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GIUSEPPE DA PRATO - ALESSANDRA LUNARDI

ON A CLASS OF ELLIPTIC OPERATORS
WITH UNBOUNDED COEFFICIENTS IN CONVEX DOMAINS

ABSTRACT. — We study the realization A of the operator A 4
1
2

D2 aDU , D Qb in L 2 (V , m), where V

is a possibly unbounded convex open set in RN, U is a convex unbounded function such that
lim

xK¯V , x�V
U(x) 41Q and lim

NxNK1Q , x�V
U(x) 41Q, DU(x) is the element with minimal norm in the sub-

differential of U at x, and m(dx) 4c exp (22U(x) )dx is a probability measure, infinitesimally invariant for
A. We show that A, with domain D(A) 4 ]u�H 2 (V , m) : aDU , Dub �L 2 (V , m)( is a dissipative self-ad-
joint operator in L 2 (V , m). Note that the functions in the domain of A do not satisfy any particular
boundary condition. Log-Sobolev and Poincaré inequalities allow then to study smoothing properties
and asymptotic behavior of the semigroup generated by A.

KEY WORDS: Kolmogorov operators; Unbounded coefficients; Convex domains.

1. INTRODUCTION

In this paper we give a contribution to the theory of second order elliptic opera-
tors with unbounded coefficients, that underwent a great developement in the last few
years. See e.g. [1, 5-8, 12, 13].

Here we consider the operator

A u4
1
2

Du2 aDU , Dub(1.1)

in a convex open set V%RN, where U is a convex function such that

lim
xK¯V , x�V

U(x) 41Q , lim
NxNK1Q , x�V

U(x) 41Q .(1.2)

Since we do not impose any growth condition on U, the usual L p and Sobolev spaces
with respect to the Lebesgue measure are not the best setting for the operator A. It is
more convenient to introduce the measure

m(dx) 4 u �
V

e 22U(x) dxv21

e 22U(x) dx ,(1.3)

which is infinitesimally invariant for A, i.e.

�
V

A u(x)m(dx) 40, u�C Q
0 (RN ),

and lets A be formally self-adjoint in L 2 (V , m), as an easy computation shows. We
prove in fact that the realization A of A in L 2 (V , m), with domain

D(A) 4 ]u�H 2 (V , m) : A u�L 2 (V , m)( 4 ]u�H 2 (V , m) : aDU , Dub �L 2 (V , m)(

is a self-adjoint and dissipative operator, provided C Q
0 (V) is dense in H 1 (V , m). We

recall that H 1 (V , m) is naturally defined as the set of all u�H 1
loc (V) such that u,
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Di u�L 2 (V , m), for i41, R , N. While it is easy to see that C Q
0 (V) is dense in

L 2 (V , m), well-known counterexamples show that C Q
0 (V) is not dense in H 1 (V , m)

in general. A sufficient condition in order that C Q
0 (V) be dense in H 1 (V , m) is

DU�L 2 (V , m).(1.4)

Once we know that C Q
0 (V) is dense in H 1 (V , m), it is not hard to show that for each

u�D(A) and c�H 1 (V , m) we have

�
V

(A u)(x)c(x)m(dx) 42
1
2
�

V

aDu(x), Dc(x)bm(dx).

This crucial integration formula implies that A is symmetric and dissipative. The next
step is to prove that lI2A is onto for lD0, so that A is m-dissipative. This is done by
approximation, solving first, for each lD0 and f�C Q

0 (V),

lua (x)2 (Aa ua )(x) 4 f (x), x�RN ,(1.5)

where Aa is defined as A, with U replaced by its Moreau-Yosida approximation Ua.
To be more precise, first we extend f and U to the whole RN setting f (x) 40 and
U(x) 41Q for x outside V; since the extension of U is lower semicontinuous and
convex the Moreau-Yosida approximations Ua are well defined and differentiable
with Lipschitz continuous gradient in RN. Then (1.5) has a unique solution

ua�H 2 (RN , m a ), with m a (dx) 4 g s
R N

e 22Ua (x) dxh21
e 22Ua (x) dx, and the norm of ua in

H 2 (RN , m a ) is bounded by C(l)V f VL 2 (RN , m a ), where the constant C(l) is independent
of a, due to the estimates for equations in the whole RN already proved in [5]. Using
the convergence properties of Ua and of DUa to U and to DU respectively, we arrive at
a solution u�H 2 (V , m) of

lu(x)2 (A u)(x) 4 f (x), x�V ,(1.6)

that belongs to D(A), satisfies VuVH 2 (V , m)GC(l)V f VL 2 (V , m) and is the unique solution
to the resolvent equation because A is dissipative. If f is just in L 2 (V , m), (1.6) is
solved approaching f by a sequence of functions in C Q

0 (V).
A lot of nice consequences follow: A generates an analytic contraction semigroup

T(t) in L 2 (V , m), which is a Markov semigroup and it may be extended in a standard
way to a contraction semigroup in L p (V , m) for each pF1. The measure m is invariant
for T(t), i.e.

�
V

(T(t) f )(x)m(dx) 4�
V

f (x)m(dx), f�L 1 (V , m),

and moreover T(t) f converges to the mean value f 4 s
V

f (x)m(dx) of f as tK1Q, for
each f�L 2 (V , m).

If, in addition, U2vNxN2 /2 is still convex for some vD0, T(t) enjoys further
properties. 0 comes out to be a simple isolated eigenvalue in s(A), the rest of the spec-
trum is contained in (2Q , 2v], and T(t) f converges to f at an exponential rate as
tK1Q. Moreover, T(t) is a bounded operator (with norm not exceeding 1) from
L p (V , m) to L q(t) (V , m), with q(t) 411 (p21)e 2vt. This hypercontractivity proper-
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ty is the best we can expect in weighted Lebesgue spaces with general weight, and
there is no hope that T(t) maps, say, L 2 (V , m) into L Q (V). Similarly, Sobolev embed-
dings are not available in general. The best we can prove is a logarithmic Sobolev
inequality,

�
V

f 2 (x) log ( f 2 (x) )m(dx) G
1
v �

V

NDf (x)N2 m(dx)1 f 2log ( f 2), f�H 1 (V , m).

2. PRELIMINARIES: OPERATORS IN THE WHOLE RN

Let U : RN OR be a convex C 1 function, satisfying

lim
NxNK1Q

U(x) 41Q .(2.1)

Then there are a�R, bD0 such that U(x) Fa1bNxN, for each x�RN. It follows that
the probability measure n(dx) 4e 22U(x) dx/ s

RN
e 22U(x) dx is well defined.

The spaces H 1 (RN , n) and H 2 (RN , n), consist of the functions u�H 1
loc (RN ) (re-

spectively, u�H 2
loc (RN )) such that u and its first (resp., first and second) order deriva-

tives are in L 2 (RN , n).
We recall some results proved in [5] on the realization A of A in L 2 (RN , n). It is

defined by

(2.2)
.
/
´

D(A) 4 ]u�H 2 (RN , n) : A u�L 2 (RN , n)(

4 ]u�H 2 (RN , n) : aDU , Dub �L 2 (RN , n)(,

(Au)(x) 4 A u(x), x�RN .

THEOREM 2.1. Let U : RN OR be a convex function satisfying assumption (2.1).
Then the resolvent set of A contains (0 , 1Q) and

.
`
/
`
´

(i)

(ii)

(iii)

VR(l , A) f VL 2 (RN , n)G
1
l

V f VL 2 (RN , n) ,

V
NDR(l , A) fNVL 2 (RN , n)G

2
kl

V f VL 2 (RN , n) ,

V
ND 2 R(l , A) fNVL 2 (RN , n)G4V f VL 2 (RN , n) .

(2.3)

THEOREM 2.2. Let U : RN O R satisfy (2.1), and be such that x O U(x)2vNxN2 /2 is
convex, for some vD0. Then, setting u 4 s

RN
u(x)n(dx), we have

�
RN

Nu(x)2uN2 n(dx) G
1

2v
�

RN

NDu(x)N2 n(dx),

�
RN

u 2 (x) log (u 2 (x) )n(dx) G
1
v �

RN

NDu(x)N2 n(dx)1u 2 log (u 2),

for each u�H 1 (RN , n) (we adopt the convention 0 log 0 40).



G. DA PRATO - A. LUNARDI318

3. THE OPERATOR A

Let U : V O R be a convex function satisfying assumption (1.2), and let us extend
it to the whole RN setting

U(x) 41Q , x�V .(3.1)

The extension, that we shall still call U, is lower semicontinuous and convex. For each
x�RN, the subdifferential ¯U(x) of U at x is the set ]y�RN : U(j)FU(x)1ay, j2xb,
( j�RN(. At each x�V, since U is real valued and continuous, ¯U(x) is not empty
and it has a unique element with minimal norm, that we denote by DU(x). Of course if
U is differentiable at x, DU(x) is the usual gradient. At each x�V, ¯U(x) is empty and
DU(x) is not defined.

LEMMA 3.1. There are a�R, bD0 such that U(x) Fa1bNxN for each x�V.

PROOF. The statement is obvious if V is bounded. If V is unbounded, we may as-
sume without loss of generality that 0 �V. Assume by contradiction that there is a se-
quence xn with NxnNK1Q such that lim

nKQ
U(xn ) /NxnN40. Let R be so large that

min ]U(x)2U(0) : x�V , NxN4R( D0. Since U is convex, for n large enough we
have

U g R
NxnN

xnhG
R

NxnN
U(xn )1 g12

R
NxnN h U(0)

so that

lim sup
nKQ

U g R
NxnN

xnh2U(0) G lim
nKQ

R
NxnN

U(xn )2
R

NxnN
U(0) 40,

a contradiction. o

We set as usual e 2Q40. The function

x O e 22U(x) , x�RN ,

is continuous, it is positive in V, and it vanishes outside V. Lemma 3.1 implies that it
is in L 1 (V). Therefore, the probability measure (1.3) is well defined, and it has V as
support.

LEMMA 3.2. C Q
0 (RN ) is dense in L 2 (RN , m), in H 1 (RN , m) and in H 2 (RN , m).

Moreover,

(i) C Q
0 (V) is dense in L 2 (V , m);

(ii) If (1.4) holds, then C Q
0 (V) is dense in H 1 (V , m).

PROOF. The proof of the first statement is identical to the proof of [5, Lemma 2.1],
and we omit it.

Let u n : R O R be a sequence of smooth functions such that 0 Gu n (y) G1 for
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each y, u nf1 for yGn, u nf0 for yF2n, and such that

Nu n8 (y)NG
C
n , y�R .

For each u�L 2 (V , m) set

un (x) 4u(x)u n (U(x) ), x�V , un (x) 40, x�V .(3.2)

Then un has compact support, and unKu in L 2 (RN , m). Indeed,

�
RN

Nun2uN2 m(dx) G �
]x�V : U(x) Fn(

NuN2 m(dx)

which goes to 0 as nKQ. In its turn, un may be approximated in L 2 (V) by a se-
quence of C Q

0 (V) functions obtained by convolution with smooth mollifiers. Since un

has compact support, such a sequence approximates un also in L 2 (V , m), and state-
ment (i) follows.

Statement (ii) is proved in three steps. First, we note that any u�H 1 (V , m) may
be approached by functions in H 1 (V , m)OL Q (V). Then we approach any function
in H 1 (V , m)OL Q (V) by functions in H 1 (V , m) with compact support. Third, any
function in H 1 (V , m) with compact support is approximated by a sequence of
C Q

0 (V) functions obtained as above by convolution with smooth mollifiers.
For any u�H 1 (V , m) we set

ue (x) 4
u(x)

11eu(x)2
.

Then

�
V

Nu2ueN
2 m(dx) 4�

V

u 2g12
1

11eu 2 h2
m(dx)

goes to 0 as eK0, and

Due4
Du

11eu 2
2

2eu 2 Du
(11eu 2 )2

so that NDu2DueN goes to 0 in L 2 (V , m) as well. So, u is approximated by a sequence
of bounded H 1 functions.

Now, let u�H 1 (V , m)OL Q (V), and define un by (3.2).
Since U is convex, it is locally Lipschitz continuous, so that it is differentiable al-

most everywhere with locally L Q gradient. It follows that un is differentiable a.e. and
for almost each x in V we have

Dun (x) 4Du(x)u n (U(x) )1u(x)u n8 (U(x) )DU(x).

Here Duu n(U) goes to Du in L 2(V, m), and uu n8 (U)DU goes to 0 in L 2(V, m) as nKQ

because u�L Q, DU�L 2 (V , m) and Nu n8 NGC/n. Statement (ii) follows. o

We remark that in general C Q
0 (V) is not dense in H 1(RN, m). See next Example 4.1.

We introduce now the main tool in our study, i.e. the Moreau-Yosida approxima-
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tions of U,

Ua (x) 4 inf mU(y)1
1

2a
Nx2yN2 : y�RNn, x�RN , aD0,

that are real valued on the whole RN and enjoy good regularity properties: they are
convex, differentiable, and for each x�RN we have (see e.g. [2, Prop. 2.6,
Prop. 2.11])

Ua (x) GU(x), NDUa (x)NGNDU(x)N , lim
aK0

Ua (x) 4U(x), x�RN ,

lim
aK0

DUa (x) 4DU(x), x�V ; lim
aK0

NDUa (x)N41Q , x�V .

Moreover DUa is Lipschitz continuous for each a, with Lipschitz constant 1/a.
Let us define now the realization A of A in L 2 (V , m) by

.
/
´

D(A) 4 ]u�H 2 (V , m) : aDU , Dub �L 2 (V , m)(,

(Au)(x) 4 A u(x), x�V .
(3.3)

We shall show that A is a self-adjoint dissipative operator, provided C Q
0 (V) is

dense in H 1 (RN , m). The fact that A is symmetric is a consequence of the next
lemma.

LEMMA 3.3. If C Q
0 (V) is dense in H 1 (RN , m), then for each u�D(A),

c�H 1 (RN , m) we have

�
V

(A u)(x)c(x)n(dx) 42
1
2
�

V

aDu(x), Dc(x)bm(dx).(3.4)

PROOF. Since C Q
0 (RN ) is dense in H 1 (RN , m) it is sufficient to show that (3.4) hold

for each c�C Q
0 (RN ).

If c�C Q
0 (V), then the function c exp (22U) is continuously differentiable and

it has compact support in V. Integrating by parts (Du)(x)c(x) exp (22U(x) ) we
get

1
2
�

V

(Du)(x)c(x)e 22U(x) dx42
1
2
�

V

aDu(x), D(c(x)e 22U(x) )bdx4

42
1
2
�

V

aDu(x), Dc(x)be 22U(x) dx1
1
2
�

V

aDu(x), 2DU(x)bc(x)e 22U(x) dx

so that (3.4) holds. o

Taking c4u in (3.4) shows that A is symmetric.
Once we have the integration formula (3.4) and the powerful tool of the Moreau-

Yosida approximations at our disposal, the proof of the dissipativity of A is similar to
the proof of Theorem 2.4 of [5]. However we write down all the details for the read-
er’s convenience.



ON A CLASS OF ELLIPTIC OPERATORS ... 321

THEOREM 3.4. Let U : V O R be a convex function satisfying assumption (1.2),
and be such that C Q

0 (V) is dense in H 1 (V , m). Then the resolvent set of A contains
(0 , 1Q) and

.
`
/
`
´

(i)

(ii)

(iii)

VR(l , A) f VL 2 (V , m)G
1
l

V f VL 2 (V , m) ,

V
NDR(l , A) fNVL 2 (V , m)G

2
kl

V f VL 2 (V , m) ,

V
ND 2 R(l , A) fNVL 2 (V , m)G4V f VL 2 (V , m) .

(3.5)

Moreover the resolvent R(l , A) is positivity preserving, and R(l , A) 141/l.

PROOF. For lD0 and f�L 2 (V , m) consider the resolvent equation

lu2Au4 f .(3.6)

It has at most a solution, because if u�D(A) satisfies lu4Au then by (3.4) we
have

�
V

l(u(x) )2 m(dx) 4�
V

(Au)(x)u(x)m(dx) 42
1
2
�

V

NDu(x)N2 m(dx) G0,

so that u40.
To find a solution to (3.6), we approximate U by the Moreau-Yosida approxima-

tions Ua defined above, we consider the measures n a (dx) 4e 22Ua (x) dx/ s
RN

e 22Ua (x) dx
in RN and the operators Aa defined by Aa u4Du/22 aDUa , Dub.

Since the functions Ua are convex and satisfy (2.1), the results of Theorem 2.1 hold
for the operators Aa : D(Aa ) 4H 2 (RN , n a ) O L 2 (RN , n a ). In particular, for each
f�C Q

0 (RN ) with support contained in V, the equation

lua2Aa ua4 f ,(3.7)

has a unique solution ua�D(Aa ). Moreover, each ua is bounded with bounded and
Hölder continuous second order derivatives, thanks to the Schauder estimates and the
maximum principle that hold for operators with Lipschitz continuous coefficients,
see [10].

Estimates (2.3) imply that

.
`
/
`
´

Vua VL 2 (RN , n a )G
1
l

V f VL 2 (RN , n a ) ,

V
NDuaN

VL 2 (RN , n a )G
2

kl
V f VL 2 (RN , n a ) ,

V
ND 2 uaN

VL 2 (RN , n a )G4V f VL 2 (RN , n a ) ,

(3.8)

so that

Vua VH 2 (RN , n a )GCV f VL 2 (RN , n a )

with C4C(l) independent of a. Since Ua (x) goes to U(x) monotonically as aK0,

then exp (22Ua (x) ) goes to exp (22U(x) ) monotonically, and g s
RN

e 22Ua (x) dxh21
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goes to g s
RN

e 22U(x) dxh21
, V f VL 2 (RN , n a ) goes to V f VL 2 (RN , m) as aK0. It follows that the

norm Vua VH 2 (RN , n a ) is bounded by a constant independent of a, and consequently also
the norm Vua VH 2 (RN , m) is bounded by a constant independent of a. Therefore there is a
sequence ua n

that converges weakly in H 2 (RN , m) to a function u�H 2 (RN , m), and
converges to u in H 1 (K) for each compact subset K%V. This implies easily that u
solves (3.6). Indeed, let f�C Q

0 (V). For each n�N we have

�
RN

glua n
2

1
2

Dua n
1 aDUa n

, Dua n
b2 fhfe 22U dx40.

Letting nKQ, we get immediately that s
RN

glua n
2

1
2

Dua n
hfe 22U(x) dx goes to

s
RN

glu2
1
2

Duhfe 22U(x) dx. Moreover s
RN

aDUa n
, Dua n

bfe 22U(x) dx goes to

s
RN

aDU , Dubfe 22U(x) dx because DUa n
goes to DU in L 2 ( supp f). Therefore letting

nKQ we get

�
RN

(lu2 A u2 f )fe 22U dx40

for each f�C Q
0 (RN ), and hence lu2 A u4 f almost everywhere in V. So, uNV�D(A)

is the solution of the resolvent equation, and letting aK0 in (3.8) we get

.
/
´

VuVL 2 (V , m)G
1
l

V f VL 2 (V , m) , V
NDuN

VL 2 (V , m)G
2

kl
V f VL 2 (V , n) ,

V
ND 2 uN

VL 2 (V , m)G4V f VL 2 (V , m) .
(3.9)

Let now f�L 2 (V , m) and let fn be a sequence of C Q
0 (V) functions going to f in

L 2 (V , m) as nKQ. Thanks to estimates (3.9), the solutions un of

lun2Aun4 fn

are a Cauchy sequence in H 2 (V , m), and converge to a solution u�H 2 (V , m) of (3.6).
Due again to estimates (3.9), u satisfies (3.5).

If in addition f (x) F0 a.e. in V, we may take fn (x) F0 in V, see the proof of Lem-
ma 3.2. Each ua, solution to (3.7) with f replaced by fn , has nonnegative values thanks
to the maximum principle for elliptic operators with Lipschitz continuous coefficients
proved in [10]. Our limiting procedure gives R(l , A) fn (x) F0 for each x, and
R(l , A) f (x) F0 for each x. So, R(l , A) is a positivity preserving operator. o

4. EXAMPLES AND CONSEQUENCES

EXAMPLE 4.1. Let V be the unit open ball in RN, and let U(x) 42
a
2

log(12NxN)
for x�V, with aD0. Then

exp (22U(x) ) 4 (12NxN)a , DU(x) 4
ax

2NxN(12NxN)
, 0 ENxNE1,
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and it is known that C Q
0 (V) is dense in H 1 (V , m) iff aF1. See e.g. [14, Theorem

3.6.1]. In this case the result of Theorem 3.4 holds, and A is a self-adjoint dissipative
operator in L 2 (V , m).

Note that assumption (1.4) is satisfied only for aD1. This shows that assumption
(1.4) is not equivalent to the fact that C Q

0 (V) is dense in H 1 (RN , m), however it is not
very far. o

Under the assumptions of Theorem 3.4, A is the infinitesimal generator of an ana-
lytic contraction semigroup T(t) in L 2 (V , m).

Since the resolvent R(l , A) is positivity preserving for lD0, also T(t) is positivity
preserving. Since R(l , A) 141/l, then T(t) 141 for each tD0. Therefore, T(t) is a
Markov semigroup and it may be extended in a standard way to a contraction semi-
group (that we shall still call T(t)) in L p (V , m), 1 GpGQ. T(t) is strongly continuous
in L p (V , m) for 1 GpEQ, and it is analytic for 1 EpEQ. See e.g. [4, Chapter 1].
The infinitesimal generator of T(t) in L p (V , m) is denoted by Ap . The characterization
of the domain of Ap in L p (V , m) for pc2 is an interesting open problem.

An important optimal regularity result for evolution equations follows, see [9].

COROLLARY 4.2. Let 1 EpEQ , TD0. For each f�L p ( (0 , T); L p (V , m) ) (i.e.
(t , x) O f (t)(x) �L p ( (0 , T)3V ; dt3m)) the problem

.
/
´

u 8 (t) 4Ap u(t)1 f (t), 0 E tET ,

u(0) 40,

has a unique solution u�L p ( (0 , T); D(Ap ) )OW 1, p ( (0 , T); L p (V , m) ).

From Lemma 3.3 we get, taking cf1,

�
V

Au m(dx) 40, u�D(A),

and hence,

�
V

T(t) f m(dx) 4�
V

fm(dx), tD0,

for each f�L 2 (V , m). Since L 2 (V , m) is dense in L 1 (V , m), the above equality holds
for each f�L 1 (V , m). In other words, m is an invariant measure for the semigroup
T(t).

From Lemma 3.3 we get also

u�D(A), Au40 ¨ Du40,

and hence the kernel of A consists of the constant functions. Let us prove now
that

lim
tK1Q

T(t) f4�
V

f (y)m(dy) in L 2 (V , m),(4.1)

for all f�L 2 (V , m).
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Indeed, since the function tKW(t)4s
V

(T(t) f )2 m(dx) is nonincreasing and bounded,

there exists the limit lim
tK1Q

W(t) 4 lim
tK1Q

aT(2 t) f , f bL 2 (V , m) . By a standard argument

it follows that there exists a symmetric nonnegative operator Q� L(L 2 (V , m) )
such that

lim
tK1Q

T(t) f4Qf , f�L 2 (H , m).

On the other hand, using the Mean Ergodic Theorem in Hilbert space (see e.g. [11, p.
24]) we get easily

lim
tK1Q

T(t) f4P u �
0

1

T(s) fdsv,

where P is the orthogonal projection on the kernel of A. Since the kernel of A consists
of the constant functions, (4.1) follows.

From now on we make a strict convexity assumption on U:

) vD0 such that x O U(x)2vNxN2 /2 is convex.(4.2)

This will allow us to prove further properties for T(t), through Poincaré and Log-
Sobolev inequalities.

If (L , m) is any measure space and u�L 1 (L , m) we set

um4�
L

u(x)m(dx).(4.3)

PROPOSITION 4.3. Let the assumptions of Theorem 3.4 and (4.2) hold. Then

�
V

Nu(x)2umN2 m(dx) G
1

2v
�

V

NDu(x)N2 dm(dx), u�H 1 (V , m),(4.4)

and

(4.5) �
V

u 2 (x) log (u 2 (x) )m(dx) G
1
v �

V

NDu(x)N2 m(dx)1

1u 2
m log (u 2

m ), u�H 1 (V , m).

PROOF. Let u�C Q
0 (RN ) have support in V. Let Ua be the Moreau-Yosida approx-

imations of U, and set as usual n a (dx) 4 g s
R N

e 22Ua (x) dxh21
e 22Ua (x) dx. Since

x O Ua (x)2v(12a)NxN2 is convex in the whole RN, by Theorem 2.2 we have, for
a� (0 , 1 ),

�
RN

Nu(x)2uaN2 n a (dx) G
1

2v(12a)
�

RN

NDu(x)N2 n a (dx),(4.6)
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(where ua stands for un a
) and

�
RN

u 2 (x) log (u 2 (x) )n a (dx) G
1

v(12a)
�

RN

NDu(x)N2 n a (dx)1u 2
a log (u 2

a ).(4.7)

Since

lim
aK0

Ua (x) 4
.
/
´

U(x)

1Q

if x�V

if x�V ,

then ua goes to um4 s
V

u(x)m(dx), u 2
a goes to u 2

m as a goes to 0, and letting a go to 0 in

(4.6), (4.7) we obtain that u satisfies (4.4) and (4.5). Since C Q
0 (V) is dense in

H 1 (V , m), the statement follows. o

Proposition 4.3 yields other properties of T(t), listed in the next corollary. The
proof is identical to the proof of [5, Corollary 4.3], and we omit it.

COROLLARY 4.4. Let the assumptions of Theorem 3.4 and (4.2) hold. Then 0 is
a simple isolated eigenvalue of A. The rest of the spectrum, s(A)0]0( is contained in
(2Q , 2v], and

VT(t)u2um VL 2 (V , m)Ge 2vt
Vu2um VL 2 (V , m) , u�L 2 (V , m), tD0.(4.8)

Moreover we have

VT(t)WVL q(t) (V , m)GVWVL p (V , m) , pF2, W�L p (V , m),(4.9)

where

q(t) 411 (p21)e 2vt , tD0.(4.10)
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