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LING HSIAO

THE QUASINEUTRAL LIMIT PROBLEM
IN SEMICONDUCTOR SCIENCES

ABSTRACT. — The mathematical analysis on various mathematical models arisen in semiconductor
science has attracted a lot of attention in both applied mathematics and semiconductor physics. It is im-
portant to understand the relations between the various models which are different kind of nonlinear
system of P.D.Es. The emphasis of this paper is on the relation between the drift-diffusion model and the
diffusion equation. This is given by a quasineutral limit from the DD model to the diffusion
equation.
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The mathematical modelling and the corresponding mathematical analysis in semi-
conductor science have attracted a lot of attention in both applied mathematics and
semiconductor physics.

Roughly speaking, we can divide semiconductor models into two classes: kinetic
models and fluid dynamic models. For each of these classes there are (semi)classical
models and quantum models. For instance, the Boltzmann-Poisson system and the
Quantum Boltzmann-Poisson system are kinetic models, while the Hydrodynamic, the
Energy-transport and the Drift-diffusion equations are fluid dynamic models for
which the quantum effects can be also taken into account to get the corresponding
Quantum hydrodynamic, Quantum energy-transport and Quantum drift-diffusion
models respectively.

It is important to study those mathematical models since they are different kind of
nonlinear systems of P.D.Es for which there are a lot of interesting problems in
mathematics.

For instance, the Hydrodynamic model takes the form of Euler-Poisson equations,
namely
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where n denotes the electron density, uK is the velocity, p denotes the momentum den-
sity (p4mn uK), f is the negative electric potential, P4nKB T, T denotes the carrier
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temperature, the positive constants e, m and KB are the electron charge, the effective
electron mass and the Boltzmann constants, l is the dielective constant, t p and t w are
the momentum and energy relaxation time, and b(x), called the doping profile, stands
for the density of fixed, positive charged background ions.

This HD model was introduced to describe electron flow when the transport of
energy plays a crucial role. It can be derived from the Boltzmann-Poisson system for
semiconductors by Moment method. See [14, and the references there].

Compared to the pure Euler equation, the system (1) contains certain dissipative
mechanism which makes it possible to establish the theory on globally defined smooth
solutions. See, for instance, the corresponding results in [1] for one-space dimensional
system, and [12] for 3-space dimensional system. However, it would be more difficult
than the pure Euler equation on the study of weak entropy solutions. This is true even
for the simplified HD model, namely

.
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(n uK)t1˜ Q (n uK7 uK)1˜P(n) 4n˜F2 n uK
t
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(2)

for which there are certain results on globally defined classical solutions for multi-di-
mensional system, see [10, 6, 5], but nothing on weak entropy solutions, although the
one-dimensional case has been studied extensively, see [11] and the references
concerned.

It is also important to understand the relations between those models mentioned
above. The relations are at least formally well understood. For instance, the passage
from the HD model to ET or DD models is so-called relaxation limit; the way from
the DD model to the diffusion equation is given by a quasineutral limit. Classical
models are obtained from quantum models in the so-called classical limit, where the
scaled Plank constant tends to zero, etc. However, it is really a challenging problem to
establish these limits rigorously in mathematics. This paper is concentrated on
quasineutral limit, particularly the quasineutral limit of drift-diffusion models in
semiconductors.

The scaled semiconductor drift-diffusion equations read

.
/
´

nt4m n div (˜(n g n )1nE)

pt4m p div (˜(p g p )2pE)

2l 2 div E4n2p2C

(3)

with x�V%Rd, V bounded with smooth boundary, tF0 and E42˜F. The un-
knowns n , p , E , F are the electron density, the hole density, the electric field and the
electric potential, respectively. The given function C4C(x) is the doping profile de-
scribing fixed background charges. The dimensionless positive parameters m n , m p and l
are the scaled mobilities of electrons, holes and the scaled Debye length, respectively.

If g n4g p41 (isothermal case), (3) is called the standard drift-diffusion model; if
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g n , g pF1, not equal to one together, (isentropic case), (3) is called the nonlinear
drift-diffusion model.

This model was first proposed in [17] in the semiconductor context. There are dif-
ferent ways to obtain this model. One possibility is a relaxation limit from the hydro-
dynamic model. Also, the model can be derived directly from the semiconductor
Boltzmann equation using the moment method for which more explanation can be
found in [14].

The time-dependent and the stationary DD model have been mathematically ana-
lyzed extensively. The main interest here is the behavior of the solutions of (3) in the
vanishing Debye length limit lK0, namely, quasineutral limit.

Quasineutrality is a frequently used modelling assumption in charged particle
transport. Formally, quasineutral models are derived in the limit as the ratio of the De-
bye length to a characteristic length tends to zero. In the semiconductor content, this
formalized perturbation approach has been used extensively for the analysis of the
qualitative behavior of semiconductor devices, see [14-16], etc., where the contribu-
tions are concerned with formal asymptotic expansions. As far as the rigorous results
are concerned, very few is known. The special situation when Cf0 is studied in
[2, 13] when the initial data for n and p are equal. The situation of Cg0 is more dif-
ficult to be treated on which the first rigorous result for the standard DD model
(g n4g p41) under certain restrictive assumptions is obtained in [4]. For the general
case g nD0, g pD0, when the doping profile is a constant or does not change sign,
generalizing the results of [4] to nonlinear diffusion, we employ multiplier technique
instead of the invariant region method used in [4] in order to obtain the lower and up-
per bounds on the densities.

Consider an insulated semiconductor modelled by the following initial-boundary
value problem

. (3)
` (˜(n g n )1nE) Qn40 ˆ

(4) / (˜(p g p )2pE) Qn40 ¨ x�¯V , tD0
` ˜E Qn40, ˜
´ n(t40, x) 4n0 (x), p(t40, x) 4p0 (x), x�V

where n is the normal vector along the boundary ¯V.
A necessary solvability condition for the Poisson equation, subject to the Neu-

mann boundary condition is global charge neutrality

�
V

(n2p2C)dx40.

Since the total numbers of electrons and holes are conserved, it is sufficient to require
that

�
V

(n02p02C)dx40.
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Now, we explain the quasineutral limit in the DD model. We perform the Debye
limit lK0 formally in the system (3) to get the system

.
/
´

Nt4m n div (˜N g n 1N E)

Pt4m p div (˜P g p 2P E)

0 4N2P2C

(5)

where N , P , E are the formal limits of n , p , E as lK0.
Due to the singular perturbation character of the problem (the Poisson equation

becomes an algebraic equation in the limit) we can not a priorily expect that all initial
and boundary conditions hold for the limiting problem. However, by the conservation
form of the continuity equations the property of zero flux through the boundary will
prevail in the limit:

(˜N g n 1N E) Qn40, (˜P g p 2P E) Qn40 on ¯V(6)

while the boundary condition for the electric field E does not. Initial conditions for
the limiting problem are satisfied in the sense of H 21 (V).

Simple manipulations of (5) give the paraboli-elliptic system

.
/
´

g 1
m n

1 1
m p

h Pt4div (˜( (P1C)g n 1P g p )1C E)

2div ( ( (m n1m p )P1m n C) E) 4div (˜(m n (P1C)g n 2m p P g p ) ).
(7)

If, further, Cf0, the limiting problem becomes

Pt4
m n m p

m n1m p
div (˜(P g n 1P g p ) )

which is the case in plasma physics.
We studied the quasineutral limit rigorously when one of the following assump-

tions holds:

ASSUMPTION A.
(i) C(x) 4const
(ii) there exists a positive constant d independent of l such that n0

lFd1CD0, p0
lF

Fd in V
(iii) 0 Eg n , g pE1Q .

ASSUMPTION B.
(i) There exists a positive constant C such that C(x) F C D0 (or C(x) G2C E0) and

C(x) �W 1, Q (V)
(ii) n0

l , p0
l are bounded away from 0 uniformly as lK0

(iii) 1Gg pG
3
2

, g nF
2d

d11
gor 1 Gg nG

3
2

, g pF
2d

d11
h.
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REMARK 1. The other case when B(iii) is replaced by

1 Gg pG
3
2

, g nG
2d

d11
gor 1 Gg nG

3
2

, g pG
2d

d11
h(B 8)

has been investigated later in [8].
To state our results, we introduce the entropy

e l (t) 4�
V

un l
(n l )g n2121

g n21
1p l

(p l )g p2121
g p21

1
l 2

2
NE lN2v dx1e0

where g A g2121
g21

h N
g41

»4 lnA for AD0 and the constant e0 is chosen such that the

entropy e l (0) is a nonnegative quantity.

THEOREM 1. Assume the initial data n0
l, p0

lF0 are such that the initial entropy
e l (0) is uniformly bounded as lK0 and that there are functions n0 , p0�L Q (V) such
that n0

lKn0 , p0
lKp0 strongly in L Q (V) as lK0. Also, let one of the above assump-

tions (A), (B) and (B 8 ) holds. Let TD0 and QT4 (0 , T)3V. Then, as lK0 the fol-
lowing convergences hold (after extracting subsequences):

n lKN strongly in L qn (QT ),

p lKP strongly in L qp (QT ),

E l � E weakly in L s (QT ),

n l2p l2C4O(l) in L 2 (QT )

where qn , qp , sD1 depend on g n and g p .
Furthermore, the limit (N , P , E) satisfies the system (5) (6) in D 8 (QT ) and the ini-

tial data N(t40, x) 4n0 (x), P(t40, x) 4p0 (x) in the sense of H 21 (V).

The main steps to establish the theorem.

1. To establish the uniform a priori estimates on densities by using the multiplier
techniques and energy arguments.

2. To construct the entropy functional so as to get the uniform estimates related
to E l and etc.

3. To prove strong convergence of n l and p l in L qn (QT ) and L qp (QT )
respectively.

4. To establish the weak-convergence of the terms (n l2p l2C)E l and n l E l,
p l E l. This needs to improve the uniform L a-estimates on density and electric field
since we have only obtained weaker estimates on E l.

The detailed arguments can be found in [3].

Physically, it is more interesting when the doping profile changes sign. One of the
main difficulty is the oscillatory behavior on the field. Let us consider a simple case –
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the one-dimensional standard bipolar DD model

.
/
´

nt
l4m n (nx

l1n l E l )x

pt
l4m p (px

l2p l E l )x

2l 2 Ex
l4n l2p l2C

(8)

with x� [0 , 1], tF0 and E l42F x
l, and subject to the following boundary and ini-

tial conditions

nx
l1n l E l4px

l2p l E l4E l40, x40, 1 , tD0(9)

n l (t40, x) 4n0
l (x), p l (t40, x) 4p0

l (x), x� [0 , 1](10)

Introduce the entropy

e l (t) 4�
0

1gn l log n l1p l log p l1
l 2

2
NE lN2h dx1e0 ,

where the constant e0 is chosen such that the entropy e l (0) is a nonnegative quantity.
Denote

S 14 ]x : C(x) D0(, S 04 ]x : C(x) 40( and S 24 ]x : C(x) E0(.

For the nonnegative doping profile, we have

THEOREM 2. Assume the initial data n0
l , p0

lF0 are such that the initial entropy
e l (0) is uniformly bounded as lK0 and that there are functions n0 , p0�L Q (V) such
that n0

lKn0 , p0
lKp0 strongly in L Q (V) as lK0. Also, let the following assumptions

hold:
(i) the doping profile C(x) is nonnegative and satisfies kC�H 1 ( (0 , 1 ) ).
(ii) S 1 is an open subset of [0 , 1].
Let TD0 and QT4 (0 , 1 )3 (0 , T). Then, as lK0 the following convergences hold
(after extracting subsequences):

n lKN strongly in L a (QT ), 1 GaE2,

p lKP strongly in L b (QT ), 1 GbE2,

E l � E weakly in L 2 (B 13 (0 , T) ),

n l2p l2C4O(l) in L 2 ( (0 , 1 )3 (0 , T) ),

n l E lKN E, p l E lKP E in D 8 (B 13 (0 , T) ),

(n l2p l )E lK0 strongly in L 4/3 (S 03 (0 , T) )

where B 1 is any closed subinterval of the set S 1. Furthermore, the limit (N , P , E) sati-
sfies the system (11) (12) in D 8 (B 13 (0 , T) ), and, respectively, the porous media type

equation Nt4
2m n m p

m n1m p
Nxx with N4P in D 8 (B 03 (0 , T) ), where B 0 is any closed

subinterval of S 0 , and the initial data N(t40, x) 4n0 (x), P(t40, x) 4p0 (x) in the
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sense of H 21 ( (0 , 1 ) ).

.
/
´

Nt4m n (Nx1N E)x

Pt4m p (Px2P E)x

0 4N2P2C

(11)

Nx1N E 4Px2P E 40, x40, 1 .(12)

COROLLARY 3. Under the assumption of the above theorem, we have
(i) If C40, then N4P satisfies the porous media type equation

Nt4
2m n m p

m n1m p
Nxx N(t40, x) 4n0 (x) 4p0 (x)

in D 8 ( (0 , 1 )3 (0 , T) ).
(ii) If C(x) D0 in (0 , 1 ), then (N , P , E) satisfies the system (11) (12) in D 8 ( (0 , 1 )3

3 (0 , T) ) and the initial data N(t40, x) 4n0 (x), P(t40, x) 4p0 (x) in the sense
of H 21 ( (0 , 1 ) ).

REMARK 2. A similar result holds for the case of the non-positive doping
profile.

REMARK 3. In general, the field E l will not be bounded in L s as lK0. This yields
many difficulties in establishing the weak convergence of n l E l and p l E l. So that new
techniques are needed.

The proof of theorem is based on the entropy methods and the weak compactness
argument. First, by constructing the entropy functional, the uniform a priori estimates
are obtained. Then, the weak compactness methods yield the desired convergence.
However, the uniform a priori estimates obtained by the entropy functional is not suf-
ficient to establish the weak convergence of n l E l and p l E l since the concentration-
oscillation phenomena may appear in the weak-convergence. By using some new tech-
niques of the weak-convergence method, we are able to overcome the concentration-
oscillation phenomena and hence obtain the weak-convergence of n l E l and p l E l.
The detailed arguments can be found in [7].

REMARK 4. The problem is much more difficult than the above case when we turn
to the doping profile which may change sign. The first rigorous result to deal with this
case is given in [9] recently. In [9], the vanishing Debye length limit of the bipolar
one-dimensional standard drift-diffusion models for semiconductors modelling a p-n
junction device (i.e. with a fixed bipolar background charge) is studied. For general
changing sign smooth doping profile the quasineutral limit in the well-prepared and
also ill-prepared initial data cases is performed rigorously by using the multiple scal-
ing asymptotic expansions of a singular perturbation analysis and the careful energy
method. The key point of the proof is to introduce a density transform and a l-weight-
ed Lyapunov’s functional, and to establish an entropy inequality, which yields the uni-
form Sobolev’s energy estimates of the error functions.
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