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BERNARD DACOROGNA - NICOLA FUSCO - LUC TARTAR

ON THE SOLVABILITY OF THE EQUATION div u4 f IN L 1 AND IN C 0

ABSTRACT. — We show that the equation div u4 f has, in general, no Lipschitz (respectively W 1, 1)
solution if f is C 0 (respectively L 1).
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1. INTRODUCTION

Consider a bounded open set V%Rn and a vector field u : VKRn. Define the
linear operator L : XKY by

Lu(x)4div u4!
i41

n
¯ui

¯xi
.

Usually this operator is coupled with some boundary conditions but we will be con-
cerned here only with a local problem of regularity. It is well known that this operator
is onto (as a direct consequence of classical regularity results on Laplace equation) in
the following cases

X4C k11, a , Y4C k , a with kF0 and 0EaE1

X4W k11, p , Y4W k , p with kF0 and 1EpEQ .

The aim of this report is to show that this operator is not onto when

X4C 1 ( or W 1, Q ), Y4C 0

X4W 1, 1 , Y4L 1 .

It may seem that this follows at once from the known counterexamples for Laplace
equation; this is not the case because the equation div u4 f has other solutions than
the one of the form u4grad v.

After having solved the problem we have learnt that both questions have already
been studied by several authors. The result concerning C 0 and L Q have been proved
(to the best of our knowledge) by Preiss [6], Mc Mullen [4] and have been announced
by Bourgain and Brézis in [2], who also mention the case of L 1.
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2. THE L 1
CASE: A FIRST APPROACH

Let

c(x1 , x2 )4x1 x2 V(NxN)

then

c x1 x1
4

x1
3 x2

NxN2
V 9 (NxN)1

x1 x2

NxN3
(2x1

213x2
2 ) V 8 (NxN)

c x2 x2
4

x2
3 x1

NxN2
V 9 (NxN)1

x1 x2

NxN3
(2x2

213x1
2 ) V 8 (NxN)

c x1 x2
4

x1
2 x2

2

NxN2
V 9 (NxN)1

x1
41x1

2 x2
21x2

4

NxN3
V 8 (NxN)1V(NxN) .

Choosing V4]x�R2 : NxNE1/2( and for 0EaE1,

V(r)4N log rNa

we get that

c x1 x1
, c x2 x2

�C 0 (V), c x1 x2
�L Q (V) .

– Let h�C0
Q (V) and hf1 near NxN40. Define for N an integer

c N (x)4h(x) x1 x2 V g 1
N

1NxNh .

Observe that c N�C0
Q (V) and there exists a constant c1 independent of N so

that

Nc x1 x1
N NLQ1Nc x2 x2

N NLQGc1 .

– We have furthermore, for u4 (u 1 , u 2 )�W 1, 1 (V ; R2 ), that

��
V

(ux1
1 1ux2

2 ) c x1 x2
N dx1 dx24��

V

(ux2
1 c x1 x1

N 1ux1
2 c x2 x2

N ) dx1 dx2

and thus there exists a constant c24c2 (c1 , NuNW 1, 1 ) independent of N so that

N��
V

div uc x1 x2
N dx1 dx2NGc2 .
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– However if we choose

f (x)4 1
NxN2 N log NxVa11

we get that f�L 1 (V) and, for c N as above, we get by Fatou lemma that

lim
NKQN��

V

fc x1 x2
N dx1 dx2N4Q .

The combination of the above facts leads to the desired conclusion.

3. THE L 1
CASE: A SECOND APPROACH

We start by recalling the definition of Lorentz spaces.
Let u : V%RnKR (V a bounded open set) be measurable; we then define the dis-

tribution function by

l(s)4meas ]x�V : Nu(x)NF s(

and the decreasing rearrangement of u by

u *(t)4 inf ]s : l(s)E t( , t� [0 , NVN] .

If 1Gp , qEQ we define the Lorentz space L p , q (V) to be the space of u such
that

NuNL p , q4 u �
0

NVN

u *(t)q t
q
p 21

dtv1/q

EQ

and if q4Q

NuNL p , Q4ess sup ku *(t) t
1
p lEQ .

In particular L p , p can be identified with L p.
We now give an example that will be used below.

PROPOSITION 1. Let V4]x�Rn : 0ENxNE1/2(. Let h�C Q (0 , 1/2) be such
that

h(t)4
.
/
´

1
0

near t40
near t41/2 .
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Let

V(r)42�
1/2

r
r 12n

log r
dr , 0E rE1/2

W(x)4h(NxN) V(NxN)

(note that, when n42, V(NxN)4 log N log NxV2 log log 2). Call

f (x)4DW(x)4
.
/
´

(NxNn log2 NxN)21

0

near NxN40

near NxN41/2 .

Then f�L 1 (V) and W solves, in the sense of distributions,

.
/
´

DW4 f

W40

in V

on ¯V .
(1)

Note however that ˜W�L
n

n21
, 1

(V) and that, in the case n42, W�L Q (V).

REMARK 2. More refined examples show that solutions of (1) have their gradients in
L

n
n21

, Q
(V) but not in L

n
n21

, q
(V) for every qEQ.

PROOF. Clearly f�L 1 (V) and W�L Q (V) when n42. We therefore only check
that ˜W�L

n
n21

, 1
(V). We have

˜W(x)4 [h(NxN) V 8 (NxN)1h 8 (NxN) V(NxN) ] x
NxN

and hence the result will follow if we can show that c�L
n

n21
, 1

(0 , r0 ), for r0D0 suffi-
ciently small, where (v n denoting the measure of the unit ball)

c(t)4V 8gg t
v n
h1/nh4 g t

v n
h

12n
n

1
n log g t

v n
h .

We therefore have

NcN
L

n
n21

, 1f�
0

r0

Nc(t)Nt
2 1

n dt4n(v n )
n21

n �
0

r0

dt
t(log t2 log v n )

4Q . o

The combination of the preceding counterexample and the following proposition
gives the result for the L 1 case.

PROPOSITION 3. Let V%Rn be the unit ball and let u�W 1, 1 (V ; Rn ). Then there
exists a solution, in the sense of distributions, of

.
/
´

DW4div u

W40
in V

on ¯V .
(2)
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Furthermore ˜W�L
n

n21
, 1

(V) and hence in particular, when n42, W is continu-
ous.

PROOF. We just sketch the main ingredients of the proof.
– The first fact is that a more refined version of the Sobolev imbedding theorem

gives that u�W 1, 1 implies u�L
n

n21
, 1

, cf. [9].
– Using the Green function G4G(x , y) (cf. [3]) and applying the divergence

theorem we can write the solution in terms of singular integrals, namely

W(x)4�
V

div u(y) G(x , y) dy42�
V

au(y); ˜y G(x , y)b dy .

– The estimate on the gradient can be obtained as follows. Let Tu4˜W4

4 g ¯W
¯x1

, R ,
¯W
¯xn
h. Standard results on singular integrals (cf. [7, Theorem 3, Chapter

II, p. 39]), show that for every 1EpEQ we can find a constant cp such that

NTuNL pGcp NuNL p .

– Since u�L
n

n21
, 1

we can use Marcinkiewicz interpolation theorem (see Theorem
5.3.2 in [1, p. 113] or Theorem 3.15 of Chapter V in [8, p. 197]) to find a constant
cn/(n21)8 such that

N˜WN
L

n
n21

, 14NTuN
L

n
n21

, 1Gc n
n21
8 NuN

L
n

n21
, 1 .

The result then follows. o

REMARK 4. It is interesting to compare the two arguments that have been used in
this section and in the preceding one.

The second method only uses the fact that W 1, 1%L
n

n21
, 1

and shows that not all
functions of L 1 are divergences of functions in L

n
n21

, 1
. It essentially uses the convolu-

tion by the elementary solution of the Laplacian, which has a singularity of the form
r 22n (or log r if n42). One easily generalizes this fact. Note first that if a has deriva-
tives that belong to L n , Q (so that a�BMO) then div u˜a4!u j ˜axj

(after trunca-
tion) is continuous. However f˜a cannot be continuous for all f�L 1 unless a is
bounded.

The first method uses a larger class of functions a (the c x1 x2
of the counterexample),

those that satisfy axj
�W 21, Q for all j (note that since W0

1, 1 is dense in L
n

n21
, 1

we have
L n , Q%W 21, Q ). Indeed if f4div u with u�W0

1, 1 then a f ; ab42!au j ; axj
b is well

defined.

4. THE CONTINUOUS CASE

We recall an example due to Ornstein [5] (Mc Mullen uses the more abstract ver-
sion of Ornstein theorem to prove his result).
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Let N�N and V4 (0 , 1 )2 then there exists c N4c N (x1 , x2 )�C0
Q (V) such

that

Nc x1 x1
N NL 11Nc x2 x2

N NL 141

N(Nc x1 x1
N NL 11Nc x2 x2

N NL 1 )GNc x1 x2
N NL 1 .

Note that, for u4 (u 1 , u 2 )�W 1, Q (V ; R2 ),

��
V

(ux1
1 1ux2

2 ) c x1 x2
N dx1 dx24��

V

(ux2
1 c x1 x1

N 1ux1
2 c x2 x2

N ) dx1 dx2

and hence

N��
V

div uc x1 x2
N dx1 dx2NGNuNW 1, Q .

Since lim
NKQ

Nc x1 x2
N NL 14Q, using Banach-Steinhaus we can find f�C 0 such that

lim
NKQN��

V

fc x1 x2
N dx1 dx2N4Q .

Combining the above facts we have even shown that there is f�C 0 such that no vector
field u�W 1, Q (V ; R2 ) can satisfy div u4 f.

Of course this result immediately extends to higher dimensions.
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