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Geometria algebrica. — The fourth tautological group of Mg , n and relations with
the cohomology. Nota di MARZIA POLITO, presentata (*) dal Socio C. De Concini.

ABSTRACT. — We give a complete description of the fourth tautological group of the moduli space of
pointed stable curves, Mg , n , and prove that for gF8 it coincides with the cohomology group with ratio-
nal coefficients. We further give a conjectural upper bound depending on the genus for the degree of
new tautological relations.

KEY WORDS: Algebraic geometry; Algebraic curves; Moduli spaces; Cohomology.

RIASSUNTO. — Il quarto gruppo tautologico di Mg , n e relazioni con la coomologia. Si dà una descrizione
completa del quarto gruppo tautologico dello spazio di moduli delle curve puntate stabili, Mg , n , e si di-
mostra che per gF8 tale gruppo coincide con il gruppo di coomologia a coefficienti razionali. Si formula
inoltre una congettura sulla dimensione massima del grado delle nuove relazioni tautologiche, in funzio-
ne del genere.

1. INTRODUCTION

Let Mg , n be the moduli space of n-pointed complex stable algebraic curves of
genus g .

The existence of some degree 4 relations among tautological classes has been
proved with various methods by E. Getzler, C. Faber, R. Pandharipande and P. Belor-
ousski, while other relations are obtained as a consequence of the well known ones in
degree 2 .

We actually prove that no other relations can arise, and that for genus gF8, the
cohomology group H 4 (Mg , n , Q) coincides with its tautological subgroup. The main
results of this paper are formally stated in Theorems 10 and 19. It turns out that new
relations appear only in genus up to 5 , whereas for higher genus all possible relations
arise only as a consequence of degree 2 ones. The proof of this fact allows us to suggest
in Conjecture 18 an upper bound depending on the genus for higher degree new tau-
tological relations.

As for the methods, E. Arbarello and M. Cornalba proposed in [1] new methods
f o r c o m p u t i n g t h e c o h o m o l o g y g r o u p s w i t h r a t i o n a l c o e f f i c i e n t s o f Mg , n ; th e i r
s t r a t e g y i s t o e s t a b l i s h a st r i c t r e l a t i o n b e t w e e n t h e c o h o m o l o g y o f t h e m o d u l i
s p a c e a n d t h e o n e o f t h e i r r e d u c i b l e c o m p o n e n t s o f t h e b o u n d a r y , w h i c h i n t u r n
c a n b e e x p r e s s e d i n t e r m s o f m o d u l i s p a c e s o f c u r v e s w i t h l o w e r g e n u s o r w i t h
l o w e r n u m b e r o f m a r k e d p o i n t s . W i t h s i m i l a r a r g u m e n t s , w e e s t a b l i s h i n d u c t i v e
p r o c e d u r e s o n g e n u s a n d / o r n u m b e r o f m a r k i n g s t o d e r i v e c o n s t r a i n t s a m o n g c o -
e f f i c i e n t s i n p o s s i b l e r e l a t i o n s .

(*) Nella seduta del 13 dicembre 2002.
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We will therefore be able to give the explicit expression of a new relation in
H 4 (M3, 2 ), whose existence was proved by Faber as a consequence of the existence of
a tautological relation on the open part M3, 2 . Furthermore, we will exclude the exis-
tence of any relation other than the known ones.

A description of H 4 (Mg , Q), for gF12, has been given by D. Edidin in [8], and
once the tautological group is known, we can adapt his argument to prove that for gF
F8, it coincides with the cohomology. For this, we make use of the results by Harer
[16], Ivanov [17] and Loojenga [19] on the homology of the mapping class
group.

This paper is extracted from my Tesi di Perfezionamento at the Scuola Normale
Superiore, Pisa. In the present exposition, many of the calculations will be omitted.
The interested reader can find them all in the thesis [22], available upon request from
the author.

2. STABLE GRAPHS AND TAUTOLOGICAL CLASSES

To every stable curve C of genus g , with P as a set of markings, one can associate a
labelled graph G in the following way:

1. draw a vertex v for every irreducible component C(v) of the normalization C
A of

C , and label it with the genus g(v) of that component,

2. draw an edge between two vertices v1 , v2 (possibly a loop if v14v2) whenever
the normalization map n : C

AKC identifies two points lying respectively in C(v1 ) and
C(v2 ),

3. draw a half-edge with vertex v whenever there is a marking in n(C(v) ), and la-
bel it with the marking’s name. We denote by P(v) the set of these markings.

We call marked half-edges the half-edges constructed in 3 . The total set of half-
edges is the union of the set of marked half-edges with the set consisting of the halves
of the edges constructed in 2 .

Let r(v) be the valence of a vertex, namely the number of half-edges with vertex v .
The stability condition translates to: 2g(v)1 r(v)F3, for every vertex v . The genus of
a curve corresponding to the graph G is g(G)4x(G)1!

v
g(v). Observe that the con-

struction of the graph is only based on the topological type of the curve.

DEFINITION 1. A P-marked stable graph of genus g (briefly a (g , P) graph), is a con-
nected graph with n4NPN marked half-edges, with the following additional data:

1) each vertex v is labelled with an integer g(v),
2) the valence r(v) of any vertex satisfies the stability condition 2g(v)1r(v)F3,
3) there is a bijection between marked half-edges and elements in P ,
4) g4x(G)1!

v
g(v).

The codimension of a graph is defined as the number of its edges.
Given a P-marked stable graph of genus g and codimension d , with set of vertices
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V , one can associate to it a closed stratum of codimension d in Mg , P . For every vertex
v�V , we let S(v), denote the set of unmarked half-edges with vertex v .

Let MG »4 »
v�V

Mg(v), P(v)NS(v) .
The map

j G : MGK Mg , P

is called a boundary map, and has the closed stratum D G4j G (MG ) as image.
The notation MG will be used also when G is disconnected: if G4G 1 2G 2 , then

MG4 MG 1
3MG 2

.
Let G be a (g , P)-graph.

DEFINITION 2. The graph G is a G-graph if it is the disjoint union of a collection of
( g(v), P(v)NS(v) )-graphs.

Look at a G-graph G . Set G4 2
v�V

Gv . We can define the map

MG4»MGv
K
z G

MG

as z G4]j Gv
(v�V .

Let p be the forgetful map:

p

[C , p1 , R , pn , pn11 ]

:

K

Mg , n11K Mg , n

[C , p1 , R , pn ] .

We will also refer to the map p as the universal curve, or the projection map.
Let s 1 , R , s n be the n canonical sections of the forgetful map, and let Di be the

image of s i . Finally, let v p be the relative dualizing sheaf of p .
We recall the definition of the basic cohomology classes in Mg , P (see [2]):

DEFINITION 3.

c i4s i*(c1 (v p ) ), i41, R , n

k a4p *( (c1 (v p (!Dj ) ) )
a11 ), a40, R , 3g231n

The class c i can be interpreted as the first Chern class of the orbifold bundle whose
fiber over the point [C , p1 , R , pn ] is the cotangent bundle to the curve C evaluated
at the point pi .

DEFINITION 4. A Mumford class in H *(Mg , P , Q) is a polynomial in the classes
c i , k a . The Mumford ring is

Q[c 1 , R , c n , k 1 , R , k 3g231n ] .
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The Mumford ring on a product or a disjoint union of moduli spaces is the tensor
product or the direct sum of the Mumford rings.

It is worth noticing that the following formula (see [2, Formula 1.7]) holds:

k a4p *(c n11
a11 ).

DEFINITION 5. A Mumford class in H *(Mg , P , Q) is the pull-back under the
inclusion

Mg , PK Mg , P

of a polynomial in the classes c i , k a .

DEFINITION 6. A tautological class is the push-forward of a Mumford class via a
boundary map. The k-th tautological group T k

g , P is the subspace of H k (Mg , P , Q) gener-
ated by these classes.

In figures 1 and 2 we draw all the graphs of codimension 1 and codimension 2
which we need in our study of T 4

g , P . In each figure we will also write the name of the
corresponding graph. Every time half-edges are drawn, one should imagine them la-
belled with the correspondent markings.

If p is a Mumford class, we use the following notation:

pNd G »4
j G* (p)
NAut GN

.

We will often write d irr , j irr instead of d G irr
, j G irr

, and d a , A , j a , A instead of
d G a , A

, j G a , A
.

Degree 4 autological classes are:

1. Pure boundary classes: let G be a graph of codimension 2 , then we
define:

d G »4
j G* (1)
NAut GN

.

Fig. 1. – Graphs of codimension 1.



THE FOURTH TAUTOLOGICAL GROUP OF Mg , n AND RELATIONS WITH THE COHOMOLOGY 141

Fig. 2. – Graphs of codimension 2.

2. Mixed boundary classes: if codim G41, and p is a Mumford class of degree 2
in MG , then

pNd G »4
j G* (p)
NAut GN

.

We will often use the following simplified notation:

l c i d a , A4 (c i71)Nd a , A4
1

Aut G a , A
j a , A * (c i71),

l cNd a , A4 (c s71)Nd a , A4
1

Aut G a , A
j a , A * (c s71),

l d a , A Nc4 (17c t )Nd a , A4
1

Aut G a , A
j a , A * (17c t )4cNd g2a , A c ,

l kNd a , A4 (k 171)Nd a , A4
1

AutG a , A
j a , A * (k 171),

l d a , A Nk4 (17k 1 )Nd a , A4
1

Aut G a , A
j a , A * (17k 1 )4kNd g2a , A c ,

l c i d irr4 (c i )Nd irr4
1

Aut G irr
j irr * (c i ),

l cNd irr4 (c q1c r )Nd irr4
1

Aut G irr
j irr * (c q1c r ),

l k 1 d irr4k 1 Nd irr4
1

Aut G irr
j irr * (k 1 ).

3. Mumford classes: these are simply monomials in Mumford classes (considered
as push-forward via the map corresponding to the trivial graph).

In the mixed boundary classes we intentionally used ambiguous notation. Some of
the classes (c i d a , A , c i d irr , k 1 d irr) turn out to be written as a product of a codimen-
sion 1 boundary class with a Mumford class. In the proof of the next Proposition we
will show that the above notation is unambiguous.
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PROPOSITION 7. The image of the map:

H 2 (Mg , P )3H 2 (Mg , P )KH 4 (Mg , P ) (a , b)Ka Qb

lies in T 4
g , P .

PROOF. Recall that H 2 (Mg , P )4T 2
g , P . Two irreducible codimension 1 boundary

classes either coincide or intersect transversally. In the latter case, it is trivial to check
that their intersection is a linear combination of tautological pure boundary classes.
The product of two Mumford classes is clearly a Mumford class.

Finally, using the push-pull formula, one is able to express the product of a Mum-
ford class and a boundary class, and the square of a boundary class, as linear combina-
tion of tautological classes:

c i Qd a , A4c i Nd a , A

k 1 Qd a , A4k 1 Nd a , A1d a , A Nk 1

c i Qd irr4c i Nd irr

k 1 Qd irr4k 1 Nd irr

d a , A
2 42cNd a , A2d a , A Nc1

.
/
´

2
NAut G a , A N

d G(g2a , ¯ , 2a2g , P)

2
NAutG a , A N

d G(a , ¯ , g22a , P)

if A4P

if A4¯

d irr
2 42 1

2
j irr * (c q1c r )12d F12 !d E(a , A)2cNd irr12d F12 !d E(a , A) .

We compute explicitely one sample case. Since

j irr* (d irr )4d irr1! d a , AN ]q(2c q2c r ,

then

(2.13) 2d 2
irr4j irr * j irr* (d irr )4

1
2

j irr * j
A

irr * (1)1! j irr * j
A

a , AN]q(* (1)2j irr * (c q1c r ),

where the symbol j
A is used for boundary maps of Mg21, PN ]q , r( . In fact, from now on,

when composing two boundary maps, we will append the second one with the
twiddle.

We easily compute: 1
2

j irr * j
A

irr * (1)4 1
2

j F * (1)44d F , and then observe that

j irr j
A

a , AN ]q(4j E(a , A) and that the corresponding graph has automorphism order 2 ,
unless P4¯ , a4g/2 , when the order is 4 . Moreover, j irr * j

A
a , AN ]q(* (1)4

4j irr * j
A

g2a , A CN ]q(* (1)4NAut G E(a , A) Nd E(a , A) . Whenever NAut G E(a , A) N44, then by
symmetry only one of the summands above does appear, hence we can write

d irr
2 42 1

2
j irr * (c q1c r )12d F12 ! d E(a , A)2cNd irr12d F12 ! d E(a , A) . o
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3. ESSENTIAL TAUTOLOGICAL CLASSES

It is well known that, for genus up to 2 , there are some relations between degree 2
tautological classes; thus, certain tautological classes could be expressed as linear com-
bination of other ones; they are: k 1 and c i , i�P for genera g40, 1 , k 1 for genus
g42.

Moreover, there are Keel’s relations among boundary classes in genus 0 .
All these relations reproduce themselves in every genus. The reason is quite clear:

every time there is a relation among tautological classes in the second cohomology
group of a codimension 1 boundary component, we can push it forward to
H 4 (Mg , P ).

In this section we will choose a set of degree 4 tautological classes which generate
T 4

g , P , by eliminating the above relations. We will call these classes the essential tauto-
logical classes. The set of essential tautological classes will be denoted by B4

g , P and it is
obtained from the set of all tautological classes by removing the unessential classes
which we are presently going to list.

The unessential tautological classes are:

cNd 0, A4j 0, A * (c s71) c i d 0, A4j 0, A * (c i71) kNd 0, A4j 0, A * (k 171)

for any g ,

cNd 1, A4j 1, A *u c s71
NAut G 1, A N

v c i d 1, A4j 1, A * (c i71) kNd 1, A4j 1, A *u k 171
NAut G 1, A N

v
for any g ,

kNd 2, A4j 2, A *u k 171
NAut G 2, A N

v for any g ,

cNd irr4j irr *g c q1c r

2
h for g41, 2 ,

c i d irr4j irr *g c i

2
h for g41, 2 ,

kNd irr4j irr *g 1k 1

2
h for g41, 2 , 3 ,

c i
2 , c i c j k 1

2 , k 1 c i for g40, 1 ,

k 1
2 , k 1 c i for g42.

Moreover, some classes d G(0 , A , 0 , B) are unessential (see below); in fact, in genus 0
there are Keel’s relations [18] among boundary classes: we can push them forward by
means of the maps

H 2 (M0, AN]s( )K
f 0, A *

H 4 (Mg , P )
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to obtain the following relations:

!
x , y�B ,
z , w�C ,
BNC4A

d G(0 , B , 0 , C)1d G(0 , C , 0 , B)4 !
x , z�B ,
y , w�C ,

BNC4A

d G(0 , B , 0 , C)1d G(0 , C , 0 , B) ,

!
x , y�B ,

z�C ,
BNC4A

d G(0 , B , 0 , C)4 !
x , z�B ,

y�C,
BNC4A

d G(0 , B , 0 , C) .

We now describe a subset of essential classes of this type; if we fix an ordering in P ,
this induces an ordering of every subset A; a basis for H 2 (M0, AN ]s( ) consists of class-
es d 0,]s(NC , with B4A0C , NBNF3, or NBN42 and bEc (b�B , (c�C . This implies
that we are going to consider only classes d G(0 , B , 0 , C) , with NBNF3, or NBN42 and
bEc (b�B , (c�C.

4. PULL-BACK FORMULAS

In this section we show how to pull back tautological classes to the codimension 1
boundary components and to the universal curve. Let A be a stable (g , P)-graph of
codimension 1 , as defined in the introduction, and let G be a stable connected (g , P)-
graph of codimension G2. We fix our attention on a class of the form pNd G4

4 1
NAut GN

j G* (p). We want to describe the boundary components of MA on which the

pull-back j A* (pNd G ) is supported.
Given any stable A-graph G , let js , t (G) be the graph obtained by gluing the half

edges s and t , and let fs , t (G) be the graph obtained from js , t (G) by collapsing the new
edge. Via the operation js , t we are either creating a node on an irreducible component,
or joining two irreducible components at a point. In either case we are creating a
node. Via the operation fs , t we are smoothing the new node.

We claim that the boundary components we are looking for correspond to A-
graphs G such that js , t (G)4G or fs , t (G)4G . It is very simple to produce graphs G of
this sort.

Either D G’D A , or D G and D A intersect transversally. If D G and D A intersect
transversally there must be at least a vertex v of G and a simple Feynman move based
at v making G a degeneration of A . Cutting into a half the edge produced by the Feyn-
man move, and calling the two new half edges s and t , creates a stable A-graph G hav-
ing the property that fs , t (G)4G .

Suppose, on the other hand, that D G is contained in D A . This simply means that
there is at least one edge of G cutting which produces two half edges s and t and a
stable A-graph G with the property that js , t (G)4G .

Furthermore we can say that D G’D A if and only if there exist a graph G such that
js , t (G)4G .
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In conclusion, whatever the position of D G is with respect to D A , we can build a
diagram:

MG

Ih G

MG

K
z G

K
j G

MA

Ij A

Mg , P

for any graph G such that js , t (G)4G or fs , t (G)4G . The maps j A and j G are bound-
ary maps, the map z G has been defined in Section 2, and the map h G consists in join-
ing the two half-edges s and t of the graph G .

Observe that some of these maps could be the identity: e.g. if G4A4G irr , then
the trivial A-graph G satisfies js , t (G)4G , and the map z G is the identity.

PROPOSITION 8. Let G be any stable graph, of codimension G2. Let A be any graph
of codimension 1. Then the following formula holds:

j A* (j G* (p) )
Aut G

4 !
fs , t (G)4G

z G * (h G* (p) )
Aut G

1 !
js , t (G)4G

z G * (h G* (p) )
Aut G

Qc1 (Nj A
),

where we denote by Nj A
the normal bundle to the map j A .

As usual, we will adopt the simplified notation:

j A* (pNd G )4 !
fs , t (G)4G

(h G* (p) )Nd G1 !
js , t (G)4G

(h G* (p) )Nd G Qc1 (Nj A
).

PROOF. As we already explained, the two cycles D G and D A do not intersect
transversally in Mg , P if and only if there exist a graph G such that js , t (G)4G . In this
case, we consider a tubular neighborhood T of the divisor with normal crossing
D A% Mg , P .

Consider the diagram:

MAK
gA

MA /Aut A
B
7 IfAj A

Mg , P

and the normal bundle NfA to the map fA . Also observe that gA* NfA4Nj A
.

Introduce a metric in NfA , construct a tubular neighborhood T
A of its zero section,

and extend fA in the obvious way to a C Q map

f
A

A : T
AKT .

Take then a sufficiently generic C Q section s of NfA lying in T
A. The composition

f
A

A i s i gA yields a C Q map

sA : MAK Mg , P

homotopic to j A .
As Poincaré duality holds for smooth compact orbifolds, we may pull back cycles

from Mg , P to MA . If D is any irreducible boundary component, then because of our
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generic choice of the sections, we have, by transverse intersection,

sA*( [D] )4!
i

[D i ](1)

where the sum ranges over the irreducible components D i of the preimage of D in
MA .

The first step is to describe the irreducible components D i . We claim that they are
of two types, which can combinatorially described as follows. The first one is simply a
cycle D G% MA for each graph G such that fs , t (G)4G . If D A and D G intersect
transversally, these are the only components D i appearing in the above expression. If
not, the remaining D i’s are all of the form

j G * j G* (c1 (Nj A
) )

Aut G
,

where G is a graph such that js , t (G)4G .
Once this is established, we get the Proposition for the case p41, that is:

j A* (d G )4 !
fs , t (G)4G

d G1 !
js , t (G)4G

d G Qc1 (Nj A
).

Instead of proving our assertion about the D i’s in general, we shall restrict ourselves
to some typical examples. The first example is G4A4G b , B , with Bc¯ , B c

c¯ .
There is only one D i , which is the zero locus of a section of the normal bundle
to the map j A . One may notice that D i corresponds to the trivial A-graph G , drawn
on the right, and that one has that

j b , B* (d b , B )4 (h G* (1) )Nd G Qc1 (Nj A
)4c1 (Nj A

).

Fig. 3. – The graph A4G4G b , B .

Fig. 4. – The graph G.

Fig. 5. – The graphs G1 and G2 .
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This is the standard situation of excess intersection, and there is no surprise
in finding this term in the general formula of Proposition 8 we are discussing.

The opposite situation occurs for example in the formula for

j irr* (d b , B )4j irr* (1Nd b , B )

where we further assume that bF1, g2bF1. There are two components D i , corre-
sponding to the A-graphs G1 and G2 having the property that fs , t (Gi )4G b , B . In this
case

j irr* (d b , B )4d G1
1d G2

.

This is the standard situation of transverse intersection.
What is somewhat unexpected in the formula we are discussing, is the mixture be-

tween terms related to excess intersection and terms related to transverse intersection.
To illustrate this phenomenon, let us consider the case

j irr* (d F ).

The formula in the statement tells us that

j irr* (d F )42(c q1c r ) d irr1d F1! d E(a , AN]q()1!(d H(a , AN]q()1d H(a , AN]r() ) ,

where the two sums range over all the possible graphs of the corresponding
type.

The first term is clear: it comes from excess intersection, and corresponds to the
only graph G such that js , t (G)4F , i.e. the graph with one vertex of genus g22, one
loop, and half-edges with labels in PN ]s , t(.

As a sample case, let us explain the presence of the term d F . The presence of the
other terms can be justified by similar arguments. Draw a picture of D irr in a neighbor-
hood of a generic point of the cycle D 8 corresponding to the locus of irreducible
curves with at least three nodes (fig. 6). We cut it with a codimension three generic
subspace, in order to draw the picture. The cycle D 8 is drawn as a triple point of D irr ,
which is locally the union of three planes, intersecting each other in the three lines be-
longing to D F .

Now we «move » a little bit D irr (fig. 7), we call it D
A

irr , and draw it with a dotted

Fig. 6. – A neighborhood of the three-nodes locus.
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Fig. 7. – A modified neighborhood of the three-nodes locus.

line. There are three points of transverse intersection between D
A

irr and D F . This shows
that sA*(d F ) contains, with multiplicity 1 , the codimension 2 cocycle in Mg21, PN]s, t(

corresponding to the locus of irreducible two-noded curves, which by abuse of nota-
tion is again denoted by D F .

The formula in the statement, in the case p41,

j A* (d G )4 !
fs , t (G)4G

d G1 !
js , t (G)4G

d G Qc1 (Nj A
)

is now completely justified.
To prove the general formula we make the following preliminary remark; we seek a

formula for the pull-back under a j A map of one of the following classes:

l pure boundary classes, hence orbifold Poincaré duals of cycles;

l c-mixed classes, hence orbifold Chern classes of bundles supported on
cycles;

l k-mixed classes. These are linear combinations of the above two types. In fact,
we recall Mumford theorem

k 1412l 11! c i2! d G ,
where the second sum ranges over the set of stable graphs of codimension 1, and l 1 is
the first Chern class of the Hodge bundle; this implies that k 1 is a linear combination
of Poincaré duals of cycles and of Chern classes of bundles;

l pure Mumford classes, hence polynomials in classes of the above types.

In order to pull-back a tautological class, we first decompose it into a linear com-
bination of Mumford classes supported on cycles, and then pull back each summand
separately.

We therefore seek a formula for

j A* g j G* (c1 (F) )
Aut G

h
where F is a line bundle on MG .
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Suppose first that D G and D A intersect transversally. Take a sufficiently generic
C Q section s F of the line bundle F . For every graph G such that fs , t (G)4G , we de-
note by FG the bundle h G* (F), and by s FG

its section h G* (s F ).
By Poincaré duality, we can pull back cycles. We claim that

j A* g j G* ( []s F40(] )
Aut G

h4 !
fs , t (G)4G

j G* ( []s FG
40(] )

Aut G
.

Let D be a cycle in in Mg , P such that

[D]4
j G* ( []s F40(] )

Aut G
;

we can pick

D4]x� Mg , P Nx4j G (y), s F (y)40(

with orbifold multiplicity 1 . Because of transverse intersection of D G and D A , Formu-
la 1 applies in this case too. D is a cycle contained in D G . We therefore seek the irre-
ducible components D i inside the irreducible components of the preimage of D G in
MA , that is, inside the D G’s, where fs , t (G)4G . One can easily check that

D GOj A
21 (D)4]z� MAOD G Nj A (z)4j G (y) for some y such that s F (y)40(

4]z�MANz4z G(w) for some w, j A(z)4j G(y)
for some y such that s F (y)40(

4]z� MA Nz4z G (w) for some w such that s FG
(w)40(,

again with orbifold multiplicity 1 .
Suppose, on the other hand, that D G’D A . We need formulas for degree 4 classes,

hence the only new and significant situation occurs when D G4D A , and G4A is a
graph of codimension 2 .

From the construction of the map sA , we see that the diagram

MG

Ih G

MG

K
z G

K
j G

MA

IsA

Mg , P

commutes only up to homotopy. To explain the presence of the transverse intersection
terms in the pull-back formula,

!
fs , t (G)4G

z G * (h G* (c1 (F) ) )
Aut G

,

we observe that the induced diagram in cohomology commutes, hence, if one chooses
suitable sections s FG

’s of the bundles h G* (F), one can proceed as in the transverse in-
tersection case. We now pass to justify the self-intersection term. In our specific situ-
ation this term is

h G* (c1 (F) ) i c1 (Nj A
),

in fact, since G4A , the only A-graph G such that js , t (G)4G is the trivial A-graph
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and the map z G is the identity. The corresponding component in the preimage of D G

under the map sA is the Poincaré dual to c1 (Nj A
). Take a section of such bundle, call it

t . The component we are looking for is the Poincaré dual of

]x� MA Ns FG
(x)40, t(x)40(,

that is, the first Chern class of the bundle

h G* (F)5Nj A
,

as we claimed. o

4.1. Formulas for p*.

Let

p A : Mg , PNAK Mg , P

be the map forgetting the A markings. We first recall pull-back formulas for degree 2
classes (see [1, 2]).

p A* (d c , C )4 !
B%A

d c, CNB

p A* (d irr )4d irr

p A* (c i )4c i2 !
B%A

d 0, BN]i( ,

p A* (k 1 )4k 12 !
i�A

c i1 !
B%A

d 0, B .

The pull-back formulas for Mumford classes are recursively deduced from Formula
(1.10) in [2] and Lemma (1.2) in [1]; if p : M0, nK M0, n21 is the forgetful map,
then

c i4p*(c i )1d 0,]i , n( ,(2)

and

k i4p*(k i )1c n
i .(3)

Let us now come to degree 4 classes.
Mumford classes are pulled back via formulas 2 and 3:

p A* (c i
2 )4c i

22 !
B%A

d 0, BN ]i( Nc1 type G classes ,

p A* (c i c j )4c i c j2c j !
B%A

d 0, BN ]i(2c i !
B%A

d 0, BN ] j(1 type G classes ,

p A* (k 1 c i )4k 1 c i2c i!
j�A

c j2!
B%A

d 0, BN ]i( Nk1 !
B%A, j�A0B

c j d 0, BN ]i(1!
B%A

c i d 0, B1

1type G classes ,

p A* (k 1
2 )4k 1

2 22 !
i�A

k 1 c i1!
i�A

c i
212 !

i, j�A, icj
c i c j1

12 !
B%A

d 0, B Nk22 !
B%A, i�A0B

c i d 0, B2 !
B%A

d 0, B Nc1 type G classes ,

p A* (k 2 )4k 22!
i�A

c i
21 !

B%A
d 0, B Nc1 type G classes ;

this last formula is computed by induction on NAN .
With arguments similar to the ones used in Proposition 8, one can easily prove the

following:
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PROPOSITION 9. The following formulas hold:

p A* (pNd irr )4 (pAA*(p) )Nd irr ,

p A* (pNd c , C )4 !
B%A

(pAB*(p) )Nd c , CNB ,

p A* (d F )4d F ,

p A* (d E(c , C) )4 !
B%A

d E(c , CNB) ,

p A* (d H(c , C) )4 !
B%A

d H(c , CNB) ,

p A* (d G(c , C , d , D) )4 !
(BNB 8)%A

(d G(c , CNB , d , DNB 8 ) )

where

pAA : Mg21, PNAN]q, r(K Mg21, PN]q, r( ,

pAB : Mc, CNBN]s(3Mg2c, (P0C)N(A0B)N]t(K Mc, CN]s(3Mg2c, (P0C)N]t( . o

5. RELATIONS IN DEGREE 4

New relations arising in degree 4 appear in Mg , n for gG5 and for suitable n , and
can be pulled back with formulas in 4.1. They have been computed with different
techniques by E. Getzler, R. Pandharipande, P. Belorousski, and C. Faber. Most of
them can be found in the literature, and we will give below the precise reference. The
existence of some of them follows from [13], as a consequence of the existence of tau-
tological relations on Mg , n , while their explicit expression on Mg , n has been recently
computed by C. Faber and privately communicated to the author [12]. The only ex-
ception is the new relation in M3, 2 , whose coefficients will be determined in Section
by the «pull-back to the boundary» techniques.

5.1. Genus 0.

The only new result is that

k 240 in H 4 (M0, 4 )

for dimension reasons.

5.2. Genus 1.

As above,

k 240 in H 4 (M1, 1 ).

Moreover, as observed by Faber in [11],

d irr
2 40.

There are other relations: the first one originates in H 4 (M1, 2 ):
d E(0 ,]i()2d H(0 , ¯)40,

as the push-forward of Keel relation with the map j irr : M0, 4K M1, 2 . The second one
originates in H 4 (M1, 4 ):

0412 !
i

d G(0 ,]1, i(, 1 , ¯)212 !
i

d G(1 ,]i(, 0 ,]*()22 !
i , j

d G(1 , ¯ , 0 ,]i , j()1

16 !
i

d G(1 , ¯ , 0 ,]i()22 !
i

d E(]1, i()1!
i

d H(]i()1d H(¯) .
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This was discovered by Getzler [14], while Pandharipande [21] then proved it is
algebraic.

5.3. Genus 2.

Following Mumford [20],
60k 24d F16d H(0 , ¯)

in H 4 (M2, 0 ). Faber proves that in H 4 (M2, 1 )

c i
24 1

120
d F1

1
5

d E(1 , ¯)1
13
120

d H(0 , i)2
1

120
d H(0 , ¯)1

7
5

d G(1 , ¯ , 0 , i) .

Getzler proves in [15] that, in H 4 (M2, 2 ),

c i c j43cNd 2, ¯1
1
72

d F1
7
15

d E(1 , ¯)1
1
15

(d E(1 , i)1d E(1 , j) )1

1 23
120

d H(0 , ij)1
1
24

(d H(0 , i)1d H(0 , j) )2
1
40

d H(0 , ¯)2
1
15

d H(1 , ¯)1

1 13
5

d G(1 , ¯ , 0 , ij)1
4
5

(d G(1 , i , 0 , j)1d G(1 , j , 0 , i) )2
4
5

d G(0 , ij , 1 , ¯) .

A new algebraic relation was discovered by Belorousski and Pandharipande [6] in
H 4 (M2, 3 ):

0412cNd 2, ¯26 !
i41

3

cNd 2, i16 !
i41

3

c i d 2, i1
6
5

d E(1 , ¯)2
6
5
!
i41

3

d E(1 , i)1
2
5
!
i41

3

d E(0 , i)1

1 1
10

d H(0, 123)2
3
10
!
i41

3

d H(0, jk)1
3
10
!
i41

3

d H(0, i)2
1
10

d H(0, ¯)2
3
5

d H(1, ¯)2
1
5
!
i41

3

d H(1, i)2

212d G(2 , ¯ , 0 , ˜)1
12
5

d G(1 , ¯ , 0 , 123)2
12
5
!
i41

3

d G(1 , i , 0 , jk)1
24
5
!
i41

3

d G(1 , ¯ , 0 , i)2

2 36
5
!
i41

3

d G(1 , ˜ , 0 , i)2
36
5
!
i41

3

d G(1 , ¯ , 1 , ¯)1
18
5
!
i41

3

d G(1 , i , 1 , ¯)2
12
5
!
i41

3

d G(1 , ¯ , 1 , i) .

Here, and from now on, every time we write the symbol ˜ instead of a marking’s
name, we mean that any marking which does not appear elsewhere in the notation
could replace the ˜.

5.4. Genus 3.

In H 4 (M3, 0 ) [12, 9]:

04k 1
2 2 5

7
cNd irr2

89
7

cNd 2, ¯2
2
35

d F2
94
35

d E(1 , ¯)1
103
84

d H(0 , ¯)2
2
7

d H(1 , ¯)2

2 22
35

d G(1 , ¯ , 1 , ¯) ,

04k 22
5
42

cNd irr2
41
21

cNd 2, ¯1
1

630
d F2

11
35

d E(1 , ¯)1
41
252

d H(0 , ¯)1

1 2
105

d H(1 , ¯)1
8
35

d G(1 , ¯ , 1 , ¯) ,

whereas in H 4 (M3, 1 ) a new relation involving k 1 c i appears, and the three of them
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could be written as follows [12]:

04k 1c i25c i
22 1

7
c id irr2

1
42

cNd irr2
5
7

c id 2, i2
16
21

cNd 2, i2
40
21

cd 2, ¯2
1

630
d F1

1 13
21

d E(0, i)2
9
35

d E(1, i)1
61
252

d H(0, i)12 2
105

d H(1, i)1
4

105
d H(1, ¯)1

4
63

d H(0, ¯)1

1 16
35

d G(1 , i , 1 , ¯)1
61
21

d G(1 , ¯ , 0 , i)2
8
35

d G(1 , ¯ , 1 , i) ,

04k 1
229c i

22 2
7

c id irr2
16
21

cNd irr2
10
7

c id 2, i2
299
21

cNd 2, i2
347
21

cd 2, ¯2
19
315

d F1

1 83
3

d E(0 , i)2
16
5

d E(1 , i)1
431
252

d H(0 , i)2
34
105

d H(1 , i)2
22
105

d H(1 , ¯)1
341
252

d H(0 , ¯)1

1 2
7

d G(1 , i , 1 , ¯)1
389
21

d G(1 , ¯ , 0 , i)2
38
35

d G(1 , ¯ , 1 , i) ,

04k 22c i
22 5

42
cNd irr2

41
21

cNd 2, i2
347
21

cd 2, ¯1
1

630
d F1

1 5
21

d E(0 , i)2
11
35

d E(1 , i)1
41
252

d H(0 , i)1
2

105
d H(1 , i)1

2
105

d H(1 , ¯)1
41
252

d H(0 , ¯)1

1 8
35

d G(1 , i , 1 , ¯)1
41
21

d G(1 , ¯ , 0 , i)1
8
35

d G(1 , ¯ , 1 , i) .

Finally, in H 4 (M3, 2 ), we have:

04c a
21c b

2 2 6
5

c a c b2kNd 3, ¯15cNd 3, ¯2
40
21

cNd 2, ¯1
5
3

(cNd 2, a1cNd 2, b )2

2 6
7

(c a d 2, a1c b d 2, b )2 16
21

cNd 2, ab1
12
35

(c a d 2, ab1c b d 2, ab )2 1
42

cNd irr1

1 1
35

(c a d irr1c b d irr )2
1

630
d F1

13
21

d E(2 , ¯)2
4
15

(d E(2 , a)1d E(2 , b) )2

2 9
35

d E(1 , ¯)2
34
105

d E(1 , a)1
1
7

d H(2 , ¯)2
2

105
d H(1 , ab)1

4
105

d H(1 , ¯)1

1 1
105

(d H(1 , a)1d H(1 , b) )1
4
63

d H(0 , ¯)1
10
63

d H(0 , ab)2
5
36

(d H(0 , a)1d H(0 , b) )1

1 40
21

d G(2 , ¯ , 0 , ab)2d G(2 , ¯ , 1 , ¯)1
16
35

d G(1 , ab , 1 , ¯)2
8
35

d G(1 , ¯ , 1 , ab)2

2 5
3

(d G(2 , b , 0 , a)1d G(2 , a , 0 , b) )2
40
21

(d G(2 , ¯ , 0 , a)1d G(2 , ¯ , 0 , b) ).

5.5. Genus 4.

In H 4 (M4, ¯ ) [12, 10]:

04 45
2

k 1
22240k 227k 1 d irr1

35
2

cNd irr239kNd 3, ¯1
315

2
cNd 3, ¯1

45
2

cNd 2, ¯1

1d F113d E(2 , ¯)2
105

8
d H(0 , ¯)12d H(1 , ¯)15d H(2 , ¯)124d G(1 , ¯ , 1 , ¯)121d G(1 , ¯ , 2 , ¯) ,
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and since another relation appears in H 4 (M4, 1 ) [12], we get there the following two
relations:

045k 1
2230k 2240k 1 c i1245c i

22k 1 d irr17c i d irr22kNd 3, i144c i d 3, i2

235cNd 3, i232kNd 3, ¯1175cNd 3, ¯230c i d 2, i195cNd 2, i285cNd 2, ¯2

236d E(0 , i)124d E(1 , i)212d E(2 , i)1
35
12

d H(0 , ¯)1d H(1 , ¯)15d H(2 , ¯)2

2 175
12

d H(0 , i)1d H(1 , i)2d H(2 , i)218d G(1 , i , 1 , ¯)128d G(1 , i , 2 , ¯)1

112d G(2 , i , 1 , ¯)2175d G(3 , ¯ , 0 , i)210d G(2 , ¯ , 0 , i)112d G(1 , ¯ , 1 , i)24d G(1 , ¯ , 2 , i) ,

04 25
2

k 1
2 2180k 2135k 1 c i2

455
2

c i
225k 1 d irr1

35
2

cNd irr27c i d irr2

235kNd 3, i249c i d 3, i1
455

2
cNd 3, i125kNd 3, ¯2

385
2

cNd 3, ¯1

160c i d 2, i2
335

2
cNd 2, i1

385
2

cNd 2, ¯1d F137d E(0 , i)235d E(1 , i)1

137d E(2 , i)2
455
24

d H(0 , ¯)25d H(2 , ¯)1
385
24

d H(0 , i)17d H(2 , i)1

160d G(1 , i , 1 , ¯)235d G(1 , i , 2 , ¯)1
385

2
d G(3 , ¯ , 0 , i)225d G(2 , ¯ , 0 , i)149d G(1 , ¯ , 2 , i) .

5.6. Genus 5.

Finally, in H 4 (M5, 0 ) [12]:

04 25
2

k 1
2 2180k 225k 1 d irr1

35
2

cNd irr235kNd 4, ¯1
455

2
cNd 4, ¯125kNd 3, ¯2

2 385
2

cNd 3, ¯2
385

2
d 3, ¯ Nc1d F137d E(1 , ¯)235d E(2 , ¯)2

455
24

d E(0 , ¯)2

25d H(2 , ¯)17d H(3 , ¯)235d G(1 , ¯ , 2 , ¯)149d G(1 , ¯ , 3 , ¯)125d G(2 , ¯ , 1 , ¯) .

6. DEGREE 4 RELATIONS IN THE TAUTOLOGICAL GROUP

THEOREM 10. For gF6, B4
g , P is a basis for T 4

g , P . For 2GgG5, the relations among
elements of B4

g , P are the ones listed in Section 5.

We will prove this Theorem by induction on g . We start with a sketchy exposition
of an argument which covers the cases gF6, once the previous ones are established.
Unfortunately, this argument fails to extend to the low genus cases. We will therefore
give a second, less direct argument. The initial cases require more involved computa-
tions, because of the presence of many relations among tautological classes. We will
work out two sample cases in Lemmas 14 and 16, and recover the coefficients of the
new relation in M3, 2 in Proposition 15.
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PROPOSITION 11. Suppose that Theorem 10 holds for g45. Then it holds
for every genus gF6.

PROOF. For the first proof we make an induction on g . Consider the boundary
maps:

j a , A : Ma , AN ]s(3Mg2a, A CN]t(K Mg , P ,

on varying (a , A) in such a way that aF3, g2aF3. Consider the composition of the
induced pull-back map with the projection on H 27H 2 :

ga , A : H 4 (Mg , P )KH 2 (Ma , AN ]s( )7H 2 (Mg2a, A CN]t( ).

We need a few remarks:

l Under the above hypotheses on genera, there are no relation among tautological
classes in H 2 (Ma , AN ]s( )7H 2 (Mg2a, A CN]t( ).

l Every class of the standard basis in H 2 (Ma , AN ]s( )7H 2 (Mg2a, A CN]t( ) (by the
standard basis we mean the one described in [1]), appears, with the suitable sign, as a
summand in the pull-back of at most one tautological class of H 4 (Mg , P ), with the ex-
ception of 2c s7c t , which is a summand both of j a , A* (cNd a , A ) and j a , A* (d a , A Nc).
This is a combinatorial remark which follows from the description of pull-backs of
Section 4. In particular, one should look at the description of the operations on graphs
denoted by fs , t and js , t .

l Almost every essential tautological class a in B4
g , P satisfies ga , A (a)c0 for at

least one (a , A) satisfying the hypotheses. This is also a combinatorial remark, and it is
based on the relative position of boundary cycles in Mg , P . The exceptions are:

k 2 , c x for every x�P , d E(b , B) ,

d G(c , C , d , D) , if c1dG2.

Suppose there is a relation among essential tautological classes in H 4 (Mg , P ). Applying
all the maps ga , A , one obtains that many coefficients have to vanish. The relation
should then be:

ck 21 !
x�P

cx c 2
x1!cb , B d E(b , B)1 !

c1dG2
cc , C , d , D d G(c , C , d , D)40 .

We pull it back with the map

j* : H 4 (Mg , P )KH 4 (Mg21, PN]q, r( ) ,

and get

ck 21!
x�P

cx c 2
x1!cb , B (d E(b , B)1d E(b21, BN]q, r()1R)1

1 !
c1dG2

cc , C , d , D (d G(c21, CN]q, r(, d, D)1d G(c , C , d21, DN ]q , r()1d G(c , C , d , D) )40 .

By induction hypothesis, the coefficients c , cx , cb , B all have to vanish. Every type G
class appears at most once as a summand in the image of at type G class. If we call
«critical» the classes corresponding to graphs G(0 , A , 0 , B), i.e. the possibly unessen-
tial ones, we observe that every non-critical class has at least one non-critical summand
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in its pull-back. On the other hand, if we extend the ordering of P to an ordering for
PN ]q , r( imposing ]q , r( to be the last two elements, then a basis of critical classes
maps to a set of linearly independent critical classes. Thus, the coefficients cc , C , d , D

vanish. o

The main tool used in the second proof is the map:

j* : H 4 (Mg , P )KH 4 (Mg21, PN]q, r( .

The combinatorics of tautological classes and pull-back formulas becomes rather in-
tricate, but nevertheless it suggests a partition of B4

g , P , corresponding to any given
partition of P , which, inductively, turns out to give a direct sum decomposition of the
tautological group.

DEFINITION 12.

1. Pure boundary classes of type E and F
are essential pure boundary classes corresponding to graphs F and E(a , A).

They generate the subspace WEF of T 4
g , P .

2. Pure boundary classes of type H and G
are essential pure boundary classes corresponding to graphs H(a , A) and
G(a , A , b , B).

They generate the subspace WGH of T 4
g , P .

3. C-mixed classes
are essential mixed boundary classes cNd irr and cNd a , A , generating WC .

4. C I-mixed classes
are essential mixed boundary classes c i d irr and c i d a , A , with i� IOA , generating
WCI .

5. K-mixed classes
are essential mixed boundary classes k 1 d irr and kNd a , A , generating WK .

6. Mumford K classes

are essential classes
.
/
´

k 1
2 , k 2 , for gF6

k 1
2 , for g45 and g44, P4¯ ,

¯ , for g44, Pc¯ , and gG3.

and generate K

7. Mumford C I classes

are essential classes
.
/
´

k 1 c i , c i
2 , c i c j , for gF4

c i
2 , c i c j , for g43 ,

¯ , for gG2 .

with i , j� I , and generate C I

8. Mumford C IJ classes

are essential classes
.
/
´

c i c j , for gF3

¯ , for gG2
, with i� I , j� J , and generate C IJ .
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PROPOSITION 13. Suppose that Theorem 10 holds for g46. Then it holds for every
genus gF6.

PROOF. Let O4]q , r(, so that PN ]q , r(4PNO . Following formulas of Sec-
tion 4, we describe how the above subspaces of T 4

g , P behave with respect to the
map

j* : H 4 (Mg , P )KH 4 (Mg21, PN]q,r( ) .

We write down the behavior for genus gF4. When no confusion will arise, we will
denote by the same letter the subspaces of the same type in H 4 (Mg , P ) and
H 4 (Mg21, PN)]q,r( ).

KKK , for gF7

C PKC P , for gF5

WKKWK1WC1WCP1WEF1WGH1WCO1C O

WCKWC1WGH1C O

WCPKWCP1WGH1C OP

WEFKWEF1WGH1WCO

WGHKWGH1WCO .

We prove the Proposition by induction on g . Suppose that

T 4
g21, PN]q, r(4WEF5WGH5WC5WCP5WCO5WK5C P5C O5C OP

and that every summand is freely generated by essential tautological classes. We write
down in block form the matrix of the map

j* : H 4 (Mg , P )KH 4 (Mg21, PN]q, r( ) .

K C P WK WC WCP WEF WGH WCO C O C OP

K A 0 0 0 0 0 0 0 0 0
C P 0 B 0 0 0 0 0 0 0 0
WK 0 0 C R R 0 R R R 0
WC 0 0 0 D 0 0 R 0 R 0
WCP 0 0 0 0 E 0 R 0 0 R

WEF 0 0 0 0 0 F R R 0 0
WGH 0 0 0 0 0 0 G R 0 0

We claim that the elements of B4
g , P form a basis for T 4

g , P . Because of the form of
the above matrix, it is sufficient to check that every subset generating each subspace
consists of independent classes. For this, we look at blocks A , R , G , and check that
each of them has maximal rank, equal to the number of rows. It is easy to see that A
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and B are both the identity matrix, whereas from

k 1 d irrKk 1 d irr1R , if gF5

kNd a , AK

.
`
/
`
´

kNd a , A1kNd a21, AN]q, r( , if g2aF1, aF4

kNd a21, AN]q, r( , if g4aF4

kNd a , A , if g2aF1, aG3

0, if g4aG3

we observe that C has maximal rank for gF5.
Similarly, D and E have maximal rank for gF3, whereas F has maximal rank for

gF2.
As for the block G , from

d H(a , A)K

.
`
`
/
`
`
´

d H(a , A)1d H(a21, AN]q, r()1R , if g212aF1, aF2

d H(a , A)1
5
6

d H(a21, AN]q, r()1R , if g212aF1, a41

d H(a21, AN]q, r()1R , if g4a11F3

5
6

d H(a21, AN]q, r()1R , if g4a1142

d H(a , A)1R , if g212aF1, a40

0, if g4a1141

d G(a , A , b , B)Kd G(a , A , b , B)1d G(a21, AN ]q , r(, b , B)1d G(a , A , b21, BN ]q , r() ;

we observe that type H classes are independent, and independent from type G ones.
For the type G class, the argument used in the proof of Proposition 6 works in this
case as well. One can write the block G in a triangular form, and see that it has maxi-
mal rank for gF3. o

LEMMA 14. Suppose that Theorem 10 holds for g45. Then it holds for genus
g46.

PROOF. The same proof of Proposition 13 can be repeated to prove that
B4

6, P 0]k 2( is a set of linearly independent classes. Thus, if a relation does
exist, it should be of the form

k 21R40;

since j*(k 21R)4k 21R40, then the relation should be a pull-back of the
relation in H 4 (M5, 0 ) (see Section 5):

k 22
1

180
d F1

37
180

d E(1)1R40,

and hence it should be of the form

k 22
1

180
d F1

37
180

(d E(1 , q)1d E(1 , r) )1R40;

but one can easily observe that classes d F and d E(1 , q)1d E(1 , r) do only appear
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in the pull-back j*(d F )4d F1 (d E(1 , q)1d E(1 , r) )1R , hence cannot have different
coefficients. This leads to a contradiction.

PROPOSITION 15. There is a unique new relation in M3, 2 , and it is the one described
in Section 5.

PROOF. We know from [9] and [12] the relations arising in H 4 (M3, 0 ) and
H 4 (M3, 1 ), and further we know that a new relation does exist in H 4 (M3, 2 ), involving
pure Mumford classes c a , c b , c a c b . We need to prove that the relation has exactly
the form described in Section 5, and that no other relation appears. We also recall that
the group H 4 (M2, 2 ) has been computed in [15].

The relations in H 4 (M3, 0 ) and H 4 (M3, 1 ) can be all used to write classes k 1
2 , k 2 ,

k 1 c i in terms of other boundary classes, when NPNF2.
Therefore, a possible new relation in H 4 (M3, 2 ), can be written as follows:

!
G

cG d G1!
p

cp(irr) pNd irr1 !
p(a , A)

cp(a , A) pNd a , A1!ci c i
21cab c a c b40.(4)

The first constraints on coefficients in (4) are derived by writing down explicitly
the non-vanishing pull-backs of tautological classes under the map

M3, sK M3, ab ,

which glues a fixed rational tail marked by PN t by identifying t and s , and observing
that the pull-back in H 4 (M3, s ) of (4) must be a multiple of Faber’s relation involving
k 1 c s (see Section 5). They are:

cF42 1
630

k

cE(1 , P)42 9
35

k

cE(0 , P)4
13
21

k

cH(2 , ¯)4
1
7

k

cH(1 , ¯)4
4

105
k

cH(1 , P)42 2
105

k

cH(0 , ¯)4
4
63

k

cH(0 , P)4
10
63

k

cG(1 , P , 1 , ¯)4
16
35

k

cG(1 , ¯ , 1 , P)42 8
35

k

cG(1 , ¯ , 2 , ¯)4
5
7

k

cG(2 , ¯ , 0 , P)4
40
21

k

cG(2 , ¯ , 1 , ¯)42k

cc(irr)42 1
42

k

cc(3 , ¯)45k

cc(2 , ¯)42 40
21

k

cc(2 , P)42 16
21

k

ck(3 , ¯)42k .

To determine the coefficient of some classes of type H and G we also need to use
the map

H 4 (M3, P )KH 2 (M2, s )7H 2 (M1, PN t ) .

We then know by [12] and [13] that a new relation does actually exist, and there-
fore we fix the value of the constant k to be 1 .

We consider the following maps:

H 4 (M3, ab )KH 2 (M2, s )7H 2 (M1, abt )

H 4 (M3, ab )KH 2 (M2, as )7H 2 (M1, bt )

H 4 (M3, ab )KH 4 (M2, as ) ;
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the constraints on the coefficient derived by pulling back (4) force all of them
to be the ones indicated in Section 5. o

LEMMA 16. Theorem 10 holds for genus g42.

PROOF. The cases n40, 1 are well known (see [20]); the cases n42, 3 are entirely
described in [15, 6]. Recall that a new relation appears in H 4(M2, 3 ) (see Section 5).

For every set ]i , j , k(%P , only the relation pulled back from M2,]i , j , k( contains
the summand:

c i d 2, P0] j , k(1c j d 2, P0]i , k(1c k d 2, P0]i , j( ;

we fix an ordering on P , and use the relation in H 4 (M2,]i , j , k( ) to express
c i d 2, P0]j , k( , for iE j , iEk , as linear combination of other classes.

Let C 4
2, P be the set obtained from the set of essential classes B4

2, P after having elim-
inated the relations arising in degree 4 , that is, after having removed all pure Mum-
ford classes, and the classes c i d 2, P0]j , k( , for iE j , iEk . Observe that the definition
of C 4

2, P depends on the choice of an ordering on P .
If n44, there is no new relation among essential tautological classes; we postpone

the proof of this fact. If nF5, let F2, P
4 be the free vector space generated by classes in

C4
2, P . One can define every pull-back map on F2, P

4 , following formulas in Section 4.
Our claim is that the map

f4] fij*( : F2, P
4 K5]i , j(%P F2, P0]i , j(N ]s(

4

is injective for NPNF5. This implies, by induction, that no new relation among tauto-
logical classes can appear for nF5: any new one should map to zero with f .

We use a decomposition of F2, P
4 similar to the one described at the beginning of

this section.

l WF is generated by d F ,

l WE is generated by classes d E(1 , A) ,

l WH(0) is generated by classes d H(0 , A) ,

l WH(1) is generated by classes d H(1 , A) ,

l WG(2 , 0) is generated by classes d G(2 , A , 0 , B) ,

l WG(0 , 2) is generated by classes d G(0 , A , 2 , B) ,

l WG(1 , 1) is generated by classes d G(1 , A , 1 , B) ,

l WG(1 , 0) is generated by classes d G(1 , A , 0 , B) ,

l Wc is generated by classes cNd 2, A ,

l Wc I
is generated by classes c i d 2, A , with i� I .

In the space 5]i , j(%P F2, P0]i , j(N ]s(
4 , we denote by WX45ij WX

ij the direct sum of sub-
spaces WX

ij%F2, P0]i , j(N ]s(
4 . The matrix of the map f can be written in triangular block
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form (we omit all zeroes):

WF WE WH(0) WG(1 , 0) WG(0 , 2)5Wc S WG(2 , 0) WH(1) WG(1 , 1) Wc Wc P

WF A
WE B
WH(0) C
WG(1 , 0) D
WG(0 , 2) E
WG(2 , 0) F
WH(1) R R R G
WG(1 , 1) R R H
Wc R R R R R I
Wc P R R R R R R R R R L

We just need to check that the blocks on the diagonal have maximal rank. This is
completely trivial for the blocks A , B , C , D , E . We check block G , and observe that
blocks H and I present a very similar combinatorics. G is of the form

(G 12 G 13
R G ij

R) ,

where G ij is a block of the matrix of the map fij* . We can write G ij as

d H(1 , BN ]s() d H(1 , B)

d H(1 , A) , ]i , j(%A Id 0
d H(1 , A) , ]i , j( %̀4 A C 0 Id
d H(1 , P0]i , j() 0 R

d H(1 , A) , N]i , j(OAN41 0 0

We consider the matrix G 8 obtained removing the second column of blocks from
each G ij , except for the columns corresponding to d H(1 , ¯) , d H(1 , x) . Finally, we can
extract such a triangular matrix

d H(1 , B) , NBNG1 d H(1 , BN ]s()

d H(1 , A) , NANG1 Id 0
d H(1 , A) , NANF2 R Id

Observe that we just need the weaker assumption NPNF4.
As for the block L , observe that any essential class maps to essential classes, except

for

c i d 2, P0] j , k(K
fjk*
2c i c s42 !

NC C NF3
c i d 2, C2 !

xE i
c i d 2, P0]x , s(1 !

xD i
c x d 2, P0]i , s( ;
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but this doesn’t prevent us from extracting a non-degenerate matrix

c i d 2, B , NBNG1 c i d 2, BN ]s(

c i d 2, A , NANG1 Id 0
c i d 2, A , NANF2 R Id

With the same argument, one can write a sub-block of F of the form

d G(2 , A , 0 , DN ]s() , d G(2 , A , 0 , D) d G(2 , CN ]s(, 0 , D)

d G(2 , A , 0 , B) , NANG1 K 0
d G(2 , A , 0 , B) , NANF2 R Id

The set P0]i , j(N ]s( inherits an ordering from P , assuming s to be the last point;
therefore the second column of blocks gives no problem. As for the matrix K , write it
in sub-blocks KA , where KA involves classes d G(2 , A , 0 , B) . These classes are all obtained
pushing forward from H 2 (M0, A CN)]z( , and so are the relations among them in F2, P

4 .
The combinatorics of the map corresponding to the block KA is then exactly the same
of the map

H 2 (M0, A CN)]z(K5]i , j(%A c H 2 (M0, A C 0]i , j(N ]z , s( )

which will be proved in Lemma 17 to be injective for NA CNF4. Therefore each KA ,
and consequently K , has maximal rank.

As for the case n44, we first prove by using the pull-back map

H 4 (M2,]i , j , k , l( )KH 2 (M2,]i , s( )7H 2 (M0,] j , k , l , t( ;

that in a possible new relation, the coefficients of c-mixed classes and of classes of
type G vanish.

We now restrict the map f to the free vector space generated by the classes with
non vanishing coefficient in a possible new relation in T 4

2, 4 . By the same arguments
used for the general case, the new map f is injective, and the proof of our Lemma is
complete. o

LEMMA 17. For NPNF5, the map

H 2 (M0, P )K5]x , y(%P 0]h( H 2 (M0, P0]x , y(N ]s( )

is injective.

PROOF. The case NPN45 is trivial.
We can consider

f A* : H 2 (M0, P )KH 2 (M0, AN ]s(3M0, A CN ]t( )
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as the sum of the two maps

fA* : H 2 (M0, P )KH 2 (M0, AN ]s( ) ,

fA C* : H 2 (M0, P )KH 2 (M0, A cN ]t( ) ,

where the two maps are the pull-back of the map that glues any fixed rational tail to
the extra marked point. For any such A , there exist ]x , y(%P such that A%P0]x , y(.
For a suitable choice of the rational tail to glue, we can write a commutative
diagram

so that from the induced diagram on H 2 we read: ker fP0]x , y(* %ker fA* . Therefore, by
Proposition 2.8 in [1],

(O]x , y(%P ker fP0]x , y(* )% (OA%P, ker fA*)40 .

The statement is proved by induction on NPN. Suppose that
x� (O]x , y(%P0]h( ker fP0]x , y(* ), but there exist k�P0]h(, such that y� fP0]h , k(* (x)c0.
By the commutativity of

H 2 (M0, P ) K
fP0]x , y(*

H 2 (M0, P0]x , y(N]t( )

If *p0]h , k( I
H 2 (M0, P0]h , k(N]u( ) KH 2 (M0, P0]h , k , x , y(N]u , v( )

we see that y� (O]x , y(%P0]h , k( ker fP0]x , y(* ), hence by induction hypothesis, y40, and
we are done. o

PROOF OF THEOREM 10. The induction on the genus starts with Lemma 16; then
one can perform the next few steps by arguments similar to the one used in Lemma 14,
and get the result for genus up to 6 . The procedure is then completed with Proposi-
tion 13. o

7. A CONJECTURE ON HIGHER DEGREE TAUTOLOGICAL RELATIONS

At this point it is natural to formulate a conjecture which is suggested by the proof
of Proposition 11.

This conjecture agrees with Harer’s and Ivanov’s stability theorems (see [16, 17]),
and with Faber’s results and conjectures concerning the tautological ring of the open
part Mg , n (see [13]).

CONJECTURE 18. There are no relations between essential tautological classes in
H 2k (Mg , P ) whenever gF3k .
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We justify our conjecture. We first need to extend some definitions. A tautological
class of degree 2k is a push-forward of a degree 2 l Mumford class from a codimension
k2 l boundary component; a degree 2k class is unessential if it can be eliminated by
means of a relation among tautological classes arising in degree E2k .

Then we need to build new pull-back formulas, but we can give conjectural ones
starting from the ones we proved for degree 4 . In particular, we claim that they pre-
serve the tautological group.

Under the above hypotheses, there are plenty of boundary components »MG i
in

Mg , P such that

H 2k (»MG i
)45!i42k (7H i (Mgi , Pi

) )

contains at least one summand 7H 2 j (Mgj , Pj
) with gjF3 j , and gjEg .

Write a generic linear combination of tautological classes in H 2k (Mg , P ), and sup-
pose it is equal to 0; by pulling back these relation to the above components we can
prove that many coefficients do vanish: in fact, inductively, there are no relations
among essential classes in these summands of the cohomology. We also conjecture that
the pull-back maps in higher degree still satisfy the property that each class is generi-
cally a summand in the pull-back of at most one class.

It is then hard to believe that a new relation holds among the few classes whose co-
efficient has not yet been showed to be zero.

8. GENERATORS OF THE COHOMOLOGY GROUP

THEOREM 19. H 4 (Mg , P , Q) is generated by tautological classes for all gF8.

PROOF. We are following Edidin’s scheme of Proof [8].
In the proof of this Proposition we plan to give an upper bound for the dimension

of the cohomology group, and then to use the knowledge of the tautological group
and of the homology of the mapping class group to prove that, this bound is
achieved.

Let n43g231NPN be the complex dimension of Mg , P . We write a part of the
exact homology sequence of the pair (Mg , P , Mg , P 0Mg , P ):

RKH2n24 (Mg , P 0Mg , P )K
j* H2n24 (Mg , P )KH2n24 (Mg , P , Mg , P 0Mg , P )KR

hence, using Poincaré duality for smooth orbifolds:

dim H 4 (Mg , P )4dim H2n24 (Mg , P )Gdim j* H2n24 (Mg , P 0Mg , P )1dim H 4 (Mg , P )

We refer to the description of the stratified structure of Mg , P which has been ex-
plained in Section 2. For any stable graph G , we further denote by D G

0 the open stra-
tum j G (MG ).

Let

¯Mg , P4 Mg , P 0Mg , P .
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We recall that ¯Mg , P4Ni D G i
, where the D G i

’s are the codimension 1 boundary
components.

We denote by ¯¯Mg , P the union of the codimension two boundary components,
and write the homology exact sequence for the pair (¯Mg , P , ¯¯Mg , P ):

RKH2n24 (¯¯Mg , P )K
i* H2n24 (¯Mg , P )KH2n24 (¯Mg , P , ¯¯Mg , P )KR

Let us look at the relative term. By Lefschetz Theorem [23] we have:

H2n24 (¯Mg , P , ¯¯Mg , P )CH 2 (¯Mg , P 0¯¯Mg , P ).

The space

¯Mg , P 0¯¯Mg , P

consists of the disjoint union of the interior parts of the codimension 1 boundary com-
ponents, the D i

0’s.
We have a precise description of these D i

0’s as quotients of moduli spaces of
smooth curves:

¯Mg, P0¯¯Mg, PC2a, A(Ma, AN]s(3Mg2a, A cN]t()/Aut G a, A2Mg21, PN]qr(/Aut G irr.

The rational cohomology of such quotients satisfies:

H k (MG i
/Aut G i , Q)`H k (MG i

Q)Aut G i

where we denote by H k (MG i
)Aut G i the invariants with respect to the induced Aut G i

action on the cohomology. In the case k42, these invariants can be precisely de-
scribed. The cohomology group H 2 (MG i

) is generated by Mumford classes of degree
2 . The class k 1 is fixed by the automorphism group of any graph, whereas the c i

classes, for i a special point, are permuted by the group action in the obvious
way.

We then get

H 2 (¯Mg , P 0¯¯Mg , P )C5a , A H 2 (Ma , AN]s(3

3Mg2a , A cN]t( )Aut G a , A5H 2 (Mg21, PN]q , r( )Aut G irr .

At this point, the bound for the dimension of the cohomology group is:

dim H 4 (Mg , P )G1!
a , A

dim H 2 (Ma , AN]s(3Mg2a , A cN]t( )Aut G a , A1

1dim H 2 (Mg21, PN]q , r( )Aut G irr1dim H 4 (Mg , P )1dim i* j* H2n24 (¯¯Mg , P ) .

The space ¯¯Mg , P is the union of the codimension two boundary components,
which we will call U i’s. Their complex dimension is n22. An easy application of the
Maier-Vietoris exact sequence, shows that the obvious map

k : 2i U iKNi U i4¯¯Mg , P

from the disjoint union into the union of these components induces the following iso-
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morphism in homology:

5i H2n24 (U i )CH2n24 (¯¯Mg , P ).

Observe that for dimension reasons, dim H2n24 (U i )41.
We claim that

dim i* j* H2n24 (¯¯Mg , P )G r

where r equals the number of essential pure boundary classes. This number differs
from the number of codimension two boundary components because of the presence
of Keel’s relations in genus 0 . These relations live in the second homology group of
M0, n .

The push-forward induced by the map

M0, AN ]s(K Mg , P

determines homological equivalences among codimension 2 boundary components of
Mg , P .

Let

f : 2i U iK Mg , P

be the collection of the inclusion maps of the codimension 2 boundary components.
By what we said above, the image of the map

f * : H2n24 (2i U i )KH4 (Mg , P )

has dimension less or equal than r . Since f4k i i i j , and k* is an isomorphism, this
implies that

dim i* j* H2n24 (¯¯Mg , P )G r .

Our final bound is:

(5) dim H 4 (Mg , P )G !
a , A

dim H 2 (Ma , AN]s(3Mg2a, A cN]t( )Aut G a , A1

1dim H 2 (Mg21, PN]qr( )Aut G irr1dim H 4 (Mg , P )1 r .

By Ivanov [17], Harer [16], and Loojenga’s [19] stability theorems for the homo-
logy of the mapping class group, H 4 (Mg , P ) is freely generated by Mumford classes,
for gF8.

Instead of computing the dimension of all the cohomology groups involved in (5),
we proceed more indirectly. We show that there is a bijection between the following
two sets. On one hand, the set B4

g , P , on the other, the set whose elements are the r
pure boundary classes in B4

g , P and the vectors belonging to the natural bases of the co-
homology vector spaces appearing on the right hand side of the above inequality (5).
The upper bound for the dimension of the cohomology group is therefore achieved,
and consequentely the tautological classes generate the cohomology group.

The bijection directly follows from the definition of essential tautological
classes:
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l pure Mumford classes in B4
g , P correspond to a basis for

H 4 (Mg , P ),

l mixed boundary classes in B4
g , P correspond to a basis for

5a , A H 2 (Ma , AN]s(3Mg2a, A cN]t( )Aut G a , A5H 2 (Mg21, PN]qr( )Aut G irr ,

l pure boundary classes in B4
g , P are exactly r .

This completes the proof. o

The author was funded by the Scuola Normale Superiore di Pisa, the Istituto Nazionale di Alta
Matematica «E. Severi» and the California Institute of Technology, Pasadena, California.

I wish to thank my advisor, Enrico Arbarello, as well as Gilberto Bini, Maurizio Cornalba, Carel
Faber and Rahul Pandharipande for many extremely useful conversations.

REFERENCES

[1] E. ARBARELLO - M. CORNALBA, Calculating cohomology groups of moduli spaces of curves via algebraic
geometry. Inst. Hautes Etudes Sci. Publ. Math., 88, 1998, 97-127.

[2] E. ARBARELLO - M. CORNALBA, Combinatorial and algebro-geometric cohomology classes on the moduli
spaces of curves. J. Algebraic Geometry, 5, 1996, 705-749.

[3] E. ARBARELLO - M. CORNALBA - P. GRIFFITHS - J. HARRIS, Geometry of algebraic curves, I.
Grundlehren der math. Wiss, vol. 267, Springer-Verlag, New York 1984.

[4] E. ARBARELLO - M. CORNALBA - P. GRIFFITHS - J. HARRIS, Geometry of algebraic curves, II. To
appear.

[5] P. BELOROUSSKI, Chow rings of moduli spaces of pointed elliptic curves. PhD thesis, University of
Chicago, 1998.

[6] P. BELOROUSSKI - R. PANDHARIPANDE, A descendent relation in genus 2. Annali della Scuola Normale
Superiore di Pisa, Classe di Scienze, vol. XXIX, 2000, 172-191.

[7] M. CORNALBA, Cohomology of Moduli Spaces of Stable Curves. Documenta Mathematica, Extra Vol.
ICM 1998, II, 249-257.

[8] D. EDIDIN, The codimension-two homology of the moduli space of stable curves is algebraic. Duke
Math. Journ., 67, n. 2, 1992, 241-272.

[9] C. FABER, Chow rings of moduli spaces of curves I: The Chow ring of M3 . Annals of Mathematics,
132, 1990, 331-419.

[10] C. FABER, Chow rings of moduli spaces of curves II: Some result on the Chow ring of M4 . Annals of
Mathematics, 132, 1990, 421-449.

[11] C. FABER, Algorithms for computing the intersection numbers on moduli space of curves, with an appli-
cation to the class of the locus of Jacobians. In: K. HULEK et al. (eds.), New trends in Algebraic Geome-
try. Cambridge University Press, 1999, 29-45.

[12] C. FABER, Private communication, 1999.
[13] C. FABER, A conjectural description of the tautological ring of the moduli space of curves. In: C. FABER -

E. LOOIJENGA (eds.), Moduli of curves and abelian varieties, The Dutch Intercity Seminar on Moduli.
Aspects of Maths., E 33, Vieweg, 1999.

[14] E. GETZLER, Intersection theory on M1, 4 and elliptic Gromov-Witten invariants. J. Amer. Math. Soc.,
10, n. 4, 1997, 973-998.

[15] E. GETZLER, Topological recursion relations in genus 2. In: M.H. SAITO-Y. SHIMIZU-K. UENO (eds.),
Integrable systems and algebraic geometry (Kobe/Kyoto, 1997). World Sci. Publishing, Singapore-
London 1998, 73-106.

[16] J. HARER, Improved stability for the homology of the mapping class group of orientable surfaces. Duke
University Preprint, 1993.



M. POLITO168

[17] N. IVANOV, On the homology stability for Teichmüller modular groups: closed surfaces and twisted co-
efficients. Contemporary Math., 150, 1993, 149-194.

[18] S. KEEL, Intersection theory of moduli space of stable n-pointed curves of genus 0. Trans. of AMS, 330,
n. 2, 1992.

[19] E. LOOJENGA, Stable cohomology of the mapping class group with symplectic coefficients and the uni-
versal Abel-Jacobi map. J. Algebraic Geometry, 5, 1996, 135-150.

[20] D. MUMFORD, Towards an enumerative geometry of the moduli space of curves. In: M. ARTIN-J. TATE

(eds.), Arithmetic and Geometry, vol. II. Progress in Math., 36, Birkhäuser, Boston 1983, 483-510.
[21] R. PANDHARIPANDE, A geometric construction of Getzler’s Elliptic relation. Math. Ann., 313, n. 4,

1999, 715-729.
[22] M. POLITO, The fourth cohomology group of the moduli space of stable curves. Tesi di Perfezionamen-

to, Scuola Normale Superiore, Pisa, a.a. 1998-99.
[23] E.H. SPANIER, Algebraic Topology. Mc Graw-Hill Series in Higher Math., Mc Graw-Hill, New

York-London 1996.

Pervenuta il 23 settembre 2002,
in forma definitiva il 20 novembre 2002.

Intel Corporation
Intel Research

SC12-303
2200 Mission College Blvd.

95054 SANTA CLARA, CA (U.S.A.)
marzia.politoHintel.com


