0 comes out to be a simple isolated eigenvalue in $\sigma(A)$, the rest of the spectrum is contained in $(-\infty,-\omega]$, and $T(t) f$ converges to \bar{f} at an exponential rate as $t \rightarrow+\infty$. Moreover, $T(t)$ is a bounded operator (with norm not exceeding 1) from $L^{p}(\Omega, \mu)$ to $L^{q(t)}(\Omega, \mu)$, with $q(t)=1+(p-1) e^{2 \omega t}$. This hypercontractivity proper-
ty is the best we can expect in weighted Lebesgue spaces with general weight, and there is no hope that $T(t)$ maps, say, $L^{2}(\Omega, \mu)$ into $L^{\infty}(\Omega)$. Similarly, Sobolev embeddings are not available in general. The best we can prove is a logarithmic Sobolev inequality,

$$
\int_{\Omega} f^{2}(x) \log \left(f^{2}(x)\right) \mu(d x) \leqslant \frac{1}{\omega} \int_{\Omega}|D f(x)|^{2} \mu(d x)+\bar{f}^{2} \log \left(\bar{f}^{2}\right), \quad f \in H^{1}(\Omega, \mu)
$$

2. Preliminaries: operators in the whole \mathbb{R}^{N}

Let $U: \mathbb{R}^{N} \mapsto \mathbb{R}$ be a convex C^{1} function, satisfying

$$
\begin{equation*}
\lim _{|x| \rightarrow+\infty} U(x)=+\infty \tag{2.1}
\end{equation*}
$$

Then there are $a \in \mathbb{R}, b>0$ such that $U(x) \geqslant a+b|x|$, for each $x \in \mathbb{R}^{N}$. It follows that the probability measure $v(d x)=e^{-2 U(x)} d x / \int_{\mathbb{R}^{N}} e^{-2 U(x)} d x$ is well defined.

The spaces $H^{1}\left(\mathbb{R}^{N}, v\right)$ and $H^{2}\left(\mathbb{R}^{N}, v\right)$, consist of the functions $u \in H_{l o c}^{1}\left(\mathbb{R}^{N}\right)$ (respectively, $\left.u \in H_{l o c}^{2}\left(\mathbb{R}^{N}\right)\right)$ such that u and its first (resp., first and second) order derivatives are in $L^{2}\left(\mathbb{R}^{N}, v\right)$.

We recall some results proved in [5] on the realization A of \mathfrak{G} in $L^{2}\left(\mathbb{R}^{N}, v\right)$. It is defined by

$$
\left\{\begin{align*}
& D(A)=\left\{u \in H^{2}\left(\mathbb{R}^{N}, v\right): \mathcal{G} u\right.\left.\in L^{2}\left(\mathbb{R}^{N}, v\right)\right\} \tag{2.2}\\
&=\left\{u \in H^{2}\left(\mathbb{R}^{N}, v\right):\langle D U, D u\rangle \in L^{2}\left(\mathbb{R}^{N}, v\right)\right\} \\
&(A u)(x)=\mathcal{A} u(x), \quad x \in \mathbb{R}^{N} .
\end{align*}\right.
$$

TheOrem 2.1. Let $U: \mathbb{R}^{N} \mapsto \mathbb{R}$ be a convex function satisfying assumption (2.1). Then the resolvent set of A contains $(0,+\infty)$ and

$$
\begin{cases}\text { (i) } & \|R(\lambda, A) f\|_{L^{2}\left(\mathbb{R}^{N}, v\right)} \leqslant \frac{1}{\lambda}\|f\|_{L^{2}\left(\mathbb{R}^{N}, v\right)} \tag{2.3}\\ (i i) & \|\mid D R(\lambda, A) f\|_{L^{2}\left(\mathbb{R}^{N}, v\right)} \leqslant \frac{2}{\sqrt{\lambda}}\|f\|_{L^{2}\left(\mathbb{R}^{N}, v\right)} \\ (i i i) & \left\|\left|D^{2} R(\lambda, A) f\right|\right\|_{L^{2}\left(\mathbb{R}^{N}, v\right)} \leqslant 4\|f\|_{L^{2}\left(\mathbb{R}^{N}, v\right)}\end{cases}
$$

Theorem 2.2. Let $U: \mathbb{R}^{N} \mapsto \mathbb{R}$ satisfy (2.1), and be such that $x \mapsto U(x)-\omega|x|^{2} / 2$ is convex, for some $\omega>0$. Then, setting $\bar{u}=\int_{\mathbb{R}^{N}} u(x) v(d x)$, we have

$$
\begin{gathered}
\int_{\mathbb{R}^{N}}|u(x)-\bar{u}|^{2} v(d x) \leqslant \frac{1}{2 \omega} \int_{\mathbb{R}^{N}}|D u(x)|^{2} v(d x), \\
\int_{\mathbb{R}^{N}} u^{2}(x) \log \left(u^{2}(x)\right) v(d x) \leqslant \frac{1}{\omega} \int_{\mathbb{R}^{N}}|D u(x)|^{2} v(d x)+\overline{u^{2}} \log \left(\overline{u^{2}}\right),
\end{gathered}
$$

for each $u \in H^{1}\left(\mathbb{R}^{N}, v\right)$ (we adopt the convention $0 \log 0=0$).

3. The operator A

Let $U: \Omega \mapsto \mathbb{R}$ be a convex function satisfying assumption (1.2), and let us extend it to the whole \mathbb{R}^{N} setting

$$
\begin{equation*}
U(x)=+\infty, \quad x \notin \Omega \tag{3.1}
\end{equation*}
$$

The extension, that we shall still call U, is lower semicontinuous and convex. For each $x \in \mathbb{R}^{N}$, the subdifferential $\partial U(x)$ of U at x is the set $\left\{y \in \mathbb{R}^{N}: U(\xi) \geqslant U(x)+\langle y, \xi-x\rangle\right.$, $\left.\forall \xi \in \mathbb{R}^{N}\right\}$. At each $x \in \Omega$, since U is real valued and continuous, $\partial U(x)$ is not empty and it has a unique element with minimal norm, that we denote by $D U(x)$. Of course if U is differentiable at $x, D U(x)$ is the usual gradient. At each $x \notin \Omega, \partial U(x)$ is empty and $D U(x)$ is not defined.

Lemma 3.1. There are $a \in \mathbb{R}, b>0$ such that $U(x) \geqslant a+b|x|$ for each $x \in \Omega$.
Proof. The statement is obvious if Ω is bounded. If Ω is unbounded, we may assume without loss of generality that $0 \in \Omega$. Assume by contradiction that there is a sequence x_{n} with $\left|x_{n}\right| \rightarrow+\infty$ such that $\lim _{n \rightarrow \infty} U\left(x_{n}\right) /\left|x_{n}\right|=0$. Let R be so large that $\min \{U(x)-U(0): x \in \Omega,|x|=R\}>0$. Since U is convex, for n large enough we have

$$
U\left(\frac{R}{\left|x_{n}\right|} x_{n}\right) \leqslant \frac{R}{\left|x_{n}\right|} U\left(x_{n}\right)+\left(1-\frac{R}{\left|x_{n}\right|}\right) U(0)
$$

so that

$$
\limsup _{n \rightarrow \infty} U\left(\frac{R}{\left|x_{n}\right|} x_{n}\right)-U(0) \leqslant \lim _{n \rightarrow \infty} \frac{R}{\left|x_{n}\right|} U\left(x_{n}\right)-\frac{R}{\left|x_{n}\right|} U(0)=0
$$

a contradiction.
We set as usual $e^{-\infty}=0$. The function

$$
x \mapsto e^{-2 U(x)}, \quad x \in \mathbb{R}^{N},
$$

is continuous, it is positive in Ω, and it vanishes outside Ω. Lemma 3.1 implies that it is in $L^{1}(\Omega)$. Therefore, the probability measure (1.3) is well defined, and it has Ω as support.

Lemma 3.2. $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ is dense in $L^{2}\left(\mathbb{R}^{N}, \mu\right)$, in $H^{1}\left(\mathbb{R}^{N}, \mu\right)$ and in $H^{2}\left(\mathbb{R}^{N}, \mu\right)$. Moreover,
(i) $C_{0}^{\infty}(\Omega)$ is dense in $L^{2}(\Omega, \mu)$;
(ii) If (1.4) holds, then $C_{0}^{\infty}(\Omega)$ is dense in $H^{1}(\Omega, \mu)$.

Proof. The proof of the first statement is identical to the proof of [5, Lemma 2.1], and we omit it.

Let $\theta_{n}: \mathbb{R} \mapsto \mathbb{R}$ be a sequence of smooth functions such that $0 \leqslant \theta_{n}(y) \leqslant 1$ for
each $y, \theta_{n} \equiv 1$ for $y \leqslant n, \theta_{n} \equiv 0$ for $y \geqslant 2 n$, and such that

$$
\left|\theta_{n}^{\prime}(y)\right| \leqslant \frac{C}{n}, \quad y \in \mathbb{R}
$$

For each $u \in L^{2}(\Omega, \mu)$ set

$$
\begin{equation*}
u_{n}(x)=u(x) \theta_{n}(U(x)), \quad x \in \Omega, \quad u_{n}(x)=0, \quad x \notin \Omega . \tag{3.2}
\end{equation*}
$$

Then u_{n} has compact support, and $u_{n} \rightarrow u$ in $L^{2}\left(\mathbb{R}^{N}, \mu\right)$. Indeed,

$$
\int_{\mathbb{R}^{N}}\left|u_{n}-u\right|^{2} \mu(d x) \leqslant \int_{\{x \in \Omega: U(x) \geqslant n\}}|u|^{2} \mu(d x)
$$

which goes to 0 as $n \rightarrow \infty$. In its turn, u_{n} may be approximated in $L^{2}(\Omega)$ by a sequence of $C_{0}^{\infty}(\Omega)$ functions obtained by convolution with smooth mollifiers. Since u_{n} has compact support, such a sequence approximates u_{n} also in $L^{2}(\Omega, \mu)$, and statement (i) follows.

Statement (ii) is proved in three steps. First, we note that any $u \in H^{1}(\Omega, \mu)$ may be approached by functions in $H^{1}(\Omega, \mu) \cap L^{\infty}(\Omega)$. Then we approach any function in $H^{1}(\Omega, \mu) \cap L^{\infty}(\Omega)$ by functions in $H^{1}(\Omega, \mu)$ with compact support. Third, any function in $H^{1}(\Omega, \mu)$ with compact support is approximated by a sequence of $C_{0}^{\infty}(\Omega)$ functions obtained as above by convolution with smooth mollifiers.

For any $u \in H^{1}(\Omega, \mu)$ we set

$$
u_{\varepsilon}(x)=\frac{u(x)}{1+\varepsilon u(x)^{2}} .
$$

Then

$$
\int_{\Omega}\left|u-u_{\varepsilon}\right|^{2} \mu(d x)=\int_{\Omega} u^{2}\left(1-\frac{1}{1+\varepsilon u^{2}}\right)^{2} \mu(d x)
$$

goes to 0 as $\varepsilon \rightarrow 0$, and

$$
D u_{\varepsilon}=\frac{D u}{1+\varepsilon u^{2}}-\frac{2 \varepsilon u^{2} D u}{\left(1+\varepsilon u^{2}\right)^{2}}
$$

so that $\left|D u-D u_{\varepsilon}\right|$ goes to 0 in $L^{2}(\Omega, \mu)$ as well. So, u is approximated by a sequence of bounded H^{1} functions.

Now, let $u \in H^{1}(\Omega, \mu) \cap L^{\infty}(\Omega)$, and define u_{n} by (3.2).
Since U is convex, it is locally Lipschitz continuous, so that it is differentiable almost everywhere with locally L^{∞} gradient. It follows that u_{n} is differentiable a.e. and for almost each x in Ω we have

$$
D u_{n}(x)=D u(x) \theta_{n}(U(x))+u(x) \theta_{n}^{\prime}(U(x)) D U(x) .
$$

Here $D u \theta_{n}(U)$ goes to $D u$ in $L^{2}(\Omega, \mu)$, and $u \theta_{n}^{\prime}(U) D U$ goes to 0 in $L^{2}(\Omega, \mu)$ as $n \rightarrow \infty$ because $u \in L^{\infty}, D U \in L^{2}(\Omega, \mu)$ and $\left|\theta_{n}^{\prime}\right| \leqslant C / n$. Statement (ii) follows.

We remark that in general $C_{0}^{\infty}(\Omega)$ is not dense in $H^{1}\left(\mathbb{R}^{N}, \mu\right)$. See next Example 4.1. We introduce now the main tool in our study, i.e. the Moreau-Yosida approxima-
tions of U,

$$
U_{\alpha}(x)=\inf \left\{U(y)+\frac{1}{2 \alpha}|x-y|^{2}: y \in \mathbb{R}^{N}\right\}, \quad x \in \mathbb{R}^{N}, \quad \alpha>0
$$

that are real valued on the whole \mathbb{R}^{N} and enjoy good regularity properties: they are convex, differentiable, and for each $x \in \mathbb{R}^{N}$ we have (see e.g. [2, Prop. 2.6, Prop. 2.11])

$$
\begin{gathered}
U_{\alpha}(x) \leqslant U(x),\left|D U_{\alpha}(x)\right| \leqslant|D U(x)|, \quad \lim _{\alpha \rightarrow 0} U_{\alpha}(x)=U(x), \quad x \in \mathbb{R}^{N}, \\
\lim _{\alpha \rightarrow 0} D U_{\alpha}(x)=D U(x), \quad x \in \Omega ; \quad \lim _{\alpha \rightarrow 0}\left|D U_{\alpha}(x)\right|=+\infty, \quad x \notin \Omega
\end{gathered}
$$

Moreover $D U_{\alpha}$ is Lipschitz continuous for each α, with Lipschitz constant $1 / \alpha$.
Let us define now the realization A of \mathcal{Q} in $L^{2}(\Omega, \mu)$ by

$$
\left\{\begin{array}{l}
D(A)=\left\{u \in H^{2}(\Omega, \mu):\langle D U, D u\rangle \in L^{2}(\Omega, \mu)\right\} \tag{3.3}\\
(A u)(x)=\mathcal{G} u(x), \quad x \in \Omega
\end{array}\right.
$$

We shall show that A is a self-adjoint dissipative operator, provided $C_{0}^{\infty}(\Omega)$ is dense in $H^{1}\left(\mathbb{R}^{N}, \mu\right)$. The fact that A is symmetric is a consequence of the next lemma.

Lemma 3.3. If $C_{0}^{\infty}(\Omega)$ is dense in $H^{1}\left(\mathbb{R}^{N}, \mu\right)$, then for each $u \in D(A)$, $\psi \in H^{1}\left(\mathbb{R}^{N}, \mu\right)$ we have

$$
\begin{equation*}
\int_{\Omega}(\mathcal{A} u)(x) \psi(x) v(d x)=-\frac{1}{2} \int_{\Omega}\langle D u(x), D \psi(x)\rangle \mu(d x) \tag{3.4}
\end{equation*}
$$

Proof. Since $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ is dense in $H^{1}\left(\mathbb{R}^{N}, \mu\right)$ it is sufficient to show that (3.4) hold for each $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$.

If $\psi \in C_{0}^{\infty}(\Omega)$, then the function $\psi \exp (-2 U)$ is continuously differentiable and it has compact support in Ω. Integrating by parts $(\Delta u)(x) \psi(x) \exp (-2 U(x))$ we get

$$
\begin{aligned}
& \frac{1}{2} \int_{\Omega}(\Delta u)(x) \psi(x) e^{-2 U(x)} d x=-\frac{1}{2} \int_{\Omega}\left\langle D u(x), D\left(\psi(x) e^{-2 U(x)}\right)\right\rangle d x= \\
& =-\frac{1}{2} \int_{\Omega}\langle D u(x), D \psi(x)\rangle e^{-2 U(x)} d x+\frac{1}{2} \int_{\Omega}\langle D u(x), 2 D U(x)\rangle \psi(x) e^{-2 U(x)} d x
\end{aligned}
$$

so that (3.4) holds.
Taking $\psi=u$ in (3.4) shows that A is symmetric.
Once we have the integration formula (3.4) and the powerful tool of the MoreauYosida approximations at our disposal, the proof of the dissipativity of A is similar to the proof of Theorem 2.4 of [5]. However we write down all the details for the reader's convenience.

Theorem 3.4. Let $U: \Omega \mapsto \mathbb{R}$ be a convex function satisfying assumption (1.2), and be such that $C_{0}^{\infty}(\Omega)$ is dense in $H^{1}(\Omega, \mu)$. Then the resolvent set of A contains $(0,+\infty)$ and

$$
\begin{cases}\text { (i) } & \|R(\lambda, A) f\|_{L^{2}(\Omega, \mu)} \leqslant \frac{1}{\lambda}\|f\|_{L^{2}(\Omega, \mu)} \tag{3.5}\\ \text { (ii) } & \||D R(\lambda, A) f|\|_{L^{2}(\Omega, \mu)} \leqslant \frac{2}{\sqrt{\lambda}}\|f\|_{L^{2}(\Omega, \mu)} \\ \text { (iii) } & \left\|\left|D^{2} R(\lambda, A) f\right|\right\|_{L^{2}(\Omega, \mu)} \leqslant 4\|f\|_{L^{2}(\Omega, \mu)}\end{cases}
$$

Moreover the resolvent $R(\lambda, A)$ is positivity preserving, and $R(\lambda, A) \mathbb{1}=1 / \lambda$.
Proof. For $\lambda>0$ and $f \in L^{2}(\Omega, \mu)$ consider the resolvent equation

$$
\begin{equation*}
\lambda u-A u=f \tag{3.6}
\end{equation*}
$$

It has at most a solution, because if $u \in D(A)$ satisfies $\lambda u=A u$ then by (3.4) we have

$$
\int_{\Omega} \lambda(u(x))^{2} \mu(d x)=\int_{\Omega}(A u)(x) u(x) \mu(d x)=-\frac{1}{2} \int_{\Omega}|D u(x)|^{2} \mu(d x) \leqslant 0
$$

so that $u=0$.
To find a solution to (3.6), we approximate U by the Moreau-Yosida approximations U_{α} defined above, we consider the measures $\boldsymbol{v}_{\alpha}(d x)=e^{-2 U_{\alpha}(x)} d x / \int_{\mathbb{R}^{N}} e^{-2 U_{\alpha}(x)} d x$ in \mathbb{R}^{N} and the operators \mathcal{Q}_{α} defined by $\mathcal{Q}_{\alpha} u=\Delta u / 2-\left\langle D U_{\alpha}, D u\right\rangle$.

Since the functions U_{α} are convex and satisfy (2.1), the results of Theorem 2.1 hold for the operators $A_{\alpha}: D\left(A_{\alpha}\right)=H^{2}\left(\mathbb{R}^{N}, v_{\alpha}\right) \mapsto L^{2}\left(\mathbb{R}^{N}, v_{\alpha}\right)$. In particular, for each $f \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ with support contained in Ω, the equation

$$
\begin{equation*}
\lambda u_{\alpha}-A_{\alpha} u_{\alpha}=f, \tag{3.7}
\end{equation*}
$$

has a unique solution $u_{\alpha} \in D\left(A_{\alpha}\right)$. Moreover, each u_{α} is bounded with bounded and Hölder continuous second order derivatives, thanks to the Schauder estimates and the maximum principle that hold for operators with Lipschitz continuous coefficients, see [10].

Estimates (2.3) imply that

$$
\left\{\begin{array}{l}
\left\|u_{\alpha}\right\|_{L^{2}\left(\mathbb{R}^{N}, v_{\alpha}\right)} \leqslant \frac{1}{\lambda}\|f\|_{L^{2}\left(\mathbb{R}^{N}, v_{\alpha}\right)} \tag{3.8}\\
\left\|\left|D u_{\alpha}\right|\right\|_{L^{2}\left(\mathbb{R}^{N}, v_{\alpha}\right)} \leqslant \frac{2}{\sqrt{\lambda}}\|f\|_{L^{2}\left(\mathbb{R}^{N}, v_{\alpha}\right)} \\
\left\|\left|D^{2} u_{\alpha}\right|\right\|_{L^{2}\left(\mathbb{R}^{N}, v_{\alpha}\right)} \leqslant 4\|f\|_{L^{2}\left(\mathbb{R}^{N}, v_{\alpha}\right)},
\end{array}\right.
$$

so that

$$
\left\|u_{\alpha}\right\|_{H^{2}\left(\mathbb{R}^{N}, v_{a}\right)} \leqslant C\|f\|_{L^{2}\left(\mathbb{R}^{N}, v_{\alpha}\right)}
$$

with $C=C(\lambda)$ independent of α. Since $U_{\alpha}(x)$ goes to $U(x)$ monotonically as $\alpha \rightarrow 0$, then $\exp \left(-2 U_{\alpha}(x)\right)$ goes to $\exp (-2 U(x))$ monotonically, and $\left(\int_{\mathbb{R}^{N}} e^{-2 U_{\alpha}(x)} d x\right)^{-1}$
goes to $\left(\int_{\mathbb{R}^{N}} e^{-2 U(x)} d x\right)^{-1},\|f\|_{L^{2}\left(\mathbb{R}^{N}, v_{\alpha}\right)}$ goes to $\|f\|_{L^{2}\left(\mathbb{R}^{N}, \mu\right)}$ as $\alpha \rightarrow 0$. It follows that the norm $\left\|u_{\alpha}\right\|_{H^{2}\left(\mathbb{R}^{N}, v_{\alpha}\right)}$ is bounded by a constant independent of α, and consequently also the norm $\left\|u_{\alpha}\right\|_{H^{2}\left(\mathbb{R}^{N}, \mu\right)}$ is bounded by a constant independent of α. Therefore there is a sequence $u_{\alpha_{n}}$ that converges weakly in $H^{2}\left(\mathbb{R}^{N}, \mu\right)$ to a function $u \in H^{2}\left(\mathbb{R}^{N}, \mu\right)$, and converges to u in $H^{1}(K)$ for each compact subset $K \subset \Omega$. This implies easily that u solves (3.6). Indeed, let $\phi \in C_{0}^{\infty}(\Omega)$. For each $n \in \mathbb{N}$ we have

$$
\int_{\mathbb{R}^{N}}\left(\lambda u_{\alpha_{n}}-\frac{1}{2} \Delta u_{\alpha_{n}}+\left\langle D U_{\alpha_{n}}, D u_{\alpha_{n}}\right\rangle-f\right) \phi e^{-2 U} d x=0 .
$$

Letting $n \rightarrow \infty$, we get immediately that $\int_{\mathbb{R}^{N}}\left(\lambda u_{\alpha_{n}}-\frac{1}{2} \Delta u_{\alpha_{n}}\right) \phi e^{-2 U(x)} d x$ goes to $\int_{R^{N}}\left(\lambda u-\frac{1}{2} \Delta u\right) \phi e^{-2 U(x)} d x$. Moreover $\int_{R^{N}}^{R}\left\langle D U_{\alpha_{n}}, D u_{\alpha_{n}}\right\rangle \phi e^{-2 U(x)} d x$ goes to $\int_{\mathbb{R}^{N}}\langle D U, D u\rangle \phi e^{-2 U(x)} d x$ because $D U_{\alpha_{n}}$ goes to $D U$ in $L^{2}(\operatorname{supp} \phi)$. Therefore letting $n \rightarrow \infty$ we get

$$
\int_{\mathbb{R}^{N}}(\lambda u-\mathcal{Q} u-f) \phi e^{-2 U} d x=0
$$

for each $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$, and hence $\lambda u-\mathcal{G} u=f$ almost everywhere in Ω. So, $u_{\mid \Omega} \in D(A)$ is the solution of the resolvent equation, and letting $\alpha \rightarrow 0$ in (3.8) we get

$$
\left\{\begin{array}{l}
\|u\|_{L^{2}(\Omega, \mu)} \leqslant \frac{1}{\lambda}\|f\|_{L^{2}(\Omega, \mu)}, \quad\||D u|\|_{L^{2}(\Omega, \mu)} \leqslant \frac{2}{\sqrt{\lambda}}\|f\|_{L^{2}(\Omega, v)} \tag{3.9}\\
\left\|\left|D^{2} u\right|\right\|_{L^{2}(\Omega, \mu)} \leqslant 4\|f\|_{L^{2}(\Omega, \mu)}
\end{array}\right.
$$

Let now $f \in L^{2}(\Omega, \mu)$ and let f_{n} be a sequence of $C_{0}^{\infty}(\Omega)$ functions going to f in $L^{2}(\Omega, \mu)$ as $n \rightarrow \infty$. Thanks to estimates (3.9), the solutions u_{n} of

$$
\lambda u_{n}-A u_{n}=f_{n}
$$

are a Cauchy sequence in $H^{2}(\Omega, \mu)$, and converge to a solution $u \in H^{2}(\Omega, \mu)$ of (3.6). Due again to estimates (3.9), u satisfies (3.5).

If in addition $f(x) \geqslant 0$ a.e. in Ω, we may take $f_{n}(x) \geqslant 0$ in Ω, see the proof of Lemma 3.2. Each u_{α}, solution to (3.7) with f replaced by f_{n}, has nonnegative values thanks to the maximum principle for elliptic operators with Lipschitz continuous coefficients proved in [10]. Our limiting procedure gives $R(\lambda, A) f_{n}(x) \geqslant 0$ for each x, and $R(\lambda, A) f(x) \geqslant 0$ for each x. So, $R(\lambda, A)$ is a positivity preserving operator.

4. Examples and consequences

Example 4.1. Let Ω be the unit open ball in \mathbb{R}^{N}, and let $U(x)=-\frac{\alpha}{2} \log (1-|x|)$ for $x \in \Omega$, with $\alpha>0$. Then

$$
\exp (-2 U(x))=(1-|x|)^{a}, \quad D U(x)=\frac{\alpha x}{2|x|(1-|x|)}, \quad 0<|x|<1
$$

and it is known that $C_{0}^{\infty}(\Omega)$ is dense in $H^{1}(\Omega, \mu)$ iff $\alpha \geqslant 1$. See e.g. [14, Theorem 3.6.1]. In this case the result of Theorem 3.4 holds, and A is a self-adjoint dissipative operator in $L^{2}(\Omega, \mu)$.

Note that assumption (1.4) is satisfied only for $\alpha>1$. This shows that assumption (1.4) is not equivalent to the fact that $C_{0}^{\infty}(\Omega)$ is dense in $H^{1}\left(\mathbb{R}^{N}, \mu\right)$, however it is not very far.

Under the assumptions of Theorem 3.4, A is the infinitesimal generator of an analytic contraction semigroup $T(t)$ in $L^{2}(\Omega, \mu)$.

Since the resolvent $R(\lambda, A)$ is positivity preserving for $\lambda>0$, also $T(t)$ is positivity preserving. Since $R(\lambda, A) \mathbb{1}=\mathbb{1} / \lambda$, then $T(t) \mathbb{1}=\mathbb{1}$ for each $t>0$. Therefore, $T(t)$ is a Markov semigroup and it may be extended in a standard way to a contraction semigroup (that we shall still call $T(t)$) in $L^{p}(\Omega, \mu), 1 \leqslant p \leqslant \infty . T(t)$ is strongly continuous in $L^{p}(\Omega, \mu)$ for $1 \leqslant p<\infty$, and it is analytic for $1<p<\infty$. See e.g. [4, Chapter 1]. The infinitesimal generator of $T(t)$ in $L^{p}(\Omega, \mu)$ is denoted by A_{p}. The characterization of the domain of A_{p} in $L^{p}(\Omega, \mu)$ for $p \neq 2$ is an interesting open problem.

An important optimal regularity result for evolution equations follows, see [9].
Corollary 4.2. Let $1<p<\infty, T>0$. For each $f \in L^{p}\left((0, T) ; L^{p}(\Omega, \mu)\right)$ (i.e. $\left.(t, x) \mapsto f(t)(x) \in L^{p}((0, T) \times \Omega ; d t \times \mu)\right)$ the problem

$$
\left\{\begin{array}{l}
u^{\prime}(t)=A_{p} u(t)+f(t), \quad 0<t<T \\
u(0)=0,
\end{array}\right.
$$

has a unique solution $u \in L^{p}\left((0, T) ; D\left(A_{p}\right)\right) \cap W^{1, p}\left((0, T) ; L^{p}(\Omega, \mu)\right)$.
From Lemma 3.3 we get, taking $\psi \equiv 1$,

$$
\int_{\Omega} A u \mu(d x)=0, \quad u \in D(A),
$$

and hence,

$$
\int_{\Omega} T(t) f \mu(d x)=\int_{\Omega} f \mu(d x), \quad t>0
$$

for each $f \in L^{2}(\Omega, \mu)$. Since $L^{2}(\Omega, \mu)$ is dense in $L^{1}(\Omega, \mu)$, the above equality holds for each $f \in L^{1}(\Omega, \mu)$. In other words, μ is an invariant measure for the semigroup $T(t)$.

From Lemma 3.3 we get also

$$
u \in D(A), \quad A u=0 \Rightarrow D u=0
$$

and hence the kernel of A consists of the constant functions. Let us prove now that

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} T(t) f=\int_{\Omega} f(y) \mu(d y) \quad \text { in } L^{2}(\Omega, \mu) \tag{4.1}
\end{equation*}
$$

for all $f \in L^{2}(\Omega, \mu)$.

Indeed, since the function $t \rightarrow \varphi(t)=\int_{\Omega}(T(t) f)^{2} \mu(d x)$ is nonincreasing and bounded, there exists the limit $\lim _{t \rightarrow+\infty} \varphi(t)=\lim _{t \rightarrow+\infty}\langle T(2 t) f, f\rangle_{L^{2}(\Omega, \mu)}$. By a standard argument it follows that there exists a symmetric nonnegative operator $Q \in \mathscr{L}\left(L^{2}(\Omega, \mu)\right)$ such that

$$
\lim _{t \rightarrow+\infty} T(t) f=Q f, \quad f \in L^{2}(H, \mu)
$$

On the other hand, using the Mean Ergodic Theorem in Hilbert space (see e.g. [11, p. 24]) we get easily

$$
\lim _{t \rightarrow+\infty} T(t) f=P\left(\int_{0}^{1} T(s) f d s\right)
$$

where P is the orthogonal projection on the kernel of A. Since the kernel of A consists of the constant functions, (4.1) follows.

From now on we make a strict convexity assumption on U :

$$
\begin{equation*}
\exists \omega>0 \text { such that } x \mapsto U(x)-\omega|x|^{2} / 2 \text { is convex. } \tag{4.2}
\end{equation*}
$$

This will allow us to prove further properties for $T(t)$, through Poincaré and LogSobolev inequalities.

If (Λ, m) is any measure space and $u \in L^{1}(\Lambda, m)$ we set

$$
\begin{equation*}
\bar{u}_{m}=\int_{\Lambda} u(x) m(d x) \tag{4.3}
\end{equation*}
$$

Proposition 4.3. Let the assumptions of Theorem 3.4 and (4.2) hold. Then

$$
\begin{equation*}
\int_{\Omega}\left|u(x)-\bar{u}_{\mu}\right|^{2} \mu(d x) \leqslant \frac{1}{2 \omega} \int_{\Omega}|D u(x)|^{2} d \mu(d x), \quad u \in H^{1}(\Omega, \mu) \tag{4.4}
\end{equation*}
$$

and

$$
\begin{align*}
& \int_{\Omega} u^{2}(x) \log \left(u^{2}(x)\right) \mu(d x) \leqslant \frac{1}{\omega} \int_{\Omega}|D u(x)|^{2} \mu(d x)+ \tag{4.5}\\
& +\bar{u}^{2}{ }_{\mu} \log \left(\overline{u^{2}}{ }_{\mu}\right), \quad u \in H^{1}(\Omega, \mu)
\end{align*}
$$

Proof. Let $u \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ have support in Ω. Let U_{α} be the Moreau-Yosida approximations of U, and set as usual $v_{\alpha}(d x)=\left(\int_{R^{N}} e^{-2 U_{\alpha}(x)} d x\right)^{-1} e^{-2 U_{\alpha}(x)} d x$. Since $x \mapsto U_{\alpha}(x)-\omega(1-\alpha)|x|^{2}$ is convex in the whole \mathbb{R}^{N}, by Theorem 2.2 we have, for $\alpha \in(0,1)$,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left|u(x)-\bar{u}_{\alpha}\right|^{2} v_{\alpha}(d x) \leqslant \frac{1}{2 \omega(1-\alpha)} \int_{\mathbb{R}^{N}}|D u(x)|^{2} v_{\alpha}(d x), \tag{4.6}
\end{equation*}
$$

(where \bar{u}_{α} stands for $\bar{u}_{v_{a}}$) and
(4.7) $\int_{\mathbb{R}^{N}} u^{2}(x) \log \left(u^{2}(x)\right) \nu_{\alpha}(d x) \leqslant \frac{1}{\omega(1-\alpha)} \int_{\mathbb{R}^{N}}|D u(x)|^{2} \boldsymbol{v}_{\alpha}(d x)+\overline{u^{2}}{ }_{\alpha} \log \left(\overline{u^{2}}{ }_{\alpha}\right)$.

Since

$$
\lim _{\alpha \rightarrow 0} U_{\alpha}(x)= \begin{cases}U(x) & \text { if } x \in \Omega \\ +\infty & \text { if } x \notin \Omega\end{cases}
$$

then \bar{u}_{α} goes to $\bar{u}_{\mu}=\int_{\Omega} u(x) \mu(d x), \overline{u^{2}}{ }_{\alpha}$ goes to $\bar{u}^{2}{ }_{\mu}$ as α goes to 0 , and letting α go to 0 in (4.6), (4.7) we obtain that u satisfies (4.4) and (4.5). Since $C_{0}^{\infty}(\Omega)$ is dense in $H^{1}(\Omega, \mu)$, the statement follows.

Proposition 4.3 yields other properties of $T(t)$, listed in the next corollary. The proof is identical to the proof of [5, Corollary 4.3], and we omit it.

Corollary 4.4. Let the assumptions of Theorem 3.4 and (4.2) hold. Then 0 is a simple isolated eigenvalue of A. The rest of the spectrum, $\sigma(A) \backslash\{0\}$ is contained in $(-\infty,-\omega]$, and

$$
\begin{equation*}
\left\|T(t) u-\bar{u}_{\mu}\right\|_{L^{2}(\Omega, \mu)} \leqslant e^{-\omega t}\left\|u-\bar{u}_{\mu}\right\|_{L^{2}(\Omega, \mu)}, \quad u \in L^{2}(\Omega, \mu), \quad t>0 . \tag{4.8}
\end{equation*}
$$

Moreover we have

$$
\begin{equation*}
\|T(t) \varphi\|_{L^{q^{(t)}(\Omega, \mu)}} \leqslant\|\varphi\|_{L^{p}(\Omega, \mu)}, \quad p \geqslant 2, \quad \varphi \in L^{p}(\Omega, \mu), \tag{4.9}
\end{equation*}
$$

where

$$
\begin{equation*}
q(t)=1+(p-1) e^{2 \omega t}, \quad t>0 . \tag{4.10}
\end{equation*}
$$

References

[1] V.I. Bogachev - N.V. Krylov - M. Röckner, On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions. Comm. Part. Diff. Eqns., 26, 2001, $2037-$ 2080.
[2] H. Brézis, Opérateurs maximaux monotones. North-Holland, Amsterdam 1973.
[3] S. Cerral, Second order PDE's in finite and infinite dimensions. A probabilistic approach. Lecture Notes in Mathematics, 1762, Springer-Verlag, Berlin 2001.
[4] E.B. Davies, Heat kernels and spectral theory. Cambridge Univ. Press, Cambridge 1989.
[5] G. Da Prato - A. Lunardi, Elliptic operators with unbounded drift coefficients and Neumann boundary condition. J. Diff. Eqns., 198, 2004, 35-52.
[6] G. Da Prato - M. Röckner, Singular dissipative stochastic equations in Hilbert spaces. Probab. Theory Relat. Fields, 124, 2002, 261-303.
[7] A. Eberle, Uniqueness and non-uniqueness of singular diffusion operators. Lecture Notes in Mathematics, 1718, Springer-Verlag, Berlin 1999.
[8] N.V. Krylov, On Kolmogorov's equations for finite-dimensional diffusions. In: G. Da Prato (ed.), Stochastic PDE's and Kolmogorov Equations in Infinite Dimensions. Lecture Notes in Mathematics, 1715, Springer-Verlag, Berlin 1999, 1-64.
[9] D. Lamberton, Equations d'évolution linéaires associées à des semi-groupes de contractions dans les espaces L^{p}. J. Funct. Anal., 72, 1987, 252-262.
[10] A. Lunardi - V. Vespri, Optimal L^{∞} and Schauder estimates for elliptic and parabolic operators with unbounded coefficients. In: G. Caristi - E. Mitidieri (eds.), Proceedings of the Conference ReactionDiffusion Systems' (Trieste 1995). Lect. Notes in Pure and Applied Math., 194, M. Dekker, New York 1998, 217-239.
[11] K. Petersen, Ergodic Theory. Cambridge Univ. Press, Cambridge 1983.
[12] M. Röckner, L^{p}-analysis of finite and infinite dimensional diffusion operators. In: G. Da Prato (ed.), Stochastic PDE's and Kolmogorov Equations in Infinite Dimensions. Lecture Notes in Mathematics, 1715, Springer-Verlag, Berlin 1999, 65-116.
[13] W. Stannat, (Nonsymmetric) Dirichlet operators on L^{1} : existence, uniqueness and associated Markov processes. Ann. Sc. Norm. Sup. Pisa, Ser. IV, 28, 1999, 99-140.
[14] H. Triebel, Interpolation theory, function spaces, differential operators. North-Holland, Amsterdam 1978.

G. Da Prato:
Scuola Normale Superiore Piazza dei Cavalieri, 7-56126 PISA
daprato@sns.it
A. Lunardi:
Dipartimento di Matematica
Università degli Studi di Parma Via D'Azeglio, 85/A - 43100 Parma
lunardi@unipr.it http://prmat.math.unipr.it/~lunardi

