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Analisi matematica. — Ground States of Nonlinear Schrödinger Equations with po-
tentials vanishing at infinity. Nota di ANTONIO AMBROSETTI, VERONICA FELLI e AN-
DREA MALCHIODI, presentata (*) dal Socio A. Ambrosetti.

ABSTRACT. — In this preliminary Note we outline the results of the forthcoming paper [2] dealing
with a class on nonlinear Schrödinger equations with potentials vanishing at infinity. Working in wei-
ghted Sobolev spaces, the existence of a ground state is proved. Furthermore, the behaviour of such a
solution, as the Planck constant tends to zero (semiclassical limit), is studied proving that it concentrates
at a point.

KEY WORDS: Nonlinear Schrödinger equations; Weighted Sobolev spaces; Critical point theory.

RIASSUNTO. — Stati fondamentali per equazioni di Schrödinger nonlineari con potenziali che si annulla-
no all’infinito. In questa Nota preliminare presentiamo i risultati del lavoro [2] dove studiamo una classe
di equazioni di Schrödinger nonlineari con potenziali che tendono a zero all’infinito. Lavorando in spazi
di Sobolev con peso, dimostriamo l’esistenza di una soluzione fondamentale. Di tale soluzione è anche
studiato il comportamento quando la costante di Planck tende a zero (limite semiclassico) dimostrando
che essa si concentra in un punto.

1. INTRODUCTION

We consider, for NF3, the stationary Nonlinear Schrödinger Equations

.
/
´

2e 2 Dv1V(x)v4K(x)v p , x�RN ,

v�W 1, 2 (RN ), v(x) D0, lim
NxNKQ

v(x) 40,
(1)

where 1 EpE N12
N22

. We address here two problems: (i) the existence, for eD0

fixed, of a solution ve of (1) with minimal energy (ground state); (ii) the behavior (con-
centration) of ve as eK0. The main novelty with respect to most of the (broad) litera-
ture dealing with (1) is that we assume that the potentials V and K decay to zero as
NxNKQ. Precisely, we suppose

(V) V : RNKR is smooth and ) a , a1 , a2D0 such that
a1

11NxNa GV(x) Ga2 ,

and, respectively

(K) K : RNKR is smooth and ) b , a3D0:

0 EK(x) G
a3

11NxNb
.

If VANxN2a as NxNKQ , with aD0, the spectrum of the linear operator 2D1V is

(*) Nella seduta del 12 marzo 2004.
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[0 , 1Q), and this prevents the use of perturbation methods as in [3, 4]. On the other
hand, we cannot even apply critical point theory working in W 1, 2 (RN ). For these rea-
sons, we consider the weighted space LK

q of measurable u : RNKR such that

NuNq , K4 y �
RN

K(x)Nu(x)Nq dxz
1
q

EQ ,

as well as the weighted Sobolev spaces He defined by setting

He4 {u� D1, 2 (RN ) : �
RN

[e 2 N˜u(x)N21V(x)u 2 (x) ] dxEQ}.

He is a Hilbert space with scalar product

(uNv)e4 �
RN

[e 2 ˜u(x) Q˜v(x)1V(x)u(x)v(x) ] dx

and norm VuVe
24 (uNu)e . Let

s4s N , a , b4
.
/
´

N12
N22

2
4b

a(N22)
, if 0 EbEa

1 otherwise .

The above weighted spaces have been introduced in [6], where the following result is
proved.

THEOREM 1. Let NF3 and suppose that (V), (K) hold with a� (0 , 2] and bD0,
respectively. Then for all eD0, He

%KLK
p11 provided

sGpG N12
N22

.

Furthermore, the embedding of He into LK
q is compact provided

sEpE N12
N22

.(2)

2. AN EXISTENCE RESULT

The preceding Theorem implies that the functional Ie

Ie (u)4 1
2
�

RN

ke 2 N˜u(x)N21V(x)u 2 (x)l dx2 1
p11

�
RN

K(x)Nu(x)Np11 dx , u� He ,

is well defined and Ie�C 1 (He , R). It is easy to check that Ie has the Mountain Pass ge-
ometry. Furthermore, the Palais-Smale condition is satisfied if (2) holds, since in such
a case He is compactly embedded into LK

q . This immediately implies:
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LEMMA 2. Let (V), (K) hold with 0 EaG2, bD0, respectively, and suppose that p
satisfies (2). Then

be4 inf
u� He 0]0(

max
tF0

Ie (tu)

is a critical level of Ie and carries a critical point ve� He of Ie .

Here ve is a critical point in the sense that (Ie8 (ve )Nu) 40 for all u� He . By local el-
liptic regularity, it follows that ve is for all eD0 a positive (classical) solution of the
equation

2e 2 Dv1V(x)v4K(x)v p , x�RN .(3)

REMARKS. a) Lemma 2 also follows from [7, Thm. 3.1] combined with Theorem 1.

Let us point out that the case in which p4s or p4 N12
N22

is also studied in [7, Thm.

3.2], under some further restriction on V and K. Lemma 2 is also somewhat related to
the results of [5].

b) If V is «bounded away from zero and infinity», namely 0Einf
RN

VGsup
RN

VE1Q,

we can directly work in W 1, 2 (RN ). In such a case we recover the compactness assum-
ing that (K) holds. If VANxN2a as NxNKQ , with a� (0 , 2], while K is bounded
away from zero and infinity, one could show that be40 and hence there are no Moun-
tain Pass solution. The same remark holds if pEs. On the other hand, solutions with
higher energy might exist. For example, if both V and K are bounded away from zero
and infinity, the existence of a solution to (1) is proved e.g. in [3] provided e is suffi-

ciently small and V u K 22/(p21) , with u4
p11
p21

2 N
2

, has a «stable» stationary point,

like e.g. a maximum or a minimum. o

Next, we will show that the Mountain-Pass solution ve� He is indeed a ground
state, provided 0 EaE2. In order to prove this fact, some sharp decay estimates are
carried out, leading to the following integral estimate (in the lemma below, we have
highlighted the dependence on e because it will be used in the next section, dealing
with the concentration phenomenon).

LEMMA 3. Let (V), (K) hold with 0 EaE2, bD0, respectively, and suppose that p
satisfies (2). Moreover, let ve be solutions of (3) and suppose there exists GD0 such
that

Vve VHe
GGe n .(4)

Then there exist RGD0, and constants C1, 2D0, depending only on G , such that, for all
RFRG there holds

�
NxNDR

[e 2 N˜veN21V(x)ve
2 ]dxGC1 eN exp m2C2 e21 R

22a
2 n.(5)
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The preceding lemma is used to show that ve�L 2 (RN ). Roughly, if y�RN with
NyNc1, one gets:

�
Nx2yNE1

ve
2 dx4 �

Nx2yNE1

V(x)ve
2 Q 1

V(x)
dxGc1 NyNa �

Nx2yNE1

V(x)ve
2 dx .

Then (5) implies

�
Nx2yNE1

ve
2 dxGc2 NyNa exp ]2c3 NyN12a/2(,

and from this it follows that ve�L 2 (RN ). Then one gets that ve�W 1, 2 (RN ) as well as
that lim

NxNKQ
v(x) 40, proving our main existence result:

THEOREM 4. Let (V), (K) hold with 0 EaE2, bD0, respectively, and suppose that
p satisfies (2). Then the Mountain-Pass solution ve found in Lemma 2 is such that
ve�W 1, 2 (RN ), ve�C 2 (RN ), ve (x) D0 and lim

NxNKQ
ve (x) 40 and thus is a ground state

of (1).

3. CONCENTRATION AS eK0

Concerning the behavior of the Mountain-Pass solution ve , our main result is The-
orem 5 below. Let

A(x) »4 [V(x) ]u [K(x) ]22/(p21) , u4
p11
p21

2 N
2

.

The auxiliary potential A has been previously introduced dealing with potentials V
and K bounded away from zero and infinity, see e.g. [3], where it is proved that con-
centration occurs at the «stable» stationary points of A. Moreover, let us point out
that A has a global minimum since lim

NxNKQ
A(x) 41Q provided (2) holds.

THEOREM 5. Let the same assumptions as in Theorem 4 hold. Then, the preceding
ground state ve concentrates at a global minimum x * of A. More precisely, ve has a
unique maximum xe such that xeKx * as eK0, and

ve (x) AU *g x2xe

e
h, as eK0,

where U * is the unique positive radial solution of

2DU *1V(x *)U *4K(x *)(U *)p .

The proof of Theorem 5 is based upon the following Lemmas. The first one pro-
vides an uniform bound on the Mountain-Pass critical level of Ie .
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LEMMA 6. There exists GD0 such that beGGeN , for all eD0 small.

To see this, we introduce the functional Je : W 1, 2 (RN ) O R , by setting

Je (u) 4 1
2
�

RN

ke 2 N˜uN21a2 u 2ldx2 1
p11

�
RN

K(x)NuNp11 dx ,

where, according to assumption (V), sup VGa2 . Since W 1, 2 (RN ) % He , we infer

beG b
A

e »4 inf
u�W 1, 2 (RN )0]0(

max
tF0

Je (tu).(6)

Furthermore, letting

Je (u) 4 1
2
�

RN

kN˜uN21a2 u 2l dx2 1
p11

�
RN

K(ex)NuNp11 dx .

One finds that ue (x) is a critical point of Je iff uAe (x) »4ue (x/e) is a critical point of Je .
Using the perturbation method introduced in [1], we can look for critical points of Je

near those of the unperturbed functional J0f Je40 . Up to translation, we can assume
that K(0) 4 max K. Then Je has, for eD0 small, a critical point ue such that ueKU as
eK0, where U is the unique positive radial solution of

2DU1a2 U4K(0)U p , U�W 1, 2 (RN ).

Furthermore, U is a Mountain Pass critical point of J0 and the same holds true for ue .
The preceding information, together with Je (ue ) K J0 (U) as eK0 and the equality
Je (uAe ) 4eN Je (ue ), readily imply that b

A
eGGeN , and the lemma follows using (6).

Lemma 6 implies that (4) holds. Then Lemma 3 applies and this allows us to prove
a pointwise uniform exponential decay for the solutions ve

LEMMA 7. There exist C1 , C2D0 and dD0, depending only on G , p , N , a and b ,
such that

Nve (x)NGC1 NxNd e2d exp m2C2 e21 NxN
22a

2 n; forNxNc1.(7)

Let xe denote a point of maximum for ve . Thus, Dve (xe ) G0 whence
V(xe )K 21 (xe ) Gv p21

e (xe ). Then, using (7), we deduce that

V(xe )K 21 (xe ) GC1 NxeNd(p21) e2d(p21) exp m2C2 e21 Nxe N
22a

2 n.

Since from (V)2 (K) we know that V(x)K 21 (x) ANxNb2a as NxNKQ , there exists a
constant C 8D0 such that

Nxe NGC 8 , ( eA0.(8)

Finally one also shows that there exists a constant C 9D0

Vve VL Q FC 9 .(9)

Equations (8), (9) and the preceding Lemmas allow us to carry over standard argu-
ments which lead to prove Theorem 5.

The complete proofs of the results sketched in the present Note, are contained in
the forthcoming paper [2].
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