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STOPPING A VISCOUS FLUID BY A FEEDBACK DISSIPATIVE FIELD:
II. THE STATIONARY NAVIER-STOKES PROBLEM

AsstrACT. — We consider a planar stationary flow of an incompressible viscous fluid in a semi-infi-
nite strip governed by the Navier-Stokes system with a feed-back body forces field which depends on the
velocity field. Since the presence of this type of non-linear terms is not standard in the fluid mechanics li-
terature, we start by establishing some results about existence and uniqueness of weak solutions. Then,
we prove how this fluid can be stopped at a finite distance of the semi-infinite strip entrance by means of
this body forces field which depends in a sub-linear way on the velocity field. This localization effect is
proved by reducing the problem to a fourth order non-linear one for which the localization of solutions
is obtained by means of a suitable energy method.

Key worps: Navier-Stokes system; Body forces field; Non-linear fourth order equation; Energy
method; Localization effect.

1. INTRODUCTION

We study the planar stationary flow of an incompressible viscous fluid in a semi-
infinite strip 2 = (0, ©) X (0, L), L >0, given by the following system of equa-
tions

(1.1) —vAu+(u-VYu=f-Vp in Q,
(12) dvau=0 in @,

(1.3) #u(0,y)=u,(y), ye(0,L)

(1.4) u(x,0)=u(x,L)=0, xe(0, )
(1.5) | #(x, y)|—0, as x— o and ye (0, L),

where x = (x, ) e R?, z(x) = (u(x), v(x)) is the velocity vector field, p = p(x) stands
here for the hydrostatic pressure divided by the constant density of the fluid and v is
the kinematics viscosity coefficient.

We assume that the possible non-zero velocity at the strip entrance, #,(y) =
= (u,(y), v, (y)), satisfies the compatibility conditions

L
(L6) u,(0) = u, (L) =0, [u,()ds=0,
0

The body forces are given in a feedback form, f: Q x R?—R?, flx, ) =
= (f,(x, a), f>(x, 2)), and such that, for every z € R?, # = (u(x), v(x)), and for almost
all x e Q,

(1.7) —flo, w0) -2 = Oy (%) || 7 — g()
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for some 6 >0, 0 <o <1 and
(1.8) gel(Q%), g=0, glx)=0 ae. in Q.

for some xz, x, with 0 <x, <x,< % and x; large enough, where Q%= (0, x,) X
X (0, L) and Q, = (x,, ) X (0, L). The function y  denotes the characteristic func-
tion of the interval (0, xs), e, xsx) =1, if xe(0,x) and xg(x)=0, if
x¢ (0, xp).

In this paper we prove that the fluid can be stopped at a finite distance of the se-
mi-infinite strip entrance once we assume the body forces field depending in a sub-
linear way on the velocity field. This localization effect is proved by reducing the
problem to a fourth order non-linear one for which the localization of solutions is ob-
tained by means of a suitable energy method. The results we present here, are an ex-
tension to the Navier-Stokes system of our previous works [1-3] dealing with the
Stokes system. In addition, we present here a new phenomenon related to the case of
non homegeneous body forces (see Section 4). We show that under suitable condi-
tions we have a stronger lack of propagation since a stagnation line for the forces field
(in the sense that |f(x, #) | < C(x, — x)§ for some suitable C, {>0 and x, > 0) re-
mains being a stagnation line for the velocity field (Z.e. z(x, y) = 0 for x > x, and any
y€ (0, L)). This property have some resemblances with the so called waiting time
property for parabolic problems and the non-diffusion of the support property for
some scalar elliptic problems (see [4]).

2. EXISTENCE AND UNIQUENESS RESULTS

The presence of non-linear terms defined by f(x, #), and to the best of our know-
ledge, is new in fluid mechanics setting. Thus, we collect in this section some results
about existence and uniqueness of problem (1.1)-(1.8).

We shall search solutions such that f |V |?dx < o. Moreover, due to the fact
that the Poincaré inequality

2.9) f|u|P4y< (%) f|u 17 dy,
0

holds for every e W ?(0, L) and 1 <p < ® (see, e.g.,, [8]), our searched solution
will be an element of the Sobolev space H'(£2) simplifying, in this way, the functional
framework needed for other unbounded domains.

To define the notion of a weak solution, we introduce the functional spaces

H(Q) =
={ueH(Q):diva=0, #(0,.) = 2,(), u(,0) = u(.,L) =0, lim || =0},

HO(Q):
={ueH (Q):diva =0, 2(0,.) =0, (., 0) = u(,,L) =0, lim |«|=0}.
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DEFINITION 2.1. A vector function u is a weak solution of problem (1.1)-(1.8), if:
() we H(Q), fix, u) e L}, (Q);
(&) For every ¢ € Hy(2) N L*(Q) with compact support,

VjVu: Vodx + fu-Vu-qudx = Jf-ngx.
2 I Il
In this section, we shall assume that /2 Q x R?—=R?, with flx, #) = (£ (x, z),
£ x, ) and # = (u(x), v(x)), is given by

(2.10) Fix, ) = =0y )| ulx) |7~ alx), 0) = b, 22),

for some 0 >0, 0 <x,< o and 0 <o < 1. Here, h(x, #) is a Carathéodory function
such that

(2.11) b(x,u)-u= —glx), for every #eR? and ae. xeQ,
for some

(2.12) geL(Q%), ¢g=0, glx)=0 ae. in Q., 0sx,<x
and

(2.13) Hyel'(Q%), forall M>0, Hyx)= | S}lgw | b(x, u) |.

THEOREM 2.1. Let us assume u,, € H"?(0, L), fix, u) satisfies (2.10)-(2.13) and the
following growth condition holds: there exist some positive constants M, C, a function
Gel?(Q), for some p>1 and se (0, 2), such that
(2.14) | h(x, 2) | < Clu|*+ Glx),
for every || > M and a.e. in Q. In addition, we assume that the problem (1.1)-(1.6)
with f(x, u) = f(x, 0) has a unique weak solution in Q% = (0, R) x (0, L), for every
R > 0. Then, there exists, at least, one weak solution u of problem (1.1)-(1.6). More-
over, f(x, u)-u lies in L' (Q) and u satisfies to the energy estimate

(2.15) [(Val?+xplul+dx <,
Q

where Ci=C(L,0,s, p,v, 0, ||g||L1<mg)> ||G||LP(Q)> ””* H“Z(o,L))-

Proor. First step. We start by considering the auxiliary problem, in QN =
= (0, N) x (0, L), with Ne N given,

(2.16) —vAuN + (@N-V)u" = fix, u™) — VpN  in Q]
(2.17) diva" =0 in QN

(2.18) u=u,(y), for x=0

(2.19) #=0, for x=N and y=0, L.

With no lost of generality, we assume N > 1 and let U" be an extension of z, to Q' =
= (0, 1) x (0, L) such that: ) U'e H'(2'); (7) div U' =0 in 2*; (i77) U' = u,, on
x=0,U"'=00onx=1,y=0and ony=L, in the trace sense. One can prove that for
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any a >0, there exists an extension U' satisfying (7)-(izz) above and verifying

Jv-VUl-v dx‘ < a|Volfz01), for all we H'(Q1).
Ql
Moreover,
H U ”HWQ') < G(L) ||” HH1/2<0, L)

(see, e.g., [7]1). Now, we consider the extension UN to 2V such that UN= U'if x < 1
and UN =0 if x=1. From what we have said above, UNe H'(QV),

(2.20) HUN”HI(Q‘\') S CS(L)””*”H”Z(O,L)
and
(2.21) fv-VUN-v dx‘ < a|Voli20n), for all we H'(QN).

N
Second step. We look for solutions z" of the form 2" = w" + U, where U is the

extension given in the First step and 2" solves the problem

2.22)  —vAwN+ @WN-V)w" =glx, ") — @N-V) U= (UN-V)w" - VpY in QF,

(2.23) diveN=0 in QV,

(2.24) wh=0 at 0Q~,

where  g(x, w") = fix, w" + U") + vAUY — (UN-V)UN. Given 2"el*(QV),
fix, 2N) e L1(QY), with ¢ = min(2/s, p), and there exists a unique weak solution
w e H5(2V) of problem (2.22)-(2.24) with the body forces given by g(x, oY) (see,
e.g., [7]). Thus, we can define a non-linear operator A : L>(2Y) x [0, 11— L*(Q27V),
by setting

(2.25) A@Y, 2) = wh,

associated to the problem (2.22)-(2.24) with the body forces given by Ag(x, 2"). Mul-
tiplying (2.22: with Ag(x, #")) by w", integrating by parts over 2", using (2.21),
(2.23)-(2.24) and the Sobolev embedding

(2.26) H'(QYN)—>L1(QV), 1<g<»,

we obtain the estimate

2.27)  [lA@N, Dllz@v) = 10" gy < Cila, L, p, s, v, R, [|oV]l20m),

where R is taken to be R > max (||Gll.r (o), |24 [0, 1)» 1). Then, from (2.27), the ope-
rator (2.25) maps L2(2V) x [0, 1] into a bounded subset of H}(2") and from the
Sobolev compact embedding H(2N) — L2(2V), it is a completely continuous opera-
tor. Moreover A(#",0) =0 and from the Leray-Shauder Fixed Point Theorem,
A(+, 1) has a fixed point, A(z”, 1) = w. This proves the existence of, at least, one
weak solution " e H{(2N) of the problem (2.22)-(2.24), with g(x, 2"). Conse-
quently the existence of, at least, one weak solution " e H'(2V) of the problem
(2.16)-(2.19) is assured.
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Third step. Multiplying (2.22: with g(x, 2")) by ", integrating by parts over QV,
using (1.7)-(1.8), (2.21), (2.23)-(2.24), the Sobolev embedding (2.26), Young’s in-
equality with a suitable & and finally replacing 2" = #" — UY, we obtain the follow-
ing estimate independent of N

(2.28) [AVaN 12+ |a™| ) dx < G,
QN
with Cs=G5(L, 0, 5, p, 7, dhr o), Gl ||”7':||H1/2(0,L))'

Fourth step. Now, for each Ne N, we consider a sequence #) of weak solutions
to problems (2.16)-(2.19) and thus satisfying (2.28). In consequence, using a standard
diagonal process and that flx, #}) is a Carathéodory function, we can choose a sub-
sequence z}* such that z* tends to z, weakly in H'(Q27%), as & tends to infinity, and
flx, %) tends to flx, u), in L' (2%), as & tends to infinity, for every R > 0. In addi-
tion, # satisfies to the energy estimate (2.15). Now, by the Sobolev embedding (2.26),
we get that flx, #)-u e L' (Q), fix, #) e L' () and # is a weak solution to the non-
linear problem (1.1)-(1.6). O

In some situations, we can prove the existence result dropping the growth condi-
tion (2.14). But then, in order to control the convergence of suitable approximations,
we need to assume a vectors angle condition.

Tueorem 2.2. Theorem 2.1 is still valid if we replace the growth condition (2.14) by
the following vectors angle condition: there exists € >0 such that

(2.29) | £ (b(x, ), u>|¢(§ -5 2 +e)

for every || >M and a.e. in , where [(a, b) denotes the angle formed by the vec-
tors a and b. Here the energy estimate (2.15) takes the form

(2.30) [QVa 4 oslu)' 7+ | bx, w)-u ) dx < CF,
Q
where, now, C,=C(L, 8, v, 0, llglh o, l2ellirzo, 1))

ProoF. First step. All that is written in the First step of the Proof of Theorem 2.1 is
valid here. Moreover, using Holder inequality, one can prove

[ 1N dx < Co(L, p)a,

oN

9_11/2(0)1‘), fOl‘ 1 Sp<2.

Second step. We consider, first, the intermediary case in which we assume,
additionally,
(2.31) | h(x, ) | < Cyp(x),

for some positive constant C, for all z € R? and almost all x € Q.
If we consider the problem (2.16)-(2.19), with f(x, #) replaced by f(x) given arbi-
trarily, for instance f'e L?(2V), then we know the existence of a unique weak solution
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uNe H'(QV) (see, e.g., [7]), which satisfies to the energy relation

(232) jvu ~UNdx+ [ aN V@ - UNdx = [ flaN - UM dx.
Q'\’ N

Proceedmg, e.g., as in the last reference, using (2.20) and (2.21), one can prove the fol-

lowing estimate

||”N||%11(9N) <sG(L, v, ||”:'.-||H”2(0,L>> ||f||L2(gN))~

Using the Schauder’s fixed point theorem in the same manner we did in [3], we prove
the existence of, at least, one weak solution z"e H'(2") to the problem (2.16)-
(2.19), with flx, 2")

Third step. We point out that from assumptions (2.11) and (2.12),

(2.33) | h(x, 20)-u| < b(x, 2)-u+ 2 g(x),

for every z € R? and almost all x € Q. In the energy relation (2.32) satisfied by #", we
use the assumption (2.10), next we add | h(x, w™)- N #" | to both sides of the resultant
equation, we use assumptions (2.12), (2.31), (2.33) and we use the Holder inequality.
Then, we use (2.21), the Sobolev embedding (2.26) and we apply the Young inequality
with a suitable & >0, to obtain the a priori estimate independent of N for z",

[AVaY 12 o |20+ | i, ™) | dx < G,
foll
where Cy=Cs(L, 0, v, 0, |las |20, 1), llglliicom))-

Fourth step. Keeping in mind the assumption (2.31) and proceeding exactly as in
[3], we prove the existence of a weak solution # to the problem (1.1)-(1.6) and which
satisfies the energy estimate (2.30).

Fifth step. To proceed with the general case, 7.e., dropping condition (2.31), we use
the same truncation and approximation argument as we did in [3]. O

Remark 2.1. Condition (2.29) does not imply any upper restriction on the growth of
| flx, 22) | with respect to u and due to that, sometimes, this type terms are called
strongly non-linear.

Moreover, if we assume a non-increasing condition on f; we can prove a unique-
ness result.

THEOREM 2.3. Let #,, #, be two weak solutions of (1.1)-(1.6) and let us assume the
inequality

(2.34) (fix, 2,) — fix, 2,))- (20 — 21,) <O
holds for every u,, u, e Rz and almosl all x € Q. Assume the data v and u,. such that
the problem (1.1)-(1.6), with f(x,0), has a unique weak solution in H(RQ), then

U =1u,.
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Proor. Let #, and #, be two weak solutions. Then, according to Definition 2.1,
u, —u,e HY(R) and

VJ' | V2, — u,) |*dx + f(u1 —,) Vauy (uy— t,)dx =
0 0

= J(f(x, ) — fix, u,)) 2y — u,)dx.
Q

Now, proceeding as in [3], we prove

vj | Ve, — 1) |*dx + f(u1 — 1)V (2, — 1,)dx <0.
0 0

Then arguing as for the proof of the uniqueness result for flx, 0) we get that

J |V(ZI1 - ”2) |2dx =0
Q
and from Poincaré inequality (2.9), we get the result. O

ReMARK 2.2. The assumption of a unique weak solution for problem (1.1)-(1.6) with
flx, 0) is fundamental to prove the uniqueness of weak solutions for general Navier-
Stokes problems with prescribed forces field. This assumption is equivalent to
assume

- fgu-Vu-(pdx < CVglfz o), with C<w,
o

for every w e H and @ € Hy. Or, in our specific problem, is equivalent to assume

%Cl\/i<v, C, gwen in (2.15) or (2.30).

3. LOCALIZATION EFFECT

In the previous section has been established the existence of a weak solution hav-
ing a finite global energy

E:= J(|vu|2+xf|u|1+v)dx.
Q

TueoreM 3.1. Assume f satisfies (1.7) and (1.8). Then:

(@) if xp= o (xpis given in (1.8)), u is any weak solution of (1.1)-(1.6) with finite
energy E, then u(x,y) =0 for x>a', where a’ =a’'(E, L, 0, v, 0) is a positive
constant,

(@) if xp< @, then there exists at least one weak solution u of (1.1)-(1.6) with a fi-
nite energy E, such that if a' < xy, then u(x,y) =0 for x>a';

(1id) if, in addition, we assume [ non-increasing, then conclusion (ii) holds for the
unique solution of (1.1)-(1.6).
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We proceed as in [3], introducing the associated stream function
(3.35) u=19, and v= -9y, in Q

and we reduce the study of problem (1.1)-(1.6), to the consideration of the following
fourth order problem where the pressure term does not appear anymore,

(3.36) vA* Y + h _ % =y, Ay, —y Ay, in Q,
dy Ox
(3.37) Y(x,0)=y(x, L) = a—w(x, 0) = a—w(x, L)=0 for xe (0, ),
on on
3 3
(3.38) Y(0,y) = fu\k(s)ds, a—li(o, y) =v.(y) for ye (0, L),
0
(3.39) Ylx, y), |Vylx, y) | =0, as x—> o and for ye (0, L).

Here f=(f, £) = (fx, ¥y, =), (%, ¥, —¢.)) and the notion of weak sol-

ution is adapted to the information we have on the function f.

DerINtTION 3.1. A function Y is a weak solution of problem (3.36)-(3.39),
(Z.) 1/) EHz(Q)a ﬂx) wyv _wx) € Llloc('Q)v

3 ? Y Iy
() ¥(0,y) =0f%~,-<(5)ds, %(0, y) =0, (y), Plx, 0) =plx, L) = %(x, 0)=
aa—i}(x, L)=v(0,L) =0, and v, |Vy|—0, when x—> =;

(¢id) For every ¢p e H3 () N'W *(Q) with compact support,
VJA¢A¢dx - j(ﬂ ¢y _f2¢x)dx = jAw(¢x¢)7 - wy(px)dx
Q 0 Q

To establish the localization effect, as stated in Theorem 3.1, we proceed as in [3]
and we prove the followings lemmas.

LemMA 3.1, If u is a weak solution of (1.1)-(1.8) in the sense of Definition 2.1, then
Y, giwen by (3.35), is a weak solution of (3.36)-(3.39) in the sense of Defini-
tion 3.1.

Lemma 3.2. Let vy be a weak solution of (3.36)-(3.39) with E finite. Assume that f
satisfies (1.7) and (1.8) with xy= . Then, for every a > x,, and every positive integer
m=2

(6.40)  [W[D*p P+ oy, | ) x—a)tdx <

Q

<2mv [ |4y | . |(x = ayi dx 4 2mv [ |y, ||y, | (e — )i dx +
Q Q

+m(m—1)vJ|At/)| |1/)|(x—a)f’ﬁ_2dx+mj|At/J| [y, ||w|(x—a)i 'dx,
o o

where |D*y|*> =y, +2y35 +y3,.
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From the term on the left-hand side of the inequality (3.40), it will arise the energy
type term which depends on «

E,(@) = [(ID*9 ]2 + [, |"* )« — )t dx.
Q
We observe that E,(0)=E and (E,,(2))® = (=1)*n!/(m—k)E,,_(a), 0 < k<.
Then, we prove the more difficult part expressed in the following lemma.

Lemma 3.3, Let ¢ be a weak solution of (3.36)-(3.39) and let us assume f satisfies
(1.7) and (1.8) with xp= . Then, the following differential inequality holds for a = x,
(%, is given in (1.8)):

(341) Em(ﬂ) sC9(Em—2(ﬂ))’ul+C10(Em_2(ﬂ))ﬂ2;

for every integer m >3, where C,= C,(L, m, 0, v, 0), 1=9, 10 are positive constants
and w;=pu(m, 0) >1, j=1, 2. Moreover, E,(a) < o for any a=x, In fact,

(3.42) E;(a) < CEy(a) + Cy1 (Eg(a))*1 + C, (Ey(a) )2,
where C;=C,(L, 0, v, 0), i=11, 12, are positive constants, u;=u;(0)>1, j=1, 2.
Proor. We rewrite (3.40) as

J(V|D21/2|2 + 0|y, |' T x = @)t dx < 2mvly + 2mvly + m(m — 1) vI; + m].

)
Applying the Cauchy inequality with ¢ =v/(2) to the term | and then taking the
minimum on the left-hand side, we obtain

2
min(%, é)Em(a) < 2mwvl, + 2mvl, + m(m — 1)vl; + m7]2,
where
Jo= [wiwitx—a)i2dx.
Q

If we assume 72 >3, the estimations of I;, I, and I; obtained in [3] lead to

(3.43) min(%, a)E,,,(m <eCyE,(a) + = Cu(E, @)V + Cps ],
where
(3.44) u=1+2 -0

4(1+0)+(1—0)m’

C13 = C13(m, V), C14 = C14(L, m, v, 0) and CIS = Clj(m, V). To estimate ]2, WwWeE use
two fundamental one-dimensional inequalities. The first one is the Poincaré inequality
(2.9). The second is the Ladyzhenskaya inequality (see [11] and [9])

L L L
Ju(y)4 dy < 2( Ju(y)z dy)( fu "(y)? dy),
0 0 0

valid for sufficiently regular functions # such that #(0) = «(L) = 0. Then, we apply
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Holder inequality to J,, next we use the Green theorem to prove,

L , » L , 1/2 , 1
jq& dy=—zjf¢¢xdydxs2(j¢ dx) (J(pxdx)
0 x 0 Q Q

for every x = 0 and every function ¢ with the same regularity and boundary values of
our ¥ or . In a final step, we use the Cauchy inequality and from the definition of
Ey(0)=E and E,,_,(a), we prove

/2

+1

3-6 “
(3.45) L<2VGE( L) B, )T, o= Clm, v,
where 0 = [2(1+0) + (1 —0)m]/[4(1 + 0) + (1 — ) m]. Then, (3.43) comes

w1

min (5, 8) B, () < eCu B, (@) + 5 Cuy(E, 2@ + Cos (B, 2(a)) T,

where, now, C;5s = Ci5(E, L, 7, v, 0). Then, choosing an appropriated ¢, we obtain
the fractional differential inequality (3.41).
If 7 =2, the estimates on I,, I, and I; (with » =2) obtained in [3] lead to

min(%, 5) E,(a) < eCpy Ey(a) + €Cis By () + = Cio(Eg(@)V + CaoToi—2),

where

2
. 0= —— =
(3.46) s and u Fpp

C17 = C17(V), CIS = Clg(V) (CIS = 2C17), C19 = Clg(L, v, 0) and C20 = Czo('V). Taklng
m = 2 il’l (345), C21 = C16 Wlth m = 2,

3-0
Jan-n <2VGE( &) B )T

Finally, choosing an appropriated &, we obtain the differential inequality
(342). O

Proor or TuroreM 3.1. We start with the case x,= . Taking 7 =4 in Lemma
3.3, we have the fractional differential inequality

(3.47) Ei(a) < Cu(E,(a))1 + Cys (Ey(a) )2,
where, from (3.44),

2 8

and C,,=Cy (L, m2, 0, v, 0), C;3=Cy (L, m, 6, v, 0). Using Lemma 3.3 with nz=2
and because of the finiteness of E, we can easily see that E,(«) is finite. Then, from
Lemma 5.1, with m=4, p=2, w=209-0)/(1-0)>m, 1<u,=05-0)/4<
<m/(m—p) and 1 <u,=(9-0)/8 (=y) <m/(m—p), because 0 <o <1, the
support of Ej(a) is a bounded interval [0, 2*] with 4* <4', where from (5.56)

4 1
4 = 115_+(;7C22+—UEW_+0>7 Cuy=Cyu(E,L,6,v,o0).
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Then Ey(a) =0 for 2 > a’, which implies # =0 and v is constant almost everywhere
for x> a'. Finally from (1.4), v =0 too in the same domain.
For the case x;< o, the proof follows exactly as in [3]. O

Remark 3.1. All the remarks made in [3, Section 3] remain valid in this case. For
instance, in the case of 0 =1, the above arguments lead to the inequality

E,(a) <CsE, _5(a), for a=x,,

and, again, we can only derive an exponential decay for this case, which is optimal (see
Horgan (9] where the exponential decay estimate is derived using analogous arguments
to those developed by Knowles [10] and Toupin [12] in their energy approach to the in-
vestigation of the Saint-Venant’s Principle in classical elasticity theory). Moreover, the
results of [3, Section 4] where we have considered Q = (0, o) X (L,(x), L,(x)), can
be extended for this case.

RemArk 3.2. A simple proof of the localization effect can be obtained by proving
that

(3.48) || < Co (D) 9l

and (3.41) and (3.42) would come as in (3], but with the constants depending also on
|lliz o). Another idea of a simple proof, is to assume E,(a) <1 or E,,(a) =1 and
again (3.41) and (3.42) would come as in [3], with u=min(u, u,) or u=
=max (4, u,), respectively.

4. FORCES FIELD WITH A STAGNATION LINE

In the arguments we have considered in Section 3, one can realize that the par-
ameter ¢ we have chosen is such that 4 = x,, with x, given in (1.8). To work with
a < x,, we have to assume an extra condition on the second component of the forces
field. In this section, we assume the body forces field satisfy:

(4.49) —flx, u)- 1 = Oy f(x) |u|'*°
for every # € R?, for almost all x € Q and for some 0 >0, 0 <o <1; and
(4.50) |/o(x, 20) | < Clx, — )%

for some xz, x; with 0 < x; < x7< %, x/large enough, C and  positive constants, with
¢ to be specified later on. Because of this last condition, we say the second component
of the body forces field has a stagnation line at x = x,. The existence and uniqueness
of a weak solution for this case, is guaranteed by Theorem 2.1, where h(x, z) = 0, and
Theorem 2.3, respectively.

TrueOREM 4.1. There exists some positive constants C and C such that if (4.50) holds,
then u =0 for x> x, and any ye (0, L).

Proor. If we consider 4 = x,, we fall in the conditions studied in Section 3 with
g =0. Then we have to add to the right-hand side of (3.40) the terms C(#K, + K,) re-
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sulting from condition (4.50), where

(451 K= [(x=2% [p|(xr=a)2"'dx and K= (x5 [y, [ (x=a)% dx.
Q Q
This lead us to the counterpart of (3.41),

(4.52) Em(d) sC27(Em_2(61))#‘|'ngEm,zg(él)y

for every integer 7z >3, where C;= C,(L, m, 6, v, 0), i =27, 28, u is given by (3.44)
and

(4.53) E, :(a) = J(xg—x)i (x—a)?dx, m=2.

Q
Taking 72 =4 in (4.52) and using an integration by parts on (4.53), we arrive at the
counterpart of (3.47), where we put E (a) = z(a),

(4.54) Z(ﬂ) S Czc)(Z”(d))ﬂ + C}o(X; - ﬂ)2+§+4,

where Cyo = Cy(L, 0, v, 0) and C5o=C5(C, L, 6, v, 0), The solutions of (4.54),
2 - 2

with ¢ = ( “ (notice that from (3.46), § > 3), are of the form z(a) = Clx, —a)4 "

with the positive constant C satisfying

2 +1) |«
(u—1)7

Then E (a) = C(x,—a)* " and consequently # =0 for x=x,. O

C- C29C”[

ReMARK 4.1. From the physical point of view, this means the fluid stops at the same
stagnation line as the second component of the body forces.

5. APPENDIX

Here we prove the following result whose applications go beyond this article.

Lemma 5.1. Let fe LM(RY), f=0 ae. in R and let us put
E,(a) = [fix)(x = ay"dx.

Assume that the fractional differential inequality

(5.55) E,(a) <C(E,_,(a))'+ C(E, _,(a))>

holds for all a = 0, where 0 <p <m <w = py/(y — 1), C, and C, are positive constants
and 1 <y, uy <m/(m—p) and y =min(u,, u,). Assume E,,_,(a) is finite for any

a=0. Then, the support of Ey(a) is a bounded interval [0, a,l, with a,<a',
where

(556) a'=(w-m+ \)CTITTETT, C=C(Cy, Co, E, m, p, i1, ).



STOPPING A VISCOUS FLUID BY A FEEDBACK DISSIPATIVE FIELD: II. ... 269

Proor. For all 0 <p < and all 2= 0, we have by Holder inequality
m=p

(5.57) E,_,(a) <(E,(a)" (Ey(a)".
Given y =min (u, u,), by the monotonicity of E,, _,(a), we have for /=1, 2,
(E, _,(a)"< (E,_,(0)) " (E,_,(a)
and, from (5.57), we have for /=1, 2,
, 2L wi—y) L=y
(5.58) (E, _,(a)" < (E,(0)) (Eo(0))” (E,—,(a)).
On the other side, from (5.55) and (5.57),

m

2 -r »
E,(0) < _; CAE,,(0) 7 "(Ey(0))™".

Requiring that u; < #/(m — p), for i=1, 2, we obtain when using Young inequality
with ¢ =1/[2(C,; + G,)], E,,(0) <K, where
(7= p)ui

m — - 1 — (m —plu, o
P ——— (Eo(0)) ==,

Ki= ‘izcl. 2(C,+Cy)
Then, forl i=1,2, (5.58) comes
(5.59) (E,_ (@) <K 7 " (E,0)7"“ 7 (E,_, ).
From (5.55), (5.57) and (5.59),

2 22— y) Liwi-» =ty
E,(a) < 2 CK™ (Eo(0))” (E,(a)) "

i=1

L
(Eo(a))™”.
Then, requiring that y <#2/(m —p) and w=py/(y — 1) > m,

(5.60) E,,(a) < CT7T (Ey(a)) #7510

where

aim—(m—pu;
m

C= Efl B

i=1

c,[zc,[z(c1 +G) ’”};pﬂ,]
Wlth a’:(m_p) l/[m_<m_p)/uz]) ﬁz:Pﬂz/[m_(m_P)ﬂz], Vz:(m_
—p)u;—y)/m, 6,=[plu,—v)1/m. Let us put m —1=p in (5.57). Then, from
(5.60),

Ei(@) < T (Ey(a) ™7
Since E{ = —E,, this is a first order differential inequality, whose explicit integration
ends the proof. O
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