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CONVERGENCE TO THE TRAVELLING WAVE SOLUTION
FOR A NONLINEAR REACTION-DIFFUSION EQUATION

ABSTRACT. — We study the behaviour of the solutions of the Cauchy problem

ut 4 (u m )xx 1u(12u m21 ), x�R , tD0 u(0 , x) 4u0 (x), u0 (x) F0,

and prove that if initial data u0 (x) decay fast enough at infinity then the solution of the Cauchy problem
approaches the travelling wave solution spreading either to the right or to the left, or two travelling wa-
ves moving in opposite directions. Certain generalizations are also mentioned.

KEY WORDS: Asymptotic behaviour of solutions; Nonlinear diffusion; Reaction-diffusion equation;
Travelling waves.

1. INTRODUCTION

In this Note we study the behaviour of the solutions of the Cauchy problem

ut4 (u m )xx1u(12u m21 ), x�R , tD0(1.1)

u(0 , x) 4u0 (x), u0 (x) F0, x�R(1.2)

where mD1. We prove that if initial data u0 (x) decay fast enough at infinity then the
solution of (1.1), (1.2) approaches the travelling wave solution. It may be a travelling
wave (TW) spreading to the right, a TW spreading to the left, or two TW’s moving in
opposite directions.

The first paper in which convergence to the TW solution was demonstrated, is the
celebrated work by Kolmogorov, Petrovsky and Piskunov [11] where the prototypical
reaction - linear diffusion equation

ut4uxx1 f (u),(1.3)

was considered. Thereafter, a plethora of results were obtained with a variety of reac-
tion functions f (u) (see [23, 24, and the references therein]).

Equation (1.1) studied in the present paper addresses the impact of nonlinear dif-
fusion on these processes. Curiously enough, though the importance of nonlinear dif-
fusion is universally acknowledged, very rarely it is included. Depending on the inter-
pretation of u, the nonlinear diffusion may represent a nonlinear conduction in plasma
transport model or, in a biological context, the dispersion of a crowd avoiding specie.
For instance, the diffusion of lubricating bacteria such as Paenibacillus dendriformitis
is described by diffusion which is proportional to the bacterial density.

Equation (1.1) degenerates at the points where u40 and thus the definition of a
weak solution is required [14, 21]. The main feature of the solutions of (1.1) is the fi-
nite speed of propagation of disturbances. In particular, the function

U(t , x) 4 mk12e
m21

m (x2 t2x0 )l
1
n

1
m21(1.4)
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is the TW solution of (1.1) and has support xG t1x0 , bounded by the straight line
x4 t1x0 [1, 13, 17].

We note the existence of other TW’s wherein the wave speed D1. However, these
solutions do not have a sharp front.

In the next section we present the properties of the solutions of equation (1.1)
which are essential for the proof of convergence. Two of them, the «weighted» conser-
vation of mass (Lemma 2.2) and the contraction principle (Lemma 2.3), are analogous
to the corresponding features of the viscous conservation laws. They allow us to em-
ploy the approach used in the works on stability of shock waves in viscous conserva-
tion laws [6, 15, 19] and a variant of an idea presented in [4, 16].

Detailed proofs of Lemmas 2.2 and 2.3 of Section 2 will be given in our forthcom-
ing paper [9] where we study convergence to the TW solutions of the equation

ut4 (u m )xx1a(u m )x1u2u m , a4const .(1.5)

In [9] we also present some conclusions for the equations

ut4 (u m )xx1 f (u).(1.6)

The existence of a TW for (1.6) is studied in [12, 18]. The most complete analysis is
performed in [7]. In Section 3 we prove the convergence to a TW with a sharp front
for equation (1.1).

Our last comment is

REMARK. Let u(t , x) be a solution of (1.5) with a40, m42, and let

u(t , x) 44(t11) r 21/4 z(t , r), r4e 2x , t4e t21.

Then z(t , r) solves the equation

1
r 7/4

zt4 (z 2 )rr , rD0, tD0,(1.7)

and the TW solution (1.4) transforms to

z4
4 r 1/4

t11 u12b r 1/4

kt11
v

1

, rD0.(1.8)

Therefore the convergence of the solution of (1.1) to the TW solution (1.4) is equiva-
lent to the convergence of the solution of (1.7) to the solution (1.8) which happens to
be a dipole solution of (1.7). A similar connection holds for any mD1 (see [17]).

2. SOME PROPERTIES OF THE SOLUTIONS OF (1.1)

We first recall some known results. We consider here weak solutions of equation
(1.1). Let S4R13R and ST4 (0 , T]3R.
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DEFINITION. By a solution of the Cauchy problem (1.1), (1.2) we mean a nonnega-
tive function u�L Q (ST ) which satisfies the identity

��
ST

[z t u1z xx u m1z(u2u m ) ]dxdt1�
R

z(0 , x)u0 (x)dx40

for any z�C 2, 1 (ST ) which vanishes for large NxN and at t4T.
Suppose that u0 (x) is a nonnegative continuous function, u0�L Q (R). It is known

that under such an assumption there exists a unique bounded weak solution of the
Cauchy problem (1.1), (1.2). This solution is continuous at the points where
u(t , x) D0 and

u(t0 , x0 ) D0 ¨ u(t , x0 ) D0 (tD t0 .(2.1)

Moreover for every x0 there exists T4T(x0 ) such that

u(t , x0 ) D0 for every tFT(x0 ).(2.2)

In what follows we use a comparison principle: if u1 and u2 are weak solutions of
(1.1) then

u1 (0 , x) Gu2 (0 , x) ¨ u1 (t , x) Gu2 (t , x), x�R .(2.3)

Also, every weak solution may be obtained as a limit of the classical solutions ue ,

ueKu uniformly on any bounded set .(2.4)

For the proof of the aforementioned results we refer the reader to [10, 14, 21] and to
the references given in [8]. We use below two special solutions:

1. The TW solution (1.4) which we denote by Uq , where

q4 �
2Q

Q

Uq (t , x)e x2 t dx4 �
2Q

Q

Uq (0 , x)e x dx .(2.5)

The reason for such notation will be clarified shortly. By computation q4q(x0 ) 4

4e
x0

m21
2m21 .

2. A compact expanding wave, [2, 13, 17, 22],

W(t , x) 4A(t) mk12D(t) cosh m21
m xl1n

1
m21

.(2.6)

The functions A(t) and D(t) are solutions of the system of two, first order, ordinary
differential equations.

LEMMA 2.1. Assume u0(x)40 for xDx1 . Then there exists a large enough A such that

u(t , x) 40 for xF t1A .
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LEMMA 2.2 (Conservation law). Let u(t , x) be a weak solution of (1.1), (1.2) and
suppose that

�
2Q

Q

u0 (x)e x dx4qEQ .

Then for all TF0

�
2Q

Q

u(T , x)e x2T dx4q .(2.7)

LEMMA 2.3 (Contraction principle). Let u and v be weak solutions of (1.1), (1.2)
and

�
2Q

Q

u0 e x dxEQ , �
2Q

Q

v0 (x)e x dxEQ .(2.8)

Then

�
2Q

Q

Nu(T , x)2v(T , x)Ne x2T dxG �
2Q

Q

Nu(t , x)2v(t , x)Ne x2t dx(2.9)

for 0 GtGT.

REMARK. Changing x to 2x we obviously get the corresponding conservation of
mass under the assumption that

�
2Q

Q

u0 e 2x dxEQ

and the contraction principle under the assumptions s
2Q

Q

u0 e 2x dxEQ,

s
2Q

Q

v0 e 2x dxEQ.

3. THE MAIN RESULTS

THEOREM 3.1. Suppose that u0 (x) g0,

�
2Q

Q

u0 e x dx4qEQ(3.1)

and Uq is the TW solution (1.4)

�
2Q

Q

Uq (t , x)e x2 t dx4q .(3.2)
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Then

�
2Q

Q

Nu(t , x)2Uq (t , x)Ne x2 t dxK0(3.3)

as tKQ. Moreover u(t, x)2Uq (t, x)K0 uniformly inside any strip aGx2tGb.

PROOF. We prove Theorem 3.1, first under the assumption that u0 (x) has compact
support on the right. Then, by Lemma 2.1, there exists a constant A such that

u(t , x) 40 for xF t1A .(3.4)

Let uh (t , x) 4u(t1h , x1h), hF0, hKQ. By (3.1) and Lemma 2.2

�
2Q

Q

uh (t , x)e x2 t dx4 �
2Q

Q

u(t1h , y)e y2 t2h dy4q .(3.5)

Sequence ]uh (t , x)( is uniformly bounded, and thus, is equicontinuous on any
bounded set in R13R [5]. Therefore there exists a subsequence hiKQ such
that

uhi
(t , x) Kw(t , x),(3.6)

and the convergence is uniform on any bounded set. The limit function w is defined
for all (t , x) �R13R and is a weak solution of (1.1). It follows from (3.4) that for all
hF0, uh (t , x) 40 for xF t1A. Therefore

w(t , x) 40 for xF t1A ,(3.7)

�Nuh (t , x)2w(t , x)Ne x2 t dxK0 as hKQ(3.8)

and

�w(t , x)e x2 t dx4q .(3.9)

We will prove below that

w4Uq .(3.10)

Define

I h (t) 4�Nuh (t , x)2Uq (t , x)Ne x2 t dx .(3.11)

Obviously

I h (t) 4�Nu(t1h , x1h)2Uq (t1h , x1h)Ne x2 t dx4

4�Nu(t1h , y)2Uq (t1h , y)Ne y2 (t1h) dy4 I 0 (t1h).

By the contraction principle, I 0 (t1h) is a nonincreasing function of t and h, and
therefore, there exists

lim
hKQ

I h (t) 4 I QF0 for all t .(3.12)
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It follows from (3.8), (3.11) and (3.12) that for all tF0

�
2Q

Q

Nw(t , x)2Uq (t , x)Ne x2 t dx4 I Q .(3.13)

To prove (3.10) it is enough to show that I Q40. Define u(t , x)(u(t , x) ) as a solution
of (1.1) with u(0 , x)4max]w(0 , x), Uq (0 , x)( (u(0 , x)4min]w(0 , x), Uq (0 , x)().
By the comparison principle

u(t , x) F maxmw(t , x), Uq (t , x)n, u(t , x) G minmw(t , x), Uq (t , x)n.
Suppose I QD0. We prove below that such an assumption leads to a contradiction.
For the proof we use the strong maximum principle which is valid in the region where
the equation is not degenerate.

By (3.2) and (3.9) for all tF0

�we x2 t dx4�Uq e x2 t dx .(3.14)

By the definition of Uq given in (1.4) and (2.5) we have

Uq (t , x1t) D0 for xEx0 , Uq (t , x1t) 40 for xFx0 .

Since

w(0 , x1 ) gUq (0 , x) and �
2Q

Q

w(0 , x)e x dx4 �
2Q

Q

Uq (0 , x)dx(3.15)

there exists xA such that

w(0 , xA) DUq (0 , xA).(3.16)

There are two possibilities:

(i) xA may be chosen such that Uq (0 , xA) D0, which means xA Ex0 .

(ii) (3.16) holds only for xA Fx0 .

First assume (i). In this case there exists some interval (c , d) such that the dif-
ference w(0 , x)2Uq (0 , x) changes sign on (c , d) at least once and

w(0 , x) D0, Uq (0 , x) D0 for x� [c , d].(3.17)

Then we have for x� [c , d]

u(0 , x)2w(0 , x) g0, u(0 , x)2Uq (0 , x) g0.(3.18)

Because of (3.17) the difference u2w is a solution of some nondegenerate parabolic
equation with smooth coefficients in the cylinder (c , d)3 (0 , 1 ). By the strong maxi-
mum principle using (3.18) we obtain that u(1 , x)2w(1 , x) D0, u(1 , x)2

2Uq (1 , x) D0 on (c , d) and hence

u(1 , x) D maxmw(1 , x), Uq (1 , x)n
for all x� (c , d).
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Therefore

�
R

ku(1 , x)2u(1 , x)le x21 dxD

D�kmaxmw(1 , x), Uq (1 , x)n2minmw(1 , x), Uq (1 , x)nle x21 dx4

4�
R

Nw(1 , x)2Uq (1 , x)Ne x21 dx4 I Q .

On the other hand, by the contraction principle

�
R

ku(1 , x)2u(1 , x)le x21 dxG�
R

ku(0 , x)2u(0 , x)le x dx4

4�
R

Nw(0 , x)2Uq (0 , x)Ne x dx4 I Q

and we have a contradiction. Thus the assumption I QD0 is false. Consequently I Q40
and as a result, wfUq .

Second case: (ii). We cannot use the same proof as in case (i) because the parabolic
equation for the difference u2w may be degenerate. Therefore one needs to use the
positivity property (2.1), (2.2) to conclude that there exist tD0 and xA Ex01t such
that w(t , xA) DUq (t , xA) D0. Now, changing t to t2t, we return to the previous case
and obtain that wfUq .

Finally we obtain that lim
hiKQ

uhi
does not depend on the subsequence, and the whole

sequence uh converges to Uq . The convergence is in the «weighted» L1 norm as de-
fined by (3.3) and, as follows from the proof, it is uniform on any compact set. Thus
we have

�Nu(t1h , x1h)2Uq (t1h , x1h)Ne x2 t dx4�Nu(t , y)2Uq (t , y)Ne y2t dyK0

as tKQ and

Nu(t , y)2Uq (t , y)NK0

uniformly on every set

aEy2tEb

for any fixed a , b. Thus Theorem 3.1 is proved for the case where u0 (x) has compact
support on the right. Now suppose that only (3.1) holds. Let u0, e (0 , x) be a sequence
of functions, each compactly supported from the right, and

�Nu0, e (0 , x)2u0 (x)Ne x dxGe .(3.19)

The sequence u0, e may be chosen such that

�u0, e (x)e x dx4q .
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Let ue (t , x) be the solution of (1.1) with initial data

ue (0 , x) 4u0, e (x).

By (3.19) and the contraction principle

�Nue (t , x)2u(t , x)Ne x2 t dxGe .(3.20)

Moreover, as we proved above,

�Nue (t , x)2Uq (t , x)Ne x2 t dxK0(3.21)

as tKQ. Because e is arbitrarily small it follows from (3.20) and (3.21) that (3.3)
holds. o

As a corollary, note that changing x to 2x, leads to the convergence to a TW that
moves to the left.

THEOREM 3.2. Suppose that u0 (x) g0,

�
R

u0 e 2x dx4q *EQ(3.22)

and Uq * is the TW solution (1.4),

�
R

Uq * (t , x)e x2 t dx4q * .

Then

�
R

Nu(t , x)2Uq * (t , 2x)Ne 2x2 t dxK0

as tKQ. Moreover,

Nu(t , x)2Uq * (t , 2x)NK0

uniformly inside any strip aGx1 tGb.

REMARK. Suppose that both conditions (3.1) and (3.22) are satisfied. In particular,
if the initial function u0 (x) has a compact support, then we can apply Theorems 3.1
and 3.2 and conclude that as tKQ u(t , x) KUq (t , x) for a1 tExEb1 t and
u(t , x) KUq * (t , x) for a 12 tExEb 12 t, where a , b , a 1 , b 1 are arbitrary given
constants and the convergence is uniform in the corresponding strips.

A typical question is then: what is the behaviour of the solution in the b 12

2tExEa1 t domain? It is natural to expect that in this region the solution is close to
1. This, indeed, is proved in [9].
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