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STOPPING A VISCOUS FLUID BY A FEEDBACK DISSIPATIVE FIELD:
II. THE STATIONARY NAVIER-STOKES PROBLEM

ABSTRACT. — We consider a planar stationary flow of an incompressible viscous fluid in a semi-infi-
nite strip governed by the Navier-Stokes system with a feed-back body forces field which depends on the
velocity field. Since the presence of this type of non-linear terms is not standard in the fluid mechanics li-
terature, we start by establishing some results about existence and uniqueness of weak solutions. Then,
we prove how this fluid can be stopped at a finite distance of the semi-infinite strip entrance by means of
this body forces field which depends in a sub-linear way on the velocity field. This localization effect is
proved by reducing the problem to a fourth order non-linear one for which the localization of solutions
is obtained by means of a suitable energy method.

KEY WORDS: Navier-Stokes system; Body forces field; Non-linear fourth order equation; Energy
method; Localization effect.

1. INTRODUCTION

We study the planar stationary flow of an incompressible viscous fluid in a semi-
infinite strip V4 (0 , Q)3 (0 , L), LD0, given by the following system of equa-
tions

2nDu1(u Q˜) u 4 f2˜p in V ,(1.1)

div u 40 in V ,(1.2)

u(0 , y) 4 u*(y), y� (0 , L)(1.3)

u(x , 0 ) 4 u(x , L) 40 , x� (0 , Q)(1.4)

Nu(x , y)NK0, as xKQ and y� (0 , L),(1.5)

where x 4 (x , y) �R2 , u(x) 4 (u(x), v(x) ) is the velocity vector field, p4p(x) stands
here for the hydrostatic pressure divided by the constant density of the fluid and n is
the kinematics viscosity coefficient.

We assume that the possible non-zero velocity at the strip entrance, u*(y) 4

4 (u*(y), v*(y) ), satisfies the compatibility conditions

u*(0) 4 u*(L) 40 , �
0

L

u*(s)ds40.(1.6)

The body forces are given in a feedback form, f : V3R2KR2 , f (x, u) 4

4 ( f1 (x, u), f2 (x, u) ), and such that, for every u �R2 , u 4 (u(x), v(x) ), and for almost
all x �V ,

2f (x, u) Qu Fdx f (x)NuN11s2g(x)(1.7)
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for some dD0, 0 EsE1 and

g�L1 (V xg ), gF0, g(x) 40 a.e. in V xg
(1.8)

for some xf , xg with 0 GxgExfGQ and xf large enough, where V xg 4 (0 , xg )3

3 (0 , L) and V xg
4 (xg , Q)3 (0 , L). The function x f denotes the characteristic func-

tion of the interval (0 , xf ), i.e., x f (x) 41, if x� (0 , xf ) and x f (x) 40, if
x� (0 , xf ).

In this paper we prove that the fluid can be stopped at a finite distance of the se-
mi-infinite strip entrance once we assume the body forces field depending in a sub-
linear way on the velocity field. This localization effect is proved by reducing the
problem to a fourth order non-linear one for which the localization of solutions is ob-
tained by means of a suitable energy method. The results we present here, are an ex-
tension to the Navier-Stokes system of our previous works [1-3] dealing with the
Stokes system. In addition, we present here a new phenomenon related to the case of
non homegeneous body forces (see Section 4). We show that under suitable condi-
tions we have a stronger lack of propagation since a stagnation line for the forces field
(in the sense that Nf2 (x, u)NGC(xs2x)1

z for some suitable C , zD0 and xsD0) re-
mains being a stagnation line for the velocity field (i.e. u(x , y) 40 for xDxs and any
y� (0 , L)). This property have some resemblances with the so called waiting time
property for parabolic problems and the non-diffusion of the support property for
some scalar elliptic problems (see [4]).

2. EXISTENCE AND UNIQUENESS RESULTS

The presence of non-linear terms defined by f(x, u), and to the best of our know-
ledge, is new in fluid mechanics setting. Thus, we collect in this section some results
about existence and uniqueness of problem (1.1)-(1.8).

We shall search solutions such that s
V

N˜uN2 dx EQ. Moreover, due to the fact
that the Poincaré inequality

�
0

L

NuNp dyG g L
p
hp�

0

L

Nu 8Np dy ,(2.9)

holds for every u�W0
1, p (0 , L) and 1 GpEQ (see, e.g., [8]), our searched solution

will be an element of the Sobolev space H1 (V) simplifying, in this way, the functional
framework needed for other unbounded domains.

To define the notion of a weak solution, we introduce the functional spaces

H
A

(V) 4

4 ]u � H1 (V) : div u 40, u(0 , . ) 4 u*(.), u(. , 0 ) 4 u(. , L) 40 , lim
xKQ

NuN40(,

H
A

0 (V) 4

4 ]u � H1 (V) : div u 40, u(0 , . ) 40 , u(. , 0 ) 4 u(. , L) 40 , lim
xKQ

NuN40(.
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DEFINITION 2.1. A vector function u is a weak solution of problem (1.1)-(1.8), if:
(i) u � H

A
(V), f(x, u) � Lloc

1 (V);
(ii) For every W� H

A
0 (V)OLQ (V) with compact support,

n�
V

˜u : ˜W dx1�
V

u Q˜u QW dx 4�
V

f QW dx.

In this section, we shall assume that f : V3R2KR2 , with f(x, u) 4 ( f1 (x, u),
f2 (x, u) ) and u 4 (u(x), v(x) ), is given by

f(x, u) 42dx f (x)(Nu(x)Ns21 u(x), 0 )2h(x, u),(2.10)

for some dD0, 0 ExfGQ and 0 EsE1. Here, h(x, u) is a Carathéodory function
such that

h(x, u) Qu F2g(x), for every u �R2 and a.e. x�V,(2.11)

for some

g�L1 (V xg ), gF0, g(x) 40 a.e. in V xg
, 0 GxgExf(2.12)

and

HM�L1 (V xf ), for all MD0, HM (x) 4 sup
NuNGM

Nh(x, u)N .(2.13)

THEOREM 2.1. Let us assume u*� H1/2 (0 , L), f(x, u) satisfies (2.10)-(2.13) and the
following growth condition holds: there exist some positive constants M , C , a function
G�Lp (V), for some pD1 and s� (0 , 2 ), such that

Nh(x, u)NGCNuNs1G(x),(2.14)

for every NuNDM and a.e. in V. In addition, we assume that the problem (1.1)-(1.6)
with f (x, u) 4 f (x, 0) has a unique weak solution in VR4 (0 , R)3 (0 , L), for every
RD0. Then, there exists, at least, one weak solution u of problem (1.1)-(1.6). More-
over, f (x, u) Qu lies in L1 (V) and u satisfies to the energy estimate

�
V

(N˜uN21x f NuN11s )dx GC1
2 ,(2.15)

where C14C1 (L , d , s , p , n , s , VgVL1(Vxg ) , VGVLp (V) , Vu* VH1/2 (0 , L) ).

PROOF. First step. We start by considering the auxiliary problem, in VN4

4 (0 , N)3 (0 , L), with N�N given,

2nDuN1 (uN Q˜) uN4 f(x, uN )2˜p N in VN ,(2.16)

div uN40 in VN ,(2.17)

u 4 u*(y), for x40(2.18)

u 40 , for x4N and y40, L .(2.19)

With no lost of generality, we assume ND1 and let U1 be an extension of u* to V 14

4 (0 , 1 )3 (0 , L) such that: (i) U1� H1 (V 1 ); (ii) div U140 in V 1 ; (iii) U14 u* on
x40, U140 on x41, y40 and on y4L , in the trace sense. One can prove that for
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any aD0, there exists an extension U1 satisfying (i)-(iii) above and verifying

N �
V1

v Q˜U 1 Qv dxN GaV˜vVL2 (V1 )
2 , for all v � H1 (V 1 ).

Moreover,

VU1
VH1 (V1 )GC2 (L)Vu* VH1/2 (0 , L)

(see, e.g., [7]). Now, we consider the extension UN to VN such that UN4 U1 if xE1
and UN40 if xF1. From what we have said above, UN� H1 (VN ),

VUN
VH1 (VN )GC3 (L)Vu* VH1/2 (0 , L)(2.20)

and

N �
VN

v Q˜U N Qv dxN GaV˜vVL2 (VN )
2 , for all v � H1 (VN ).(2.21)

Second step. We look for solutions uN of the form uN4 wN1UN , where UN is the
extension given in the First step and wN solves the problem

2nDwN1(wN Q˜) wN4g(x, wN )2(wN Q˜) UN2(UN Q˜) wN2˜p N in VN ,(2.22)

div wN40 in VN ,(2.23)

wN40 at ¯VN ,(2.24)

where g(x, wN ) 4 f(x, wN1UN )1nDUN2 (UN Q˜) UN. Given vN� L2 (VN ),
f(x, vN ) � Lq (VN ), with q4 min (2/s , p), and there exists a unique weak solution
wN� H0

1 (VN ) of problem (2.22)-(2.24) with the body forces given by g(x, vN ) (see,
e.g., [7]). Thus, we can define a non-linear operator L : L2 (VN )3 [0 , 1] K L2 (VN ),
by setting

L(vN , l) 4 wN ,(2.25)

associated to the problem (2.22)-(2.24) with the body forces given by lg(x, vN ). Mul-
tiplying (2.22: with lg(x, vN )) by wN , integrating by parts over VN , using (2.21),
(2.23)-(2.24) and the Sobolev embedding

H1 (VN ) K Lq (VN ), 1 GqEQ ,(2.26)

we obtain the estimate

VL(vN , l)VL2 (VN )4VwN
VH0

1 (VN )EC4 (a , L , p , s , n , R , VvN
VL2 (VN ) ),(2.27)

where R is taken to be RD max (VGVLp(V) , Vu* VH1/2(0, L) , 1). Then, from (2.27), the ope-
rator (2.25) maps L2 (VN )3 [0 , 1] into a bounded subset of H0

1 (VN ) and from the
Sobolev compact embedding H0

1(VN) KL2(VN), it is a completely continuous opera-
tor. Moreover L(vN , 0 ) 40 and from the Leray-Shauder Fixed Point Theorem,
L(Q , 1 ) has a fixed point, L(wN , 1 ) 4 wN. This proves the existence of, at least, one
weak solution wN� H0

1 (VN ) of the problem (2.22)-(2.24), with g(x, wN ). Conse-
quently the existence of, at least, one weak solution uN� H1 (VN ) of the problem
(2.16)-(2.19) is assured.
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Third step. Multiplying (2.22: with g(x, wN )) by wN , integrating by parts over VN ,
using (1.7)-(1.8), (2.21), (2.23)-(2.24), the Sobolev embedding (2.26), Young’s in-
equality with a suitable e and finally replacing wN4 uN2UN , we obtain the follow-
ing estimate independent of N

�
VN

(N˜uN N21x f Nu NN11s )dx GC5 ,(2.28)

with C54C5 (L , d , s , p , n , VgVL1(Vxg ) , VGVLp (V) , Vu* VH1/2 (0 , L) ).
Fourth step. Now, for each N�N , we consider a sequence uk

N of weak solutions
to problems (2.16)-(2.19) and thus satisfying (2.28). In consequence, using a standard
diagonal process and that f(x, uN

k ) is a Carathéodory function, we can choose a sub-
sequence uNk

k such that uNk
k tends to u, weakly in H1 (VR ), as k tends to infinity, and

f(x, uNk
k ) tends to f(x, u), in L1 (VR ), as k tends to infinity, for every RD0. In addi-

tion, u satisfies to the energy estimate (2.15). Now, by the Sobolev embedding (2.26),
we get that f(x, u) Qu �L1 (V), f(x, u) � L1 (V) and u is a weak solution to the non-
linear problem (1.1)-(1.6). o

In some situations, we can prove the existence result dropping the growth condi-
tion (2.14). But then, in order to control the convergence of suitable approximations,
we need to assume a vectors angle condition.

THEOREM 2.2. Theorem 2.1 is still valid if we replace the growth condition (2.14) by
the following vectors angle condition: there exists eD0 such that

N/a(h(x, u), u)N� g p
2

2e , p
2

1eh(2.29)

for every NuNDM and a.e. in V , where /a(a, b) denotes the angle formed by the vec-
tors a and b. Here the energy estimate (2.15) takes the form

�
V

(N˜uN21x f NuN11s1Nh(x, u) QuN)dx GC1
2 ,(2.30)

where, now, C14C1 (L , d , n , s , VgVL1(Vxg ) , Vu* VH1/2 (0 , L) ).

PROOF. First step. All that is written in the First step of the Proof of Theorem 2.1 is
valid here. Moreover, using Hölder inequality, one can prove

�
VN

NUNNp dx GC6 (L , p)Vu* V

p
H1/2 (0 , L) , for 1 GpE2.

Second step. We consider, first, the intermediary case in which we assume,
additionally,

Nh(x, u)NGCx f (x),(2.31)

for some positive constant C , for all u �R2 and almost all x �V.
If we consider the problem (2.16)-(2.19), with f(x, u) replaced by f(x) given arbi-

trarily, for instance f � L2 (VN ), then we know the existence of a unique weak solution
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uN� H1 (VN ) (see, e.g., [7]), which satisfies to the energy relation

n �
VN

˜u N : ˜(uN2UN )dx1 �
VN

uN Q˜uN Q (uN2UN )dx 4 �
VN

f Q(uN2UN )dx.(2.32)

Proceeding, e.g., as in the last reference, using (2.20) and (2.21), one can prove the fol-
lowing estimate

VuN
VH1 (VN )

2 GC7 (L , n , Vu* VH1/2 (0 , L) , V f VL2 (VN ) ).

Using the Schauder’s fixed point theorem in the same manner we did in [3], we prove
the existence of, at least, one weak solution uN� H1 (VN ) to the problem (2.16)-
(2.19), with f(x, uN ).

Third step. We point out that from assumptions (2.11) and (2.12),

Nh(x, u) QuNG h(x, u) Qu12g(x),(2.33)

for every u �R2 and almost all x �V. In the energy relation (2.32) satisfied by uN , we
use the assumption (2.10), next we add Nh(x, uN ) QuNN to both sides of the resultant
equation, we use assumptions (2.12), (2.31), (2.33) and we use the Hölder inequality.
Then, we use (2.21), the Sobolev embedding (2.26) and we apply the Young inequality
with a suitable eD0, to obtain the a priori estimate independent of N for uN ,

�
VN

(N˜uNN21x f Nu NN11s1Nh(x, uN ) QuN N)dx GC8 ,

where C84C8 (L , d , n , s , Vu* VH1/2 (0 , L) , VgVL1(Vxg ) ).
Fourth step. Keeping in mind the assumption (2.31) and proceeding exactly as in

[3], we prove the existence of a weak solution u to the problem (1.1)-(1.6) and which
satisfies the energy estimate (2.30).

Fifth step. To proceed with the general case, i.e., dropping condition (2.31), we use
the same truncation and approximation argument as we did in [3]. o

REMARK 2.1. Condition (2.29) does not imply any upper restriction on the growth of
Nf(x, u)N with respect to u and due to that, sometimes, this type terms are called
strongly non-linear.

Moreover, if we assume a non-increasing condition on f, we can prove a unique-
ness result.

THEOREM 2.3. Let u1 , u2 be two weak solutions of (1.1)-(1.6) and let us assume the
inequality

(f(x, u1 )2f(x, u2 ) ) Q (u12u2 ) G0(2.34)

holds for every u1 , u2�R2 and almost all x �V. Assume the data n and u* such that

the problem (1.1)-(1.6), with f(x, 0), has a unique weak solution in H
A

(V), then
u14 u2 .
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PROOF. Let u1 and u2 be two weak solutions. Then, according to Definition 2.1,
u12u2� H0

1 (V) and

n�
V

N˜(u12u2 )N2 dx1�
V

(u12u2 ) Q˜u1 Q (u12u2 )dx 4

4�
V

(f(x, u1 )2f(x, u2 ) ) Q (u12u2 )dx.

Now, proceeding as in [3], we prove

n�
V

N˜(u12u2 )N2 dx1�
V

(u12u2 ) Q˜u1 Q (u12u2 )dx G0.

Then arguing as for the proof of the uniqueness result for f(x, 0) we get that

�
V

N˜(u12u2 )N2 dx 40

and from Poincaré inequality (2.9), we get the result. o

REMARK 2.2. The assumption of a unique weak solution for problem (1.1)-(1.6) with
f(x, 0) is fundamental to prove the uniqueness of weak solutions for general Navier-
Stokes problems with prescribed forces field. This assumption is equivalent to
assume

2�
V

W Q˜u QW dx ECV˜WVL2 (V)
2 , with CEn ,

for every u � H
A

and W� H
A

0 . Or, in our specific problem, is equivalent to assume

L
p C1 k2En , C1 given in (2.15) or (2.30).

3. LOCALIZATION EFFECT

In the previous section has been established the existence of a weak solution hav-
ing a finite global energy

E»4�
V

(N˜uN21x f NuN11s )dx.

THEOREM 3.1. Assume f satisfies (1.7) and (1.8). Then:
(i) if xf4Q (xf is given in (1.8)), u is any weak solution of (1.1)-(1.6) with finite

energy E , then u(x , y) 40 for xDa 8 , where a 84a 8 (E , L , d , n , s) is a positive
constant;

(ii) if xfEQ , then there exists at least one weak solution u of (1.1)-(1.6) with a fi-
nite energy E , such that if a 8Gxf , then u(x , y) 40 for xDa 8;

(iii) if, in addition, we assume f non-increasing, then conclusion (ii) holds for the
unique solution of (1.1)-(1.6).
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We proceed as in [3], introducing the associated stream function c

u4c y and v42c x in V(3.35)

and we reduce the study of problem (1.1)-(1.6), to the consideration of the following
fourth order problem where the pressure term does not appear anymore,

nD 2 c1
¯f1

¯y
2

¯f2

¯x
4c y Dc x2c x Dc y in V ,(3.36)

c(x , 0 ) 4c(x , L) 4
¯c
¯n

(x , 0 ) 4
¯c
¯n

(x , L) 40 for x� (0 , Q),(3.37)

c(0 , y) 4�
0

y

u*(s)ds ,
¯c
¯n

(0 , y) 4v*(y) for y� (0 , L),(3.38)

c(x , y), N˜c(x , y)NK0, as xKQ and for y� (0 , L).(3.39)

Here f 4 ( f1 , f2 ) 4 ( f1 (x, c y , 2c x ), f2 (x, c y , 2c x ) ) and the notion of weak sol-
ution is adapted to the information we have on the function f.

DEFINITION 3.1. A function c is a weak solution of problem (3.36)-(3.39), if:
(i) c�H2 (V), f(x, c y , 2c x ) � Lloc

1 (V);

(ii) c(0 , y) 4 s
0

y

u*(s)ds ,
¯c
¯n

(0 , y) 4v*(y), c(x , 0 ) 4c(x , L) 4
¯c
¯n

(x , 0 ) 4
¯c
¯n

(x , L) 4c(0 , L) 40, and c , N˜cNK0, when xKQ;

(iii) For every f�H0
2 (V)OW1, Q (V) with compact support,

n�
V

DcDfdx2�
V

( f1 f y2 f2 f x )dx 4�
V

Dc(c x f y2c y f x )dx.

To establish the localization effect, as stated in Theorem 3.1, we proceed as in [3]
and we prove the followings lemmas.

LEMMA 3.1. If u is a weak solution of (1.1)-(1.8) in the sense of Definition 2.1, then
c , given by (3.35), is a weak solution of (3.36)-(3.39) in the sense of Defini-
tion 3.1.

LEMMA 3.2. Let c be a weak solution of (3.36)-(3.39) with E finite. Assume that f
satisfies (1.7) and (1.8) with xf4Q. Then, for every aDxg , and every positive integer
mF2

(3.40) �
V

(nND2 cN21dNc yN
11s )(x2a)1

m dx G

G2mn�
V

NDcNNc xN(x2a)1
m21 dx12mn�

V

Nc yNNc xyN(x2a)1
m21 dx1

1m(m21)n�
V

NDcNNcN(x2a)1
m22 dx1m�

V

NDcNNc y NNcN(x2a)1
m21 dx,

where ND2 cN24c xx
2 12c xy

2 1c yy
2 .
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From the term on the left-hand side of the inequality (3.40), it will arise the energy
type term which depends on a

Em (a) 4�
V

(ND2 cN21Nc yN
11s )(x2a)1

m dx.

We observe that E0 (0)4E and (Em (a) )(k)4(21)k m!/(m2k) !Em2k (a), 0 GkGm.
Then, we prove the more difficult part expressed in the following lemma.

LEMMA 3.3. Let c be a weak solution of (3.36)-(3.39) and let us assume f satisfies
(1.7) and (1.8) with xf4Q. Then, the following differential inequality holds for aFxg

(xg is given in (1.8)):

Em (a) GC9 (Em22 (a) )m 1 1C10 (Em22 (a) )m 2 ,(3.41)

for every integer mD3, where Ci4Ci (L , m , d , n , s), i49, 10 are positive constants
and m j4m j (m , s) D1, j41, 2. Moreover, E2 (a) EQ for any aFxg. In fact,

E2 (a) GCE0 (a)1C11 (E0 (a) )m 1 1C12 (E0 (a) )m 2 ,(3.42)

where Ci4Ci (L , d , n , s), i411, 12 , are positive constants, m j4m j (s)D1, j41, 2.

PROOF. We rewrite (3.40) as

�
V

(nND2 cN21dNc yN
11s )(x2a)m

1 dx G2mnI112mnI21m(m21)nI31mJ .

Applying the Cauchy inequality with e4n/(2m) to the term J and then taking the
minimum on the left-hand side, we obtain

min g n
2

, dhEm (a) G2mnI112mnI21m(m21)nI31
m 2

n J2 ,

where

J24�
V

c y
2 c 2 (x2a)1

m22 dx.

If we assume mD3, the estimations of I1 , I2 and I3 obtained in [3] lead to

min g n
2

, dhEm (a) GeC13 Em (a)1
1
e C14 (Em22 (a) )m1C15 J2 ,(3.43)

where

m4112 12s
4(11s)1 (12s)m

,(3.44)

C134C13 (m , n), C144C14 (L , m , n , s) and C154C15 (m , n). To estimate J2 , we use
two fundamental one-dimensional inequalities. The first one is the Poincaré inequality
(2.9). The second is the Ladyzhenskaya inequality (see [11] and [9])

�
0

L

u(y)4 dyG2 u �
0

L

u(y)2 dyv u �
0

L

u 8 (y)2 dyv,

valid for sufficiently regular functions u such that u(0) 4u(L) 40. Then, we apply
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Hölder inequality to J2 , next we use the Green theorem to prove,

�
0

L

f 2 dy422 �
x

Q

�
0

L

ff x dydxG2 u �
V

f 2 dxv1/2u �
V

f x
2 dxv1/2

for every xF0 and every function f with the same regularity and boundary values of
our c or c y . In a final step, we use the Cauchy inequality and from the definition of
E0 (0) fE and Em22 (a), we prove

J2G2kC16E g L
p
h32u

(Em22 (a) )
m11

2 , C164C16 (m , n),(3.45)

where u4 [2(11s)1 (12s)m]/[4(11s)1 (12s)m]. Then, (3.43) comes

min g n
2

, dh Em (a) GeC13 Em (a)1
1
e C14 (Em22 (a) )m1C15 (Em22 (a) )

m11
2 ,

where, now, C154C15 (E , L , m , n , s). Then, choosing an appropriated e , we obtain
the fractional differential inequality (3.41).

If m42, the estimates on I1 , I2 and I3 (with m42) obtained in [3] lead to

min g n
2

, dh E2 (a) GeC17 E2 (a)1eC18 E0 (a)1
1
e C19 (E0 (a) )m1C20 J2(m42) ,

where

u4
2

31s
and m4

4
31s

,(3.46)

C174C17 (n), C184C18 (n) (C1842C17), C194C19 (L , n , s) and C204C20 (n). Taking
m42 in (3.45), C214C16 with m42,

J2(m42)G2kC21 E g L
p
h32u

(E0 (a) )
m11

2 .

Finally, choosing an appropriated e , we obtain the differential inequality
(3.42). o

PROOF OF THEOREM 3.1. We start with the case xf4Q. Taking m44 in Lemma
3.3, we have the fractional differential inequality

E4 (a) GC22 (E2 (a) )m 1 1C23 (E2 (a) )m 2 ,(3.47)

where, from (3.44),

m 14m4
52s

4
and m 24

m11
2

4
92s

8
and C224C22 (L , m , d , n , s), C234C23 (L , m , d , n , s). Using Lemma 3.3 with m42
and because of the finiteness of E , we can easily see that E2 (a) is finite. Then, from
Lemma 5.1, with m44, p42, w42(92s)/(12s)Dm, 1Em 14(52s)/4E

Em/(m2p) and 1 Em 24 (92s) /8 (fg) Em/(m2p), because 0 EsE1, the
support of E0 (a) is a bounded interval [0 , a *] with a *Ga 8 , where from (5.56)

a 84
151s
12s

C24

4
71s E

1
2(71s) , C244C24 (E , L , d , n , s).
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Then E0 (a) 40 for aDa 8 , which implies u40 and v is constant almost everywhere
for xDa 8. Finally from (1.4), v40 too in the same domain.

For the case xfEQ , the proof follows exactly as in [3]. o

REMARK 3.1. All the remarks made in [3, Section 3] remain valid in this case. For
instance, in the case of s41, the above arguments lead to the inequality

Em (a) GC25 Em22 (a), for aFxg ,

and, again, we can only derive an exponential decay for this case, which is optimal (see
Horgan [9] where the exponential decay estimate is derived using analogous arguments
to those developed by Knowles [10] and Toupin [12] in their energy approach to the in-
vestigation of the Saint-Venant’s Principle in classical elasticity theory). Moreover, the
results of [3, Section 4] where we have considered V4 (0 , Q)3 (L1 (x), L2 (x) ), can
be extended for this case.

REMARK 3.2. A simple proof of the localization effect can be obtained by proving
that

NcNGC26 (L)VcVH2(V)(3.48)

and (3.41) and (3.42) would come as in [3], but with the constants depending also on
VcVH2(V) . Another idea of a simple proof, is to assume Em (a) G1 or Em (a) F1 and
again (3.41) and (3.42) would come as in [3], with m4 min (m 1 , m 2 ) or m4

4 max (m 1 , m 2 ), respectively.

4. FORCES FIELD WITH A STAGNATION LINE

In the arguments we have considered in Section 3, one can realize that the par-
ameter a we have chosen is such that aFxg , with xg given in (1.8). To work with
aExg , we have to assume an extra condition on the second component of the forces
field. In this section, we assume the body forces field satisfy:

2f(x, u) Qu Fdx f (x)NuN11s(4.49)

for every u �R2 , for almost all x �V and for some dD0, 0 EsE1; and

Nf2 (x, u)NGC(xs2x)1
z(4.50)

for some xf , xs with 0 GxsExfGQ , xf large enough, C and z positive constants, with
z to be specified later on. Because of this last condition, we say the second component
of the body forces field has a stagnation line at x4xs . The existence and uniqueness
of a weak solution for this case, is guaranteed by Theorem 2.1, where h(x, u) 40 , and
Theorem 2.3, respectively.

THEOREM 4.1. There exists some positive constants C and z such that if (4.50) holds,
then u 40 for xDxs and any y� (0 , L).

PROOF. If we consider aFxs , we fall in the conditions studied in Section 3 with
g40. Then we have to add to the right-hand side of (3.40) the terms C(mK11K2 ) re-
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sulting from condition (4.50), where

(4.51) K14�
V

(xs2x)1
z NcN(x2a)1

m21 dx and K24�
V

(xs2x)1
z Nc x N(x2a)1

m dx.

This lead us to the counterpart of (3.41),

Em (a) GC27 (Em22 (a) )m1C28 Em , 2z (a),(4.52)

for every integer mD3, where Ci4Ci (L , m , d , n , s), i427, 28 , m is given by (3.44)
and

Em , z (a) 4�
V

(xg2x)1
z (x2a)1

m dx, mF2.(4.53)

Taking m44 in (4.52) and using an integration by parts on (4.53), we arrive at the
counterpart of (3.47), where we put E4 (a) 4z(a),

z(a) GC29 (z 9 (a) )m1C30 (xs2a)1
2z14 ,(4.54)

where C294C29 (L , d , n , s) and C304C30 (z , L , d , n , s), The solutions of (4.54),

with z4
(22m)
m21

(notice that from (3.46), zD3), are of the form z(a) 4C(xs2a)1

2m

m21

with the positive constant C satisfying

C2C29 C my 2m(m11)

(m21)2 zm

2C30G0.

Then E4 (a) 4C(xs2a)1

2m

m21 and consequently u 40 for xFxs . o

REMARK 4.1. From the physical point of view, this means the fluid stops at the same
stagnation line as the second component of the body forces.

5. APPENDIX

Here we prove the following result whose applications go beyond this article.

LEMMA 5.1. Let f�L1 (R1 ), fF0 a.e. in R1 and let us put

Em (a) 4�
a

Q

f(x)(x2a)m dx .

Assume that the fractional differential inequality

Em (a) GC1 (Em2p (a) )m 1 1C2 (Em2p (a) )m 2(5.55)

holds for all aF0, where 0 EpEmEw4pg/(g21), C1 and C2 are positive constants
and 1 Em 1 , m 2Em/(m2p) and g4 min (m 1 , m 2 ). Assume Em2p (a) is finite for any
aF0. Then, the support of E0 (a) is a bounded interval [0 , a*], with a*Ga 8 ,
where

a 84 (w2m11)C
1

(w2m)(g21) E
1

w2m , C4C(C1 , C2 , E , m , p , m 1 , m 2 ).(5.56)
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PROOF. For all 0 EpEm and all aF0, we have by Hölder inequality

Em2p (a) G (Em (a) )
m2p

m (E0 (a) )
p
m .(5.57)

Given g4 min (m 1 , m 2 ), by the monotonicity of Em2p (a), we have for i41, 2 ,

(Em2p (a) )m i G (Em2p (0) )m i2g (Em2p (a) )g

and, from (5.57), we have for i41, 2 ,

(Em2p (a) )m i G (Em (0) )
m2p

m (m i2g)
(E0 (0) )

p
m (m i2g)

(Em2p (a) )g .(5.58)

On the other side, from (5.55) and (5.57),

Em (0) G !
i41

2

Ci (Em (0) )
m2p

m m i (E0 (0) )
p
m m i .

Requiring that m iEm/(m2p), for i41, 2 , we obtain when using Young inequality
with e41/[2(C11C2 ) ], Em (0) GK , where

K»4 !
i41

2

2Cik2(C11C2 )
m2p

m m il
(m2p)m i

m2 (m2p)m i m2 (m2p)m i

m (E0 (0))
pm i

m2 (m2p)m i .

Then, for i41, 2 , (5.58) comes

(Em2p (a) )m i GK
m2p

m (m i2g)
(E0 (0) )

p
m (m i2g)

(Em2p (a) )g .(5.59)

From (5.55), (5.57) and (5.59),

Em (a) G !
i41

2

Ci K
m2p

m (m i2g)
(E0 (0) )

p
m (m i2g)

(Em (a) )
m2p

m g
(E0 (a) )

p
m g

.

Then, requiring that gEm/(m2p) and w4pg/(g21) Dm ,

Em (a) GC
m

(w2m)(g21) (E0 (a) )
pg

(w2m)(g21)(5.60)

where

C4 !
i41

2

Cim2Cik2(C11C2 )
m2p

m m ila i m2 (m2p)m i

m E b ing i

E d i ,

with a i4 (m2p)m i /[m2 (m2p)m i ], b i4pm i /[m2 (m2p)m i ], g i4 (m2

2p)(m i2g) /m , d i4 [p(m i2g) ] /m. Let us put m21 4p in (5.57). Then, from
(5.60),

E1 (a) GC
1

(w2m)(g21) (E0 (a) )
w2m11

w2m .

Since E1842E0 , this is a first order differential inequality, whose explicit integration
ends the proof. o
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