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ERMANNO LANCONELLI

NONLINEAR EQUATIONS ON CARNOT GROUPS
AND CURVATURE PROBLEMS FOR CR MANIFOLDS

ABSTRACT. — We give a short overview of sub-Laplacians on Carnot groups starting from a result by
Caccioppoli dated 1934. Then we show that sub-Laplacians on Carnot groups of step one arise in stu-
dying curvature problems for CR manifolds. We restrict our presentation to the cases of the Webster-Ta-
naka curvature problem for the CR sphere and of the Levi-curvature equation for strictly pseudoconvex
functions.

KEY WORDS: Hypoellipticity; Carnot groups; Sub-Laplacians; Webster-Tanaka curvature; Levi-
curvature.

1. SOME ANTE LITTERAM RESULTS

In 1934 Caccioppoli proved the following theorem [3, pp. 52-53].
(C) Let u be a locally integrable real function in the open set V%R2 and

assume

�
V

uDW40, (W�C0
Q (V)(1.1)

where D denotes the Laplace operator. Then there exists a harmonic function v in V
such that

u(x)4v(x) a.e. in V .

In the modern language of distribution theory, Caccioppoli’s result can be stated as
follows: if u�L 1

loc (V) satisfies the equation Du40 in V in the weak sense of distribu-
tions then u�C Q (V). Caccioppoli’s proof is quite simple. By suitably choosing the
test function W in (1.1) he showed that the mean value of u on the sphere Sr (x),
i.e.

ur (x) »4 �–
Sr (x) )

uds ,

is independent of r for almost every x�V and 0E rEdist (x , V). As a consequence,
by a previous old result by E.E. Levi (1), u is a.e. equal to a harmonic function in V . It
is not difficult to recognize that Caccioppoli’s argument also works in every dimen-
sion NF2. However in 1940 a different proof was given by H. Weyl who (rediscov-
ered and) extended Theorem (C) to R3 [24, Lemma 2].

Caccioppoli-Weyl’s regularity theorem for weak solutions to the Laplace equation

(1) E.E. LEVI, Opere. Edited by Unione Mat. It., Cremonese, 1956, 180-186.
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can be considered as an ante litteram hypoellipticity result. Indeed, in 1940, L.
Schwartz introduced the following general definition: a linear partial differential op-
erator L with smooth coefficients is hypoelliptic in V if every distributional solution to
the equation Lu4 f in the open set V%RN is of class C Q when f�C Q (V).

Caccioppoli’s proof of Theorem (C), together with now classical devices of distri-
bution theory, could be used to recognize the hypoellipticity of D in the general sense
of Schwartz. That proof essentially rests on the following two facts.

(C1) There exists a fundamental solution with pole at x40 for D , i.e. there exists
a function G�C Q (RN 0]0()OL 1

loc (RN ) such that 2DG4d (the Dirac measure);
(C2) D is invariant w.r. to left translations of the Euclidean group and commutes

with the Euclidean dilations

d l (x)4lx .

From (C1) and the first part of (C2) it follows that

G(x , y) »4G(2y1x)

is a fundamental solution for D with pole at x4y and of class C Q in the open set
U4](x , y)�RN3RN : xcy(.

It is now well known that the existence of a fundamental solution of class C Q (U)
is equivalent to the hypoellipticity for every linear partial differential operator with
smooth coefficients. Then, the following existence theorem, proved by Kolmogorov in
1934 (see [13]), can be considered as another ante litteram hypoellipticity result. In
studying diffusion phenomena from a probabilistic point of view, Kolmogorov
showed that the probability density of a system with 2n degrees of freedom satisfies a
linear second order ultra-parabolic equation

Ku40 in R2n3R ,

where R2n is the phase-space of the system. A prototype for K is the following
operator

K4 !
j41

n

¯ xj
2 1 !

j41

n

xj ¯yj
2¯t(1.2)

4D x1 ax , ˜y b2¯t ,(1.3)

where x4 (x1 , R , xn ) and y4 (y1 , R , yn ) denote the velocity and the position vec-
tors of the system, respectively. The operator K is very degenerate: its second order
part only contains derivatives with respect to the variables x1 , R , xn . Nevertheless,
Kolmogorov constructed an explicit fundamental solution G K for K smooth out of its
poles [15]. As a consequence: K is hypoelliptic.

From the explicit expression of G K one realizes that

G K (z , z)4G(z21
i z) , z4 (x , y , t), z4 (j , h , t)�R2n11 ,

where i is a composition law making K 4 (R2n11 , i ) a Lie group, and

G : R2n11 0]0(KR

is a C Q function. Moreover, it is easy to check that K is invariant w.r. to left transla-



NONLINEAR EQUATIONS ON CARNOT GROUPS . . . 229

tions on K and commutes with the following dilations:

d l (z)4 (lx , l 3 y , l 2 t), lD0 .

These dilations are also automorphisms of K. Then K is a homogeneous Lie group,
and the Kolmogorov’s operator K satisfies conditions (C1) and (C2) with G and the
Euclidean group replaced by G K and K, respectively.

2. HÖRMANDER OPERATOR, CARNOT GROUPS AND SUB-LAPLACIANS

In addition to the properties showed in Section 1, the Kolmogorov’s operator (1.2)
has another key feature: it can be written as

K4 !
j41

n

Xj
21Y

where Xj4¯xj
and Y4 !

k41

n

xk ¯yk
2¯t .

The vector fields X1 , R , Xn and Y generate the Lie algebra of K and satisfy the
following condition

rank Lie (X1 , R , Xn , Y)(z)42n11 (z�R2n11 .

Inspired by the previous arguments Hörmander introduced in 1967 the class of linear
second order PDO’s

L4 !
j41

m

Xj
21Y(2.1)

and proved the following celebrated theorem.
(H) Let X1 , R , Xm and Y be smooth vectors fields, i.e. linear first order PDO’s

with smooth coefficients in the open set V%RN . Suppose

rank Lie (X1 , R , Xm , Y)(x)4N , (x�V .(2.2)

Then the operator (2.1) is hypoelliptic in V [11, Theorem 1.1].
Hörmander’s work precedes a long series of papers, by many authors, dealing with

the operators (2.1). The most remarkable contributions to these studies have been
given by Folland, Rothschild and Stein who developed and applied to (2.1) Harmonic
and Functional Analysis on Carnot groups.

A Lie group G4 (RN , i ) is a Carnot group if the following properties (G1) and
(G2) hold.

(G1) RN can be split as RN4RN13R3RNr and the dilations (d l )lD0 ,

d l (x)4d l (x (1) , x (2) , R , x (r) )

4 (lx (1) , l 2 x (2) , R , l r x (r) ), x ( j)�RNj

are automorphisms of G .
(G2) The Lie algebra g of G is generated by the left invariant vector fields

X1 , R , XN1
satisfying

Xj (0)4¯xj
j41, R , N1 .
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The natural numbers r and

Q4N112N21R1 rNr

are respectively called the step and the homogeneous dimension of G . The generators
of G are the vector fields X1 , R , XN1

. The second order operator

D G4 !
j41

N1

Xj
2

is called the canonical sub-Laplacian of G . Some of its basic properties are listed
below.

(L1) D G is left translations invariant on G and commutes with the dilation in
(G1).

(L2) D G is hypoelliptic since

rank Lie (X1 , R , XN1
)(x)4dim g4N

for every x�RN .
(L3) The characteristic form of D G

q(x , j) »4 !
j41

N1

aXj (x), jb2

is nonnegative definite at any point x�RN .
If N1EN , which is equivalent to rF2, for every x�RN there exists jc0 for

which q(x , j)40. Then D G is not elliptic at any point.
A striking and deep analogy between D G and the classical Laplace operator is the

structure of their fundamental solutions. If the homogeneous dimension Q of G is
F3, there exists a homogeneous norm N . N on G such that

G D G
(x)4NxN2Q12(2.3)

where G D G
denotes the fundamental solution of D G with pole at x40 (see [6] and

[7]). We call homogeneous norm on G a function xKNxN continuous in RN and of
class C Q outside the origin and such that

l d l (x)4lNxN

l Nx 21N4NxND0 (xc0.

We close this section by recalling a celebrated result of Rothschild and Stein, en-
lightening the crucial role played by sub-Laplacians in studying second order PDO’s
sum of squares of vector fields: every operator L4!j41

m Xj
2 satisfying the Hörman-

der’s rank condition (2.2) can be lifted to an operator L× as close as we want to a sub-
Laplacian. We refer to [21] for the precise statement of this theorem.

3. THE FOLLAND-STEIN SPACE AND THE CRITICAL EXPONENT

The intrinsic gradient (or horizontal gradient) on a Carnot group G is the vector
valued operator

˜G4 (X1 , R , XN1
)
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where X1 , R , XN1
are the generators of G . Since G4G D G

is the fundamental solution
for D G , the following representation formula holds:

u(x)4 �
RN

˜G G(x 21
i y) Q˜G u(y) dy , u�C0

Q (RN ) .

Thus, if QF3 using (2.3) we get

Nu(x)NGcQ �
RN

Nx 21
i yN2Q11 N˜G u(y)Ndy .

From this inequality, by using standard Real Analysis devices, the Folland-Stein’s em-
bedding inequality follows:

VuVL 2* (RN )GCV˜G uVL 2 (RN ) ,(3.1)

where 2*4
Q

Q22
. Then, if V is an open subset of RN , uKV˜G uVL 2 (V) is a norm in

C Q
0 (V). The Folland-Stein’s space S 1

0 (V) is the completion of C Q
0 (V) with respect to

this norm. Inequality (3.1) implies the continuity of the embedding

S 1
0 (V)%L 2* (V) .

On the other hand, an easy rescaling argument shows that the only exponent p for
which the continuous embedding S 1

0 (RN )%L p (RN ) holds is p42*.
The space S 1

0 (V) is also continuously embedded in the classical Sobolev space
W

1
r

0 (V), where r is the step of G (see [6]). As a consequence, from the classical com-
pact embedding theorem for Sobolev spaces, the embedding S 1

0 (V)%L p (V) is com-

pact if 1GpE2* and V is bounded. Then 2*4
2Q

Q22
has to be considered the criti-

cal exponent for the Folland-Stein space.

4. THE HEISENBERG GROUP AND ITS LAPLACIAN

The Heisenberg group Hn is the Lie group (R2n11 , i ) whose composition law is
defined as follows

(z , t) i (z 8 , t 8 )4 (z1z 8 , t1 t 8124az , z 8 b) .(4.1)

Hereafter we identify R2n with Cn and use

j4 (z , t)4 (z1 , R , zn , t)4 (x1 , y1 , R , xn , yn , t)

to denote the points of Hn . In (4.1), az , z 8 b stands for the usual Hermitian inner prod-
uct in Cn :

az , z 8 b4 !
j41

n

zj z8j .

The dilation

d l (z , t)4 (lz , l 2 t)(4.2)

is an automorphism of Hn and the vector fields

Xj4¯xj
12yj ¯t , Yj4¯yj

22xj ¯t
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are left translation invariant in Hn . One straightforwardly recognizes that the follow-
ing commutation relations hold:

[Xj , Yj ]424¯t(4.3)

and

[Xj , Xk ]4 [Yj , Yk ]4 [Xj , Yk ]40, ( jck(4.4)

(4.3) is the canonical commutation relation between momentum and position in
Quantum Mechanics. For this reason Hn is called Heisenberg group. From (4.3) and
(4.4) it follows that the Lie algebra of Hn is the vector space

span ]X1 , R , Xn . Y1 , R , Yn , ¯t( ,

whose dimension obviously is 2n11. Since Xj (0)4¯xj
and Yj (0)4¯yj

, j41, R n ,
according to the definitions given in Section 2, Hn is a Carnot group of Step 2. Its gen-
erators are the vector fields X1 , R , Xn , Y1 , RYn .

Hn has homogeneous dimension

Q42n12
(see (4.2)) and its sub-Laplacian is

D Hn
4 !

j41

n

(Xj
21Yj

2 ) .

D Hn
is also called the Kohn Laplacian on Hn . The Folland-Stein inequality embedding

in the Heisenberg group takes the form

VuVL 2* (Hn )GCV˜Hn
uVL 2 (Hn ) ,(4.5)

where 2*4
2Q

Q22
421 2

n . The best constant C in this inequality was determined

by Jerison and Lee who also proved that the equality is reached iff

u(j)4l
Q22

2 u0 (d l (j 0 i j) ), lD0, j 0�Hn ,(4.6)

where

u0 (j)4u0 (z , t)4c0 (t 21 (11NzN2 )2 )
22Q

4(4.7)

and c0D0 is a suitable constant [12, 13].
The Heisenberg group plays a fundamental role in several curvature problems for

CR manifolds. Among the most important ones is the CR-Yamabe problem, which
was completely solved by Jerison and Lee [13], and by Gamara [8] and Yacoub [9].
Very recently, the CR analogue of the scalar curvature problem for the standard Eu-
clidean sphere has been studied.

5. WEBSTER-TANAKA CURVATURE PROBLEM FOR THE CR SPHERE

Let us consider the sphere of Cn11

S2n114]z�Cn11 : NzN241( ,
and let

u 04 i(¯2¯) r , r(z)4NzN221
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its standard contact form. The Webster-Tanaka curvature problem for the CR mani-
fold (S2n11 , u 0 ) can be stated as follows.

(WT) Given a smooth function K on S2n11 find a new contact form

u4v
2
n u 0

such that (S2n11 , u 0 ) has Webster-Tanaka curvature equal to K. The Riemannian
analogue of this problem is the scalar curvature problem for the standard Euclidean
sphere, also quoted in literature as Nirenberg’s problem, see e.g. [10]. The Cayley
map

F : S2n11 0](0 , R , 0 , 21)(KHn ,

F(z1 , R , zn , zn11 )4 u z1

11zn11
, R ,

zn

11zn11
,

Im (zn11 )

N11zn11N2
v

transforms (WT) in the following semilinear problem

.
/
´

2D Hn
u4Ku

Q12

Q22

uD0, u� S0
1 (Hn )

(5.1)

where K4K i F 21 . We explicitly notice that the exponent
Q12
Q22

411 2
n 42*21

is critical.
We also remark that the solutions of (5.1) are the critical points of the

functional

J(u)4 1
2
�

Hn

N˜NHn
uN22 1

2*
�

Hn

Ru 2* , u� S0
1 (Hn ) .

Very few results are known for problem (5.1). For K41 its solutions are the function
u in (4.6), (4.7), the Jerison and Lee extremals of the Folland-Stein embedding
(4.5).

By using the abstract perturbation method introduced by Ambrosetti and Badiale
in [1], very recently Malchiodi and Uguzzoni, have proved the following perturbation
result: problem (5.1) has (at least) a solution if K411eh , with eD0 small enough
and h a Morse function satisfying suitable conditions, see [20, Theorem 1].

6. PSEUDOCONVEX DOMAINS AND LEVI-CURVATURE

We begin this section by recalling some basic definitions from the theory of several
complex variables. Let us consider in Cn11 the domain

D4]z�Cn11 : f (z)E0( ,

where f : Cn11KR is a C 2 function satisfying

¯p fc0 if f (p)40 .

Then

bD4]z�Cn11 : f (z)40(
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is a real manifold of dimension 2n11. Its complex tangent space at a point p�bD
is

Tp
C (bD)4]h�Cn11 : ah , ¯p f b40(

where a , b denotes the usual Hermitian inner product in Cn11 and

¯p f4 ( f1 , R , fn11 ) , fk4
¯f
¯zk

.

Obviously T C
p is a complex vector space of dimension n . However, for what follows it

is crucial to interpret T C
p as a real vector space of dimension

dimR T C
p (bD)42n .

We want to stress the loss of a real dimension in passing from bD to T C
p .

The Levi form of the function f at a point p�bD is the restriction to T C
p of the

complex Hessian form

Lp ( f , j)4 !
j , k41

n
¯f

¯zj ¯zzk
(z) j j jk , j�Tz

C (bD) .

We recall that the domain D is called strictly pseudoconvex (or strictly Levi-pseudo-
convex) at p if

Lp ( f , j)D0 ( j�Tp
C (bD)0]0( .

If this inequality holds at any point p�bD then D is called strictly pseudocon-
vex.

This notions are independent of the defining function f and are invariant with re-
spect to biholomorphic changes of complex coordinates. Obviously, a strictly convex
domain of Cn11 also is strictly pseudoconvex even though the viceversa is not true.
However, up to a suitable biholomorphic change of complex coordinates, strict con-
vexity and strict pseudoconvexity are equivalent. More precisely: D is strictly pseudo-
convex at a point p iff there exists an open neighborhood V of p and a biholomorphic
function

F : VODKCn11

such that F(VOD) is strictly convex. We stress that the term strictly in the previous
assertion cannot be removed, see [14].

We would like to close these preliminaries by recalling that the notion of pseudo-
convexity was introduced by E.E. Levi in studying the domains of holomorphy of
Cn11 . Actually, E.E. Levi proved the following results.

(L1) If D is a domain of holomorphy then

Lp ( f , j)F0 (j�Tp
C (M)0]0(

(see [17]).
(L2) If D%C2 is strictly pseudoconvex then every point p�bD has a neighbor-

hood V such that VOD is a domain of holomorphy (see [18]).
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By using the notion of Levi form, it is quite natural to introduce a notion of curva-
ture which can be seen as the pseudoconvex counterpart of the classical Gauss-curva-
ture.

Let p�bD . We call normalized complex Hessian of f at p the following (n11)3
3 (n11) Hermitian matrix

Hp ( f ) »4 u 1
N¯p fN

¯ 2 f
¯zj ¯zk

(p)v
j , k41, R , n11

.

If B 4]h1 , R , hn( is an orthonormal basis of T C
p (bD) we put

L B
p 4 gaHp ( f ) hj , hk bhj , k41, R , n .

L B
p is an n3n Hermitian matrix whose eigenvalues l 1 , R , l n are real and inde-

pendent of B and of the defining function f . We call total Levi-curvature of bD at p the
real number

Kp (bD) »4 »
j41

n

l j .

This definition is implicitly contained in a paper by Bedford and Gaveau [2] and it
has been explicitly given in a recent note by Lascialfari and Montanari [16]. Defini-
tions of Levi-curvature related to the present one were given by Slodkowski and
Tomassini in [22] and [23].

EXAMPLE 5.1. Let us consider the ball

DR4]z�Cn11 : NzN24R 2( , RD0 .

A defining function for DR is

f (z)4NzN22R 2

Since fk4zk and fjk4d jk for every p�bD one has Hp f4 1
R

In11 . Then, if B

is an orthonormal basis of T C
p (bD),

L B
p 4 1

R
In

(we have denoted by Ik the identity matrix of dimension k). As a consequence,

all the eigenvalues of L B
p are equal to 1

R
and

Kp (bDR )4 g 1
R
hn

.

For a general domain D with defining function f , the total Levi-curvature
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of bD at a point p can be computed as

Kp (bD)42 1
N¯p fNn12

det

.
`
`
`
´

0

f1

QQ
Q

fn11

f1

f1, 1

QQ
Q

fn11, 1

. . .

. . .

QQ
Q

. . .

fn11

f1, n11

QQ
Q

fn11, n11

ˆ
`
`
`
˜

where fj , k stands for
¯ 2 f

¯zj ¯zk
(p).

The proof of this identity follows from linear algebra arguments.

7. LEVI-CURVATURE EQUATION

Let V be an open subset of R2n11 and

u : VKR
be a C 2 function. Let

G(u)4](x , y)�V3R : yDu(x)(

and

g(u)4](x , y)�V3R : y4u(x)(

the epigraph and the graph of u , respectively. We say that u is strictly pseudoconvex if
G(u) is strictly pseudoconvex at every points of g(u). Given a function K : V3RK
KR, the graph of u has Levi-curvature K(x , u(x) ) at a point (x , u(x) ) iff u satisfies a sec-
ond order PDE of the following type

L u4 !
j , k41

2n

aj , k (Du , D 2 u) Xj Xk u4H(x , u(x) )(7.1)

where (aj , k )j , k41, R , 2n is a 2n32n matrix with real entries and the Xj’s are nonlinear
first order partial differential operators:

Xj u4 !
k41

2n11

aj
(k) (Du) ¯xk

u .

The curvature function H depends on the prescribed function K and on the first
derivative of u , see [19]. We also notice that the vector fields

Xj4 !
k41

2n11

aj
(k) (Du) ¯xk

, j41, R , 2n ,

form a real basis of the complex tangent space to g(u). We shall call (7.1) Levi-curva-
ture equation in the open set V%R2n11 . It is fully nonlinear, and also totally degener-
ate since at any point of V it involves derivatives along only 2n linearly independent
directions. A redeeming feature of (7.1) is the CR structure that the graph of u inherits
from Cn11 when u is strictly pseudoconvex. Indeed, in this hypothesis the following
propositions hold, see [19].

(P1) The matrix (aj , k (Du , D 2 u) )j , k41, R , 2n is locally uniformly positive defi-
nite.
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(P2) At any point x�V , the linear space

span ]Xj , [Xj , Xk ] : j , k41, R , 2n((7.2)

has dimension 2n11.
Then, if u is strictly pseudoconvex the Levi-curvature equation (7.1) is elliptic

along 2n variable directions in R2n11 . This follows from (P1). From (P2) one recov-
ers the missing direction by commutation. Property (7.2) in (P2) can be seen as a Hör-
mander’s rank condition of step two which, in the case of linear smooth vector fields,
implies hypoellipticity.

This kind of analogy is not just formal. Indeed, the following remarkable theorem
holds.

THEOREM 7.1. Let u�C 21a (V) be a strictly pseudoconvex solution to the Levi-cur-
vature equation (7.1). Suppose the curvature function H of class C Q . Then
u�C Q (V).

For the Levi-curvature equation in R3 this theorem was proved by Citti [4]. In
R2n11 , for every nF2, it has been recently announced by Lascialfari and Montanari
in [16].

In R3 , corresponding to the case n41, a stronger and deeper result holds, see [5].

THEOREM 7.2. Let V be an open subset of R3 and u : VKR be a viscosity solution
to the Levi-curvature equation. Assume the curvature function H is of class C Q and
everywhere different from zero. Then u�C Q (V).

We would like to notice that the condition Hc0 in the case n41 is equivalent to
the pseudoconvexity of u .

It is an open important problem the extension of Theorem 7.2 to the Levi-curva-
ture equation in R2n11 for arbitrary nF2.
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