# Rendiconti Lincei Matematica E Applicazioni 

Maria Rosaria Formica, Carlo Sbordone

## On the $G$-convergence of Morrey operators

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 14 (2003), n.1, p. 33-49.

Accademia Nazionale dei Lincei
[http://www.bdim.eu/item?id=RLIN_2003_9_14_1_33_0](http://www.bdim.eu/item?id=RLIN_2003_9_14_1_33_0)

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 2003.

Equazioni a derivate parziali. - On the G-convergence of Morrey operators. Nota (*) di Maria Rosaria Formica e Carlo Sbordone, presentata dal Socio E. Magenes.

Abstract. - Following Morrey [14] we associate to any measurable symmetric $2 \times 2$ matrix valued function $A(x)$ such that

$$
\frac{|\xi|^{2}}{K} \leqslant\langle A(x) \xi, \xi\rangle \leqslant K|\xi|^{2} \quad \text { a.e. } \quad x \in \Omega, \forall \xi \in \mathbb{R}^{2}
$$

$\Omega \subset \mathbb{R}^{2}$ and to any $u \in W^{1,2}(\Omega)$ another symmetric $2 \times 2$ matrix valued function $\mathcal{Q}=\mathcal{A}(A, u)$ with $\operatorname{det} \mathcal{C}=1$ and satisfying

$$
\frac{|\xi|^{2}}{K} \leqslant\langle\mathcal{A}(x) \xi, \xi\rangle \leqslant K|\xi|^{2} \quad \text { a.e. } \quad x \in \Omega, \forall \xi \in \mathbb{R}^{2}
$$

The crucial property of $\mathcal{G}$ is that $\mathcal{G} \nabla u=A \nabla u$, if $\nabla u \neq 0$. We study the properties of $\mathfrak{G}$ as a function of $A$ and $u$. In particular, we show that, if $A_{b} \xrightarrow{G} A, u_{b} \rightharpoonup u, \nabla u \neq 0$ and $\operatorname{div} A_{b} \nabla u_{b}=0$ then $\mathfrak{a}\left(A_{b}, u_{b}\right) \xrightarrow{G} \mathcal{A}(A, u)$

Key words: Elliptic equations; G-convergence; Morrey matrices.

Riassunto. - Sulla G-convergenza degli operatori di Morrey. Seguendo Morrey [14], ad ogni matrice simmetrica $A(x)$ a coefficienti misurabili, tale che

$$
\frac{|\xi|^{2}}{K} \leqslant\langle A(x) \xi, \xi\rangle \leqslant K|\xi|^{2} \quad \text { per q.o. } \quad x \in \Omega, \forall \xi \in \mathbb{R}^{2}
$$

$\Omega \subset \mathbb{R}^{2} \mathrm{e}$ ad ogni $u \in W^{1,2}(\Omega)$ si può associare un'altra matrice simmetrica $\mathcal{G}=\mathcal{A}(A, u)$ con $\operatorname{det} \mathcal{A}=1 \mathrm{e}$ soddisfacente

$$
\frac{|\xi|^{2}}{K} \leqslant\langle\mathcal{A}(x) \xi, \xi\rangle \leqslant K|\xi|^{2} \quad \text { per q.o. } x \in \Omega, \forall \xi \in \mathbb{R}^{2}
$$

La principale proprietà di $\mathfrak{G}$ è che $\mathcal{Q} \nabla u=A \nabla u$, se $\nabla u \neq 0$. Si studiano le proprietà di $\mathcal{G}$ come funzione di $A$ e di $u$. In particolare, si dimostra che, se $A_{b} \xrightarrow{G} A, u_{b} \rightharpoonup u, \nabla u \neq 0$ e $\operatorname{div} A_{b} \nabla u_{b}=0$, allora $\mathfrak{G}\left(A_{b}, u_{b}\right) \xrightarrow{G} \mathfrak{G}(A, u)$.

## 1. Introduction

Let $\Omega$ be a simply connected bounded open set in $\mathbb{R}^{2}$ and $K \geqslant 1$ a fixed real number. Denote by $\mathcal{E}(K)$ the set of measurable symmetric matrix-valued functions

$$
A: \Omega \rightarrow \mathbb{R}^{2 \times 2}
$$

verifying the ellipticity bounds

$$
\begin{equation*}
\frac{|\xi|^{2}}{K} \leqslant\langle A(x) \xi, \xi\rangle \leqslant K|\xi|^{2} \tag{1.1}
\end{equation*}
$$

for a.e. $x \in \Omega$ and $\forall \xi \in \mathbb{R}^{2}$.
(*) Pervenuta in forma definitiva all'Accademia il 15 luglio 2002.

For $A \in \mathcal{E}(K), A=\left(a_{i j}\right)$ and $u \in W^{1,2}(\Omega)$ define a new matrix valued function $\mathfrak{G}=\mathfrak{Q}(A, u)$

$$
\mathfrak{A}: \Omega \rightarrow \mathbb{R}^{2 \times 2}
$$

whose entries $\left(\alpha_{i j}\right)$ are given by

$$
\begin{gather*}
\alpha_{11}(x)=\frac{u_{x_{2}}^{2}+\left(a_{11} u_{x_{1}}+a_{12} u_{x_{2}}\right)^{2}}{a_{11} u_{x_{1}}^{2}+2 a_{12} u_{x_{1}} u_{x_{2}}+a_{22} u_{x_{2}}^{2}} \\
\alpha_{12}(x)=\alpha_{21}(x)=\frac{\left(a_{11} u_{x_{1}}+a_{12} u_{x_{2}}\right)\left(a_{12} u_{x_{1}}+a_{22} u_{x_{2}}\right)-u_{x_{1}} u_{x_{2}}}{a_{11} u_{x_{1}}^{2}+2 a_{12} u_{x_{1}} u_{x_{2}}+a_{22} u_{x_{2}}^{2}},  \tag{1.2}\\
\alpha_{22}(x)=\frac{\left(a_{12} u_{x_{1}}+a_{22} u_{x_{2}}\right)^{2}+u_{x_{1}}^{2}}{a_{11} u_{x_{1}}^{2}+2 a_{12} u_{x_{1}} u_{x_{2}}+a_{22} u_{x_{2}}^{2}}
\end{gather*}
$$

if $\langle A \nabla u(x), \nabla u(x)\rangle \neq 0$ otherwise, let $\alpha_{11}=\alpha_{22}=1, \alpha_{12}=0$ (see [14]).
It is interesting to note that $\mathcal{G}$ belongs to $\mathcal{E}(K)$ and enjoys the special property

$$
\operatorname{det} \mathfrak{Q}=1
$$

A main relation between matrices $A$ and $\mathfrak{A}(A, u)$ is the following: if $u \in W^{1,2}(\Omega)$, then

$$
\operatorname{div}(A \nabla u)=0
$$

if and only if

$$
\operatorname{div}(\mathcal{Q}(A, u) \nabla u)=0
$$

Actually

$$
\mathcal{G}(A, u) \nabla u=A \nabla u .
$$

(See also [1, 10]). We will call $\operatorname{div}(\mathcal{G}(A, u) \nabla)$ the Morrey operator associated to $A$ and $u$.

A similar device to construct, for a given function $u$, elliptic systems to which $u$ is a solution was adopted by De Giorgi [2] as clarified by J. Soucek [17], (see also [8, 1113]) and it revealed useful to give examples of irregular solutions.

In this work our purpose is to illustrate some properties of $\mathfrak{G}(A, u)$ as a function of $A$ and $u$; in particular we prove the following

Theorem 1. Let $A_{b} \in \mathcal{E}(K)$ and assume $A_{b} \xrightarrow{G} A$. Let $u_{b}, u \in W^{1,2}(\Omega)$ satisfy $\nabla u \neq 0$,

$$
u_{b} \rightharpoonup u \text { in } W^{1,2}(\Omega)
$$

and

$$
\operatorname{div}\left(A_{b} \nabla u_{b}\right)=0 .
$$

Then

$$
\mathfrak{A}\left(A_{b}, u_{b}\right) \xrightarrow{G} \mathfrak{A}(A, u)
$$

(For related results, see $[4,3,17]$ ).

Let us recall [18] that, by the definition of $G$-convergence for a sequence of matrix valued functions $A_{b} \in \mathcal{E}(K)$, if $A_{b} \xrightarrow{G} A$ and $u_{b} \in W^{1,2}(\Omega)$ verify

$$
\begin{equation*}
\operatorname{div}\left(A_{b} \nabla u_{b}\right)=0 \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{b} \rightharpoonup u \quad \text { in } \quad W^{1,2}(\Omega) \tag{1.4}
\end{equation*}
$$

then

$$
\operatorname{div}(A \nabla u)=0 .
$$

Remark 1.1. It is well known [15, 20] that from (1.3), (1.4) it follows that

$$
A_{b} \nabla u_{b} \rightharpoonup A \nabla u \quad \text { in } \quad L^{2}\left(\Omega, \mathbb{R}^{2}\right) .
$$

Remark 1.2. Let us observe that in general the condition $\operatorname{det} \mathfrak{G}_{b}=1$ is not preserved under weak convergence of $\mathcal{A}_{b}$ to $\mathfrak{G}$ in $\sigma\left(L^{\infty}, L^{1}\right)$.

On the contrary $G$-convergence enjoys this property (see [7] e.g.) and so the class of Morrey operators is $G$-closed.

## 2. Some preliminary results

Let $W$ be a $2 \times 2$ matrix

$$
W=\left(\begin{array}{ll}
w_{1} & w_{2}  \tag{2.1}\\
w_{3} & w_{4}
\end{array}\right)
$$

with $\operatorname{det} W \neq 0$ and set

$$
\begin{equation*}
\mathfrak{A}=\left[\frac{W^{t} W}{\operatorname{det} W}\right]^{-1} \tag{2.2}
\end{equation*}
$$

We have the following elementary result
Lemma 2.1. If $W$ and $\mathfrak{G}$ are defined as above, then $\mathfrak{G}^{t}=\mathfrak{G}$ and

$$
\operatorname{det} \mathcal{Q}=1
$$

Proof. It is easy to check that $\mathfrak{G}$ has the following expression

$$
\mathfrak{A}=\frac{1}{\operatorname{det} W}\left(\begin{array}{cc}
w_{2}^{2}+w_{4}^{2} & -\left(w_{1} w_{2}+w_{3} w_{4}\right) \\
-\left(w_{1} w_{2}+w_{3} w_{4}\right) & w_{1}^{2}+w_{3}^{2}
\end{array}\right) .
$$

Then it is obvious that $\mathfrak{C}^{t}=\mathcal{A}$ and

$$
\operatorname{det} \mathfrak{G}=\frac{\left(w_{1} w_{4}-w_{2} w_{3}\right)^{2}}{(\operatorname{det} W)^{2}}=1
$$

For $u \in W^{1,2}(\Omega)$ and $A \in \mathcal{\delta}(K)$, define $\mathcal{G}=\mathcal{G}(A, u)=\left(\alpha_{i j}\right)$ given by (1.2) if $\nabla u \neq 0$. Otherwise we set $\mathcal{G}=\left(\delta_{i j}\right)$.

Proposition 2.1. If $A=\left(a_{i j}\right)$ and $\mathfrak{G}=\mathfrak{G}(A, u)$ is defined as above, then $\mathfrak{G}^{t}=\mathfrak{G}$ and $\operatorname{det} \mathcal{G}=1$.

Proof. If we set

$$
\begin{array}{ll}
w_{1}=u_{x_{1}}, & w_{2}=u_{x_{2}} \\
w_{3}=-\sum_{j} a_{j 2} u_{x_{j}}, & w_{4}=\sum_{j} a_{1 j} u_{x_{j}}
\end{array}
$$

and

$$
W=\left(\begin{array}{ll}
w_{1} & w_{2} \\
w_{3} & w_{4}
\end{array}\right)
$$

then $\langle A \nabla u, \nabla u\rangle \neq 0$ if and only if $\operatorname{det} W \neq 0$ and we have

$$
\mathfrak{G}=\left[\frac{W^{t} W}{\operatorname{det} W}\right]^{-1}
$$

So, the result follows from Lemma 2.1.
We note the following useful lemmas
Lemma 2.2. Let $A, B \in \mathcal{E}(K)$. Assume that $\operatorname{det} A=\operatorname{det} B>0$ and

$$
\begin{equation*}
\operatorname{det}(A-B)=0 \tag{2.3}
\end{equation*}
$$

Then

$$
A=B
$$

Proof. Set $C=A^{-\frac{1}{2}} B A^{-\frac{1}{2}}$ where we have denoted with $A^{-\frac{1}{2}}$ the inverse matrix of the square root $A^{\frac{1}{2}}$ of matrix $A$. Then $C$ is a symmetric matrix and obviously $\operatorname{det} C=(\operatorname{det} B) /(\operatorname{det} A)=1$. Moreover we have

$$
\begin{equation*}
A-B=A^{\frac{1}{2}}(I-C) A^{\frac{1}{2}} \tag{2.4}
\end{equation*}
$$

and so our assumptions imply

$$
0=\operatorname{det}(A-B)=(\operatorname{det} A)^{\frac{1}{2}} \operatorname{det}(I-C)(\operatorname{det} A)^{\frac{1}{2}}
$$

therefore we arrive at

$$
\begin{equation*}
0=\operatorname{det}(I-C)=1-\operatorname{tr} C+\operatorname{det} C=2-\operatorname{tr} C . \tag{2.5}
\end{equation*}
$$

If we indicate the entries of $C$ as

$$
C=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

we obtain explicitely

$$
(a+c)^{2}=(\operatorname{tr} C)^{2}=4=4 \operatorname{det} C=4 a c-4 b^{2}
$$

and so

$$
(a-c)^{2}=-4 b^{2}
$$

that is $a=c, b=0$. Since by (2.5) $\operatorname{tr} C=2$ we deduce $a=c=1$.
For the sake of completeness we give also the following

Lemma 2.3 [1]. Let $E=\left(E_{1}, E_{2}\right), F=\left(F_{1}, F_{2}\right)$ be two vectors of $\mathbb{R}^{2}$ such that $\langle E, F\rangle>0$. Then there exists a unique matrix $\mathfrak{G} \in \mathcal{E}(K)$ with $\operatorname{det} \mathcal{G}=1$ such that

$$
\begin{equation*}
\mathfrak{G} E=F . \tag{2.6}
\end{equation*}
$$

Proof. The definition of $\mathfrak{G}$ is suggested by (1.2) choose

$$
\mathfrak{A}=\left(\begin{array}{ll}
\alpha_{11} & \alpha_{12} \\
\alpha_{12} & \alpha_{22}
\end{array}\right)
$$

with

$$
\alpha_{11}=\frac{E_{2}^{2}+F_{1}^{2}}{\langle E, F\rangle}, \quad \alpha_{12}=\frac{F_{1} F_{2}-E_{1} E_{2}}{\langle E, F\rangle}, \quad \alpha_{22}=\frac{F_{2}^{2}+E_{1}^{2}}{\langle E, F\rangle} .
$$

Then it is immediate to check that $\mathcal{G} \in \mathcal{E}(K), \operatorname{det} \mathcal{G}=1$ and that (2.6) holds. Assume that $\mathscr{B} \in \mathcal{E}(K)$ is another matrix satisfying $\operatorname{det} \mathscr{B}=1$ and

$$
\mathfrak{G} E=F=\mathscr{B} E .
$$

Then $E$ is a non zero vector such that

$$
(\mathcal{Q}-\mathfrak{B}) E=0
$$

so $\operatorname{det}(\mathfrak{Q}-\mathfrak{B})=0$ and by previous lemma we deduce $\mathfrak{A}=\mathfrak{B}$.
Proposition 2.2. Let $A \in \mathcal{E}(K)$ and $u \in W^{1,2}(\Omega)$, with $\nabla u \neq 0$, then the following properties hold true.
(i) $\mathfrak{G}(A, u)=A$ if and only if $\operatorname{det} A=1$.
(ii) $\mathfrak{A}(A, u) \in \mathcal{E}(K)$.
(iii) $\mathcal{G}(A, u) \nabla u=A \nabla u$ a.e in $\Omega$.
(iv) $B \in \mathcal{E}(K), \operatorname{det} B=1, B \nabla u=A \nabla u \Rightarrow B=\mathcal{G}(A, u)$.

Proof of (i). If $\mathfrak{G}(A, u)=A$, Proposition 2.1 implies $\operatorname{det} A(x)=\operatorname{det} \mathfrak{G}(x)=1$.
Conversely, if $\operatorname{det} A(x)=1$, we have $a_{11} a_{22}-a_{12}^{2}=1$, so by replacing $a_{11} a_{22}=1+$ $+a_{12}^{2}$ into the expression of $\alpha_{i j}, i, j=1,2$, it is easily seen that

$$
\alpha_{i j}=a_{i j} .
$$

Proof of (ii). This property shows that passing from $A$ to $\mathfrak{A}(A, u)$ the coercivity and boundness constants are exactly preserved.

We use the fact that we already know by Proposition 2 that $\operatorname{det} \mathcal{G}=1$. As a consequence the eigenvalues of $\mathcal{G}$ are $\lambda_{1} \geqslant 1 \geqslant \lambda_{2}=\frac{1}{\lambda_{1}}$. We want to prove that $\frac{1}{K} \leqslant \lambda_{i} \leqslant$ $\leqslant K$ and this is equivalent to $\lambda_{1}+\frac{1}{\lambda_{1}} \leqslant K+\frac{1}{K}$.
$\quad$ Recall that

$$
\lambda_{1}+\frac{1}{\lambda_{1}}=\operatorname{tr} \mathfrak{G}
$$

and that by the definition (1.2)

$$
\operatorname{tr} \mathcal{G}=\frac{u_{x_{1}}^{2}+u_{x_{2}}^{2}+\left(a_{11} u_{x_{1}}+a_{12} u_{x_{2}}\right)^{2}+\left(a_{12} u_{x_{1}}+a_{22} u_{x_{2}}\right)^{2}}{\langle A \nabla u, \nabla u\rangle} .
$$

By $A \in \mathcal{E}(K)$ we deduce (see [10] e.g.)

$$
|\xi|^{2}+|A \xi|^{2} \leqslant\left(K+\frac{1}{K}\right)\langle A \xi, \xi\rangle \quad \forall \xi \in \mathbb{R}^{2}
$$

Choosing $\xi=\nabla u$ we obtain $\operatorname{tr} \mathcal{G} \leqslant K+\frac{1}{K}$.
Proof of (iii). We can assume $\langle A \nabla u, \nabla u\rangle \neq 0$, otherwise (iii) is obvious. So, we have to prove that

$$
\left\{\begin{array}{l}
a_{11} u_{x_{1}}+a_{12} u_{x_{2}}=\alpha_{11} u_{x_{1}}+\alpha_{12} u_{x_{2}} \\
a_{12} u_{x_{1}}+a_{22} u_{x_{2}}=\alpha_{12} u_{x_{1}}+\alpha_{22} u_{x_{2}}
\end{array}\right.
$$

By the definition of $\mathfrak{G}=\mathfrak{G}(A, u)$, we have

$$
\begin{aligned}
& \alpha_{11} u_{x_{1}}+\alpha_{12} u_{x_{2}}= \frac{u_{x_{2}}^{2}+a_{11}^{2} u_{x_{1}}^{2}+2 a_{11} a_{12} u_{x_{1}} u_{x_{2}}+a_{12}^{2} u_{x_{2}}^{2}}{\langle A \nabla u, \nabla u\rangle} u_{x_{1}}+ \\
&+\frac{-u_{x_{1}} u_{x_{2}}+a_{11} a_{12} u_{x_{1}}^{2}+a_{11} a_{22} u_{x_{1}} u_{x_{2}}+a_{12}^{2} u_{x_{1}} u_{x_{2}}+a_{12} a_{22} u_{x_{2}}^{2}}{\langle A \nabla u, \nabla u\rangle} u_{x_{2}}= \\
&= \frac{1}{\langle A \nabla u, \nabla u\rangle}\left\{a_{11} u_{x_{1}}\left[a_{11} u_{x_{1}}^{2}+2 a_{12} u_{x_{1}} u_{x_{2}}+a_{22} u_{x_{2}}^{2}\right]+\right. \\
&\left.\quad+a_{12} u_{x_{2}}\left[a_{11} u_{x_{1}}^{2}+2 a_{12} u_{x_{1}} u_{x_{2}}+a_{22} u_{x_{2}}^{2}\right]\right\}=a_{11} u_{x_{1}}+a_{12} u_{x_{2}} .
\end{aligned}
$$

Similarly we have also

$$
\begin{gathered}
\alpha_{12} u_{x_{1}}+\alpha_{22} u_{x_{2}}=\frac{-u_{x_{1}} u_{x_{2}}+a_{11} a_{12} u_{x_{1}}^{2}+a_{11} a_{22} u_{x_{1}} u_{x_{2}}+a_{12}^{2} u_{x_{1}} u_{x_{2}}+a_{12} a_{22} u_{x_{2}}^{2}}{\langle A \nabla u, \nabla u\rangle} u_{x_{1}}+ \\
+\frac{u_{x_{1}}^{2}+a_{12}^{2} u_{x_{1}}^{2}+2 a_{12} a_{22} u_{x_{1}} u_{x_{2}}+a_{22}^{2} u_{x_{2}}^{2}}{\langle A \nabla u, \nabla u\rangle} u_{x_{2}}= \\
=\frac{1}{\langle A \nabla u, \nabla u\rangle}\left\{a_{12} u_{x_{1}}\left[a_{11} u_{x_{1}}^{2}+2 a_{12} u_{x_{1}} u_{x_{2}}+a_{22} u_{x_{2}}^{2}\right]+\right. \\
+ \\
\left.a_{22} u_{x_{2}}\left[a_{11} u_{x_{1}}^{2}+2 a_{12} u_{x_{1}} u_{x_{2}}+a_{22} u_{x_{2}}^{2}\right]\right\}=a_{12} u_{x_{1}}+a_{22} u_{x_{2}} .
\end{gathered}
$$

Proof of (iv). It is sufficient to note that according to Lemma 2.3 the equality $\operatorname{det} B=1$ uniquely defines $B$ under the specified conditions.

For later purpose it is worth recalling that, if $\Omega$ is simply connected and $u \in W^{1,2}(\Omega)$ is a weak solution to

$$
\operatorname{div} A(x) \nabla u=0
$$

with $A \in \mathcal{E}(K)$, then there exists, and it is uniquely determined up to an additive constant, a function $v \in W^{1,2}(\Omega)$ such that

$$
\left\{\begin{array}{l}
v_{x_{1}}=-\left(a_{12} u_{x_{1}}+a_{22} u_{x_{2}}\right)  \tag{2.7}\\
v_{x_{2}}=a_{11} u_{x_{1}}+a_{12} u_{x_{2}}
\end{array}\right.
$$

and we have

$$
\operatorname{div}\left(\frac{A}{\operatorname{det} A} \nabla v\right)=0 .
$$

The following proposition is of particular relevance.

Proposition 2.3. Let $A=\left(a_{i j}\right) \in \mathcal{\delta}(K), u \in W^{1,2}(\Omega)$ and $v \in W^{1,2}(\Omega)$ verify (2.7); then

$$
\begin{equation*}
\mathfrak{G}(A, u)=\mathfrak{A}\left(\frac{A}{\operatorname{det} A}, v\right) . \tag{2.8}
\end{equation*}
$$

Proof. Let us show, first of all, that if $u$ and $v$ satisfy (2.7) then their corresponding energies coincide:

$$
\begin{equation*}
\langle A \nabla u, \nabla u\rangle=\left\langle\frac{A}{\operatorname{det} A} \nabla v, \nabla v\right\rangle . \tag{2.9}
\end{equation*}
$$

If $R$ denotes the standard complex structure of $\mathbb{R}^{2}$ :

$$
R=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

and $R^{t}$ its adjoint, system (2.7) takes the form

$$
\nabla v=R A \nabla u
$$

and it is equivalent to

$$
\nabla u=R^{t} \frac{A}{\operatorname{det} A} \nabla v .
$$

Now the proof of (2.9) follows by mean of the elementary equality

$$
\left\langle E, R^{t} F\right\rangle=\langle F, R E\rangle
$$

valid for $E, F$ arbitrary vectors of $\mathbb{R}^{2}$.

For notational simplicity set now $B=\frac{A}{\operatorname{det} A}=\left(b_{i j}\right)$ and $\mathfrak{C}\left(\frac{A}{\operatorname{det} A}, v\right)=\left(\beta_{i j}\right)$. By the definition (1.2) $\beta_{i j}$ assume the following expressions

$$
\begin{gathered}
\beta_{11}=\frac{\left(1+b_{12}^{2}\right) v_{x_{2}}^{2}+b_{11}^{2} v_{x_{1}}^{2}+2 b_{11} b_{12} v_{x_{1}} v_{x_{2}}}{\langle B \nabla v, \nabla v\rangle}, \\
\beta_{12}=\beta_{21}=\frac{b_{11} b_{12} v_{x_{1}}^{2}+\left(b_{11} b_{22}+b_{12}^{2}-1\right) v_{x_{1}} v_{x_{2}}+b_{12} b_{22} v_{x_{2}}^{2}}{\langle B \nabla v, \nabla v\rangle}, \\
\beta_{22}=\frac{\left(1+b_{12}^{2}\right) v_{x_{1}}^{2}+2 b_{12} b_{22} v_{x_{1}} v_{x_{2}}+b_{22}^{2} v_{x_{2}}^{2}}{\langle B \nabla v, \nabla v\rangle} .
\end{gathered}
$$

By mean of (2.7), (2.9) we have
$\beta_{11}=\frac{\left((\operatorname{det} A)^{2}+a_{12}^{2}\right) v_{x 2}^{2}+a_{11}^{2} v_{x 1}^{2}+2 a_{11} a_{12} v_{x 1} v_{x 2}}{(\operatorname{det} A)^{2}\langle A \nabla u, \nabla u\rangle}=$

$$
=\frac{1}{D}\left[A_{11}^{(11)} u_{x_{1}}^{2}+2 A_{12}^{(11)} u_{x_{1}} u_{x_{2}}+A_{22}^{(11)} u_{x_{2}}^{2}\right]
$$

where

$$
\begin{aligned}
D & =(\operatorname{det} A)^{2}\langle A \nabla u, \nabla u\rangle \\
A_{11}^{(11)} & =\left[(\operatorname{det} A)^{2}+a_{12}^{2}\right] a_{11}^{2}+a_{11}^{2} a_{12}^{2}-2 a_{11}^{2} a_{12}^{2}=(\operatorname{det} A)^{2} a_{11}^{2} \\
A_{12}^{(11)} & =\left[(\operatorname{det} A)^{2}+a_{12}^{2}\right] a_{11} a_{12}+a_{11}^{2} a_{12} a_{22}-a_{11} a_{12}\left(a_{12}^{2}+a_{11} a_{22}\right)=(\operatorname{det} A)^{2} a_{11} a_{12} \\
A_{22}^{(11)} & =\left[(\operatorname{det} A)^{2}+a_{12}^{2}\right] a_{12}^{2}+a_{11}^{2} a_{22}^{2}-2 a_{11} a_{12}^{2} a_{22}=(\operatorname{det} A)^{2}\left(1+a_{12}^{2}\right) .
\end{aligned}
$$

Then

$$
\beta_{11}=\frac{1}{D}(\operatorname{det} A)^{2}\left[a_{11}^{2} u_{x_{1}}^{2}+2 a_{11} a_{12} u_{x_{1}} u_{x_{2}}+\left(1+a_{12}^{2}\right) u_{x_{2}}^{2}\right]=\alpha_{11} .
$$

Similarly we have
$\beta_{12}=\beta_{21}=\frac{a_{11} a_{12} v_{x_{1}}^{2}+\left(a_{11} a_{22}+a_{12}^{2}-(\operatorname{det} A)^{2}\right) v_{x_{1}} v_{x_{2}}+a_{12} a_{22} v_{x_{2}}^{2}}{(\operatorname{det} A)^{2}\langle A \nabla u, \nabla u\rangle}=$

$$
=\frac{1}{D}\left[A_{11}^{(12)} u_{x_{1}}^{2}+A_{12}^{(12)} u_{x_{1}} u_{x_{2}}+A_{22}^{(12)} u_{x_{2}}^{2}\right]
$$

where

$$
\begin{aligned}
& A_{11}^{(12)}=a_{11} a_{12}\left[a_{12}^{2}-\left(a_{11} a_{22}+a_{12}^{2}-(\operatorname{det} A)^{2}\right)+a_{11} a_{22}\right]=(\operatorname{det} A)^{2} a_{11} a_{12} \\
& \begin{aligned}
A_{12}^{(12)}=2 a_{11} a_{12}^{2} a_{22}-\left(a_{11} a_{22}+a_{12}^{2}-(\operatorname{det} A)^{2}\right)\left(a_{11} a_{22}+a_{12}^{2}\right) & +2 a_{11} a_{12}^{2} a_{22}= \\
& =(\operatorname{det} A)^{2}\left(a_{11} a_{22}+a_{12}^{2}-1\right)
\end{aligned}
\end{aligned}
$$

$A_{22}^{(12)}=a_{12} a_{22}\left[a_{11} a_{22}-\left(a_{11} a_{22}+a_{12}^{2}-(\operatorname{det} A)^{2}\right)+a_{12}^{2}\right]=(\operatorname{det} A)^{2} a_{12} a_{22}$.
Then

$$
\beta_{12}=\beta_{21}=\frac{1}{D}(\operatorname{det} A)^{2}\left[a_{11} a_{12} u_{x_{1}}^{2}+\left(a_{11} a_{22}+a_{12}^{2}-1\right) u_{x_{1}} u_{x_{2}}+a_{11} a_{22} u_{x_{2}}^{2}\right]=\alpha_{12}=\alpha_{21} .
$$

Finally we also have

$$
\begin{aligned}
\beta_{22}=\frac{\left(a_{12}^{2}+(\operatorname{det} A)^{2}\right) v_{x_{1}}^{2}+2 a_{12} a_{22} v_{x_{1}} v_{x_{2}}+a_{22}^{2} v_{x_{2}}^{2}}{(\operatorname{det} A)^{2}\langle A \nabla u, \nabla u\rangle} & = \\
& =\frac{1}{D}\left[A_{11}^{(22)} u_{x_{1}}^{2}+2 A_{12}^{(22)} u_{x_{1}} u_{x_{2}}+A_{22}^{(22)} u_{x_{2}}^{2}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{11}^{(22)}=\left(a_{12}^{2}+(\operatorname{det} A)^{2}\right) a_{12}^{2}-2 a_{11} a_{12}^{2} a_{22}+a_{11}^{2} a_{22}^{2}=(\operatorname{det} A)^{2}\left(a_{12}^{2}+1\right) \\
& A_{12}^{(22)}=\left(a_{12}^{2}+(\operatorname{det} A)^{2}\right) a_{12} a_{22}-a_{12} a_{22}\left(a_{11} a_{22}+a_{12}^{2}\right)+a_{11} a_{12} a_{22}^{2}=(\operatorname{det} A)^{2} a_{12} a_{22} \\
& A_{22}^{(22)}=\left(a^{2}+(\operatorname{det} A)^{2}\right) a_{22}^{2}-2 a_{12}^{2} a_{22}^{2}+a_{12}^{2} a_{22}^{2}=(\operatorname{det} A)^{2} a_{22}^{2} .
\end{aligned}
$$

Then

$$
\beta_{22}=\frac{1}{D}(\operatorname{det} A)^{2}\left[\left(a_{12}^{2}+1\right) u_{x_{1}}^{2}+2 a_{11} a_{22} u_{x_{1}} u_{x_{2}}+a_{22}^{2} u_{x_{2}}^{2}\right]=\alpha_{22} .
$$

The following proposition indicates in particular that every constant matrix with determinant one can be obtained as the Morrey matrix of an isotropic matrix.

Proposition 2.4. For any $\mathfrak{G}=\mathcal{G}(x) \in \mathcal{E}(K)$ such that $\operatorname{det} \mathfrak{Q}=1$, if $\mathcal{G}(x)$ bas an eigenvector independent of $x$, then there exists $A=A(x) \in \mathcal{E}(K)$ of the isotropic form

$$
A(x)=\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)
$$

such that

$$
\mathfrak{A}(A, u)=\mathfrak{a}
$$

with $u=\lambda_{1} x_{1}+\lambda_{2} x_{2}$, for $\lambda_{1}$ and $\lambda_{2}$ suitable.

Proof. According to an observation in [1] a matrix $\mathcal{G} \in \mathcal{E}(K)$ has determinant one if and only if there exist $a=a(x) \in L^{\infty}$ with $a I \in \mathcal{E}(K)$ and $e=e(x) \in L^{\infty}\left(\Omega ; \mathbb{R}^{2}\right)$ with $|e(x)|^{2}=1$ a.e. such that

$$
\begin{equation*}
\mathfrak{A}(x)=a(x) I+\left(\frac{1}{a(x)}-a(x)\right) e(x) \otimes e(x) \tag{2.10}
\end{equation*}
$$

On the other hand, choosing $u\left(x_{1}, x_{2}\right)=\lambda_{1} x_{1}+\lambda_{2} x_{2}, a_{i j}(x)=a(x) \delta_{i j}$ in the definition (1.2) we obtain the entries $\alpha_{i j}(x)$ of $\mathcal{G}(A, u)$ as

$$
\begin{aligned}
& \alpha_{11}=a(x) \theta+\frac{1}{a(x)}(1-\theta) \\
& \alpha_{12}=\left(a(x)-\frac{1}{a(x)}\right) \sqrt{\theta(1-\theta)} \\
& \alpha_{22}=\frac{1}{a(x)} \theta+a(x)(1-\theta)
\end{aligned}
$$

with $\theta=\frac{\lambda_{1}^{2}}{\lambda_{1}^{2}+\lambda_{2}^{2}} \in[0,1]$. If we define $e_{1}=\sqrt{1-\theta}, e_{2}=\sqrt{\theta}$ we obtain

$$
\mathfrak{G}(A, u)=\mathfrak{G}(x)
$$

Let us point out here that the result of Proposition 2.4 cannot be true for a general matrix $\mathcal{G} \in \mathcal{E}(K)$ with $\operatorname{det} \mathcal{G}=1$ and arbitrary $u$.

Proposition 2.5. Let $\Omega=\{|x|<1\}$ and $\mathfrak{G} \in \mathcal{E}(K)$ be the matrix (of Serrin)

$$
\begin{equation*}
\mathfrak{A}(x)=\frac{1}{K} I+\left(K-\frac{1}{K}\right) \frac{x}{|x|} \otimes \frac{x}{|x|} . \tag{2.11}
\end{equation*}
$$

Let $u \in W_{\text {loc }}^{1,2}(\Omega)$ be any local solution to the equation

$$
\begin{equation*}
\operatorname{div}(\mathfrak{G}(x) \nabla u)=0 \tag{2.12}
\end{equation*}
$$

such that $\nabla u \neq 0$ and

$$
\begin{equation*}
\int_{|x|=1} u x_{1} d s \neq 0 \tag{2.13}
\end{equation*}
$$

Then no isotropic matrix $A \in \mathcal{E}(K), A(x)=a(x) I$ can satisfy the equality

$$
\begin{equation*}
\mathfrak{A}(A, u)=\mathfrak{A} . \tag{2.14}
\end{equation*}
$$

Proof. Fix $u \in W_{l o c}^{1,2}(\Omega)$ verifying (2.12), (2.13). Assume, by contradiction, that there exists an isotropic matrix $A=a(x) I$ such that (2.14) holds for a certain $u$. Then, by (iii) of Proposition 2.2 we obtain

$$
\operatorname{div}(a(x) I \nabla u)=0 .
$$

By a theorem on the precise Hölder continuity of solutions to planar elliptic equations of isotropic type due to Piccinini and Spagnolo [16], $u$ should enjoy the regularity

$$
u \in C_{l o c}^{0, \alpha}(\Omega)
$$

with $\alpha=\frac{4}{\pi} \operatorname{Arctan} \frac{1}{K}>\frac{1}{K}$.
On the contrary, by a result of [9] any such solution $u$ belongs to $C_{l o c}^{0, \frac{1}{K}}$ but not to $C_{l o c}^{0, \beta}$ for any $\beta>\frac{1}{K}$. This concludes the proof.

We conclude the present section with the following
Proposition 2.6. Let $A, B \in \mathcal{E}(K)$ and $u \in W^{1,2}(\Omega)$ with $\nabla u \neq 0$. Then $\mathcal{G}(A, u)=$ $=\mathcal{A}(B, u)$ if and only if $\operatorname{det}(A-B)=0$.

Proof. It is an immediate consequence of (iii) of Proposition 2.2.

## 3. The $G$-convergence

Let us recall the definition of $G$-convergence. A sequence $A_{b}$ of elements of $\mathcal{E}(K)$ $G$-converges to an element $A$ of $\mathcal{\delta}(K)$ if for any $f \in H^{-1}(\Omega)$ the solutions $u_{b}$ of

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(A_{b} \nabla u_{b}\right)=f \\
u_{b} \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

converge weakly in $H_{0}^{1}(\Omega)$ to the solution $u$ of

$$
\left\{\begin{array}{l}
-\operatorname{div}(A \nabla u)=f \\
u \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

Now we can pass to the proof of Theorem 1.
Proof of Theorem 1. By a well known [19] compactness theorem with respect to $G$-convergence we may assume that the sequence $\mathfrak{G}_{b}=\mathfrak{G}\left(A_{b}, u_{b}\right) G$-converges to $\mathcal{Q}_{0} \in \mathcal{E}(K)$.

Let us first show that $\operatorname{det} \mathcal{G}_{0}=1$. This is a particular case of a result of [7] but we present here a simple proof of it for the sake of completeness (see also [1]).

Let us define $v_{b} \in W^{1,2}(\Omega)$ as a solution to the system

$$
\begin{equation*}
\nabla v_{b}=R A_{b} \nabla u_{b}=R \mathcal{G}_{b} \nabla u_{b} . \tag{3.1}
\end{equation*}
$$

Then note that, by the condition $\operatorname{det} \mathfrak{G}_{b}=1$, (3.1) is equivalent to

$$
\begin{equation*}
\nabla u_{b}=R^{t} \mathcal{G}_{b} \nabla v_{b} . \tag{3.2}
\end{equation*}
$$

By Remark 1.1, using the $G$-convergence of $\mathcal{G}_{b}$ to $\mathcal{G}_{0}$ and of $A_{b}$ to $A$ we infer the weak convergence in $L^{2}\left(\Omega, \mathbb{R}^{2}\right)$ :

$$
\begin{equation*}
\mathcal{G}_{b} \nabla u_{b}=A_{b} \nabla u_{b} \rightharpoonup \mathcal{Q}_{0} \nabla u=A \nabla u . \tag{3.3}
\end{equation*}
$$

Then by (3.1) and (3.3) we obtain $\nabla v_{b} \rightharpoonup \nabla v$ where

$$
\begin{equation*}
\nabla v=R \mathcal{G}_{0} \nabla u \tag{3.4}
\end{equation*}
$$

and $\nabla v \neq 0$ a.e.
On the other hand (3.1) implies

$$
\begin{equation*}
\operatorname{div} \mathfrak{G}_{b} \nabla v_{b}=0 \tag{3.5}
\end{equation*}
$$

and by Remark 1.1 we deduce

$$
\begin{equation*}
\mathfrak{Q}_{b} \nabla v_{b} \rightharpoonup \mathfrak{G}_{0} \nabla v . \tag{3.6}
\end{equation*}
$$

Passing to the limit in (3.2) we obtain

$$
\begin{equation*}
\nabla u=R^{t} \mathcal{G}_{0} \nabla v \tag{3.7}
\end{equation*}
$$

We want to prove that (3.4) and (3.7) together imply $\operatorname{det} \mathcal{Q}_{0}=1$.
Solving (3.4) with respect to $\nabla u$ we obtain

$$
\begin{equation*}
\nabla u=R^{t} \frac{\mathcal{G}_{0}}{\operatorname{det} \mathfrak{G}_{0}} \nabla v \tag{3.8}
\end{equation*}
$$

By (3.7) and (3.8) we deduce

$$
\operatorname{det}\left(\mathfrak{Q}_{0}-\frac{\mathfrak{Q}_{0}}{\operatorname{det} \mathfrak{Q}_{0}}\right)=0
$$

and this forces $A_{0}$ to have determinant equal to one, as one can immediately verify. So we have proved that $\operatorname{det} \mathcal{Q}_{0}=1$. In conclusion, the two matrices $\mathcal{A}=\mathfrak{A}(A, u)$ and $\mathcal{Q}_{0}$ have determinant one and satisfy

$$
\mathfrak{G}_{0} \nabla u=A \nabla u=\mathfrak{q} \nabla u .
$$

This implies $\mathcal{Q}_{0}=\mathcal{A}$, since $\nabla u \neq 0$ a.e., by Proposition 2.2.

## 4. Change of variable properties of Morrey operators

In this section we will prove some results which clarify the role of $\mathfrak{C}(A, u)$ with respect to change of variables.

Let $u, v$ be a solution to the system

$$
\left\{\begin{array}{l}
v_{x_{1}}=-\left(a_{12} u_{x_{1}}+a_{22} u_{x_{2}}\right)  \tag{4.1}\\
v_{x_{2}}=a_{11} u_{x_{1}}+a_{12} u_{x_{2}}
\end{array}\right.
$$

and let $(\xi, \eta)$ be a solution to the system

$$
\left\{\begin{array}{l}
\eta_{x_{1}}=-\left(\alpha_{12} \xi_{x_{1}}+\alpha_{22} \xi_{x_{2}}\right)  \tag{4.2}\\
\eta_{x_{2}}=\alpha_{11} \xi_{x_{1}}+\alpha_{12} \xi_{x_{2}}
\end{array}\right.
$$

where $\left(\alpha_{i j}\right)=\mathcal{G}(A, u), A=\left(a_{i j}\right)$.

Theorem 4.1. If $(u, v)$ and $(\xi, \eta)$ are defined as above and there exist $U$ and $V$ such that

$$
\begin{align*}
& U(\xi(x, y), \eta(x, y))=u(x, y)  \tag{4.3}\\
& V(\xi(x, y), \eta(x, y))=v(x, y), \tag{4.4}
\end{align*}
$$

then $V$ and $U$ are conjugate harmonic functions:

$$
\left\{\begin{array}{l}
V_{\xi}=-U_{\eta}  \tag{4.5}\\
V_{\eta}=U_{\xi}
\end{array}\right.
$$

Proof. Differentiating (4.3), (4.4), we get by (iii) in Proposition 2.2

$$
V_{\xi} \xi_{x_{1}}+V_{\eta} \eta_{x_{1}}=-\alpha_{12}\left(U_{\xi} \xi_{x_{1}}+U_{\eta} \eta_{x_{1}}\right)-\alpha_{22}\left(U_{\xi} \xi_{x_{2}}+U_{\eta} \eta_{x_{2}}\right)
$$

and

$$
V_{\xi} \xi_{x_{2}}+V_{\eta} \eta_{x_{2}}=\alpha_{11}\left(U_{\xi} \xi_{x_{1}}+U_{\eta} \eta_{x_{1}}\right)+\alpha_{12}\left(U_{\xi} \xi_{x_{2}}+U_{\eta} \eta_{x_{2}}\right) .
$$

Solving with respect to $V_{\xi}, V_{\eta}$ we obtain

$$
\begin{aligned}
& V_{\xi}=-\frac{1}{J}\left[\left(\alpha_{12} \xi_{x_{1}} \eta_{x_{2}}+\alpha_{22} \xi_{x_{2}} \eta_{x_{2}}+\alpha_{11} \xi_{x_{1}} \eta_{x_{1}}+\alpha_{12} \xi_{x_{2}} \eta_{x_{1}}\right) U_{\xi}+\right. \\
& \left.\quad+\left(\alpha_{12} \eta_{x_{1}} \eta_{x_{2}}+\alpha_{22} \eta_{x_{2}}^{2}+\alpha_{11} \eta_{x_{1}}^{2}+\alpha_{12} \eta_{x_{1}} \eta_{x_{2}}\right) U_{\eta}\right] \\
& \begin{array}{r}
V_{\eta}=\frac{1}{J}\left[\left(\alpha_{11} \xi_{x_{1}}^{2}+\alpha_{12} \xi_{x_{1}} \xi_{x_{2}}+\alpha_{12} \xi_{x_{1}} \xi_{x_{2}}+\alpha_{22} \xi_{x_{2}}^{2}\right) U_{\xi}+\right. \\
\\
\left.+\left(\alpha_{11} \xi_{x_{1}} \eta_{x_{1}}+\alpha_{12} \xi_{x_{1}} \eta_{x_{2}}+\alpha_{12} \eta_{x_{1}} \xi_{x_{2}}+\alpha_{22} \xi_{x_{2}} \eta_{x_{2}}\right) U_{\eta}\right]
\end{array}
\end{aligned}
$$

where $J=\xi_{x_{1}} \eta_{x_{2}}-\xi_{x_{2}} \eta_{x_{1}}$.
In order to arrive at (4.5) we impose the restrictions

$$
\begin{gathered}
\alpha_{12} \xi_{x_{1}} \eta_{x_{2}}+\alpha_{22} \xi_{x_{2}} \eta_{x_{2}}+\alpha_{11} \xi_{x_{1}} \eta_{x_{1}}+\alpha_{12} \xi_{x_{2}} \eta_{x_{1}}=0 \\
\alpha_{11} \eta_{x_{1}}^{2}+2 \alpha_{12} \eta_{x_{1}} \eta_{x_{2}}+\alpha_{22} \eta_{x_{2}}^{2}=J \\
\alpha_{11} \xi_{x_{1}}^{2}+2 \alpha_{12} \xi_{x_{1}} \xi_{x_{2}}+\alpha_{22} \xi_{x_{2}}^{2}=J
\end{gathered}
$$

which are easily checked by mean of (4.2).
The following theorem gives a sufficient condition under which the Morrey matrices corresponding to two different matrices $A, B \in \mathcal{E}(K)$ agree on suitable functions.

Theorem 4.2. Let $A, B \in \mathcal{E}(K)$ and $f=(u, v), g=(\xi, \eta)$ be solutions to the systems

$$
\begin{align*}
\nabla v & =R A \nabla u  \tag{4.6}\\
\nabla \eta & =R B \nabla \xi . \tag{4.7}
\end{align*}
$$

If there exists a conformal mapping $H=(U, V)$ on $g(\Omega)$ such that

$$
\begin{equation*}
f=H \circ g \tag{4.8}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathfrak{G}(A, u)=\mathfrak{G}(B, \xi) \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{a}\left(\frac{A}{\operatorname{det} A}, v\right)=\mathfrak{A}\left(\frac{B}{\operatorname{det} B}, \eta\right) \tag{4.10}
\end{equation*}
$$

Proof. It is worth noting that

$$
\begin{gather*}
\mathcal{Q}(A, u)=\frac{1}{J_{f}}\left(\begin{array}{cc}
u_{x_{2}}^{2}+v_{x_{2}}^{2} & -\left(u_{x_{1}} u_{x_{2}}+v_{x_{1}} v_{x_{2}}\right) \\
-\left(u_{x_{1}} u_{x_{2}}+v_{x_{1}} v_{x_{2}}\right) & u_{x_{1}}^{2}+v_{x_{1}}^{2}
\end{array}\right)  \tag{4.11}\\
\mathcal{A}(B, \xi)=\frac{1}{J_{g}}\left(\begin{array}{cc}
\xi_{x_{2}}^{2}+\eta_{x_{2}}^{2} & -\left(\xi_{x_{1}} \xi_{x_{2}}+\eta_{x_{1}} \eta_{x_{2}}\right) \\
-\left(\xi_{x_{1}} \xi_{x_{2}}+\eta_{x_{1}} \eta_{x_{2}}\right) & \xi_{x_{1}}^{2}+\eta_{x_{1}}^{2}
\end{array}\right) \tag{4.12}
\end{gather*}
$$

where $J_{f}$ and $J_{g}$ denote the jacobian determinants of $f$ and $g$ respectively. By a straightforward calculation it turns out that

$$
\begin{equation*}
J_{f}=\operatorname{det} H \cdot J_{g} . \tag{4.13}
\end{equation*}
$$

Now let us prove that, if $J_{f} \neq 0$

$$
\begin{equation*}
\frac{u_{x_{2}}^{2}+v_{x_{2}}^{2}}{J_{f}}=\frac{\xi_{x_{2}}^{2}+\eta_{x_{2}}^{2}}{J_{g}} \tag{4.14}
\end{equation*}
$$

In fact, we have

$$
\begin{align*}
& u_{x_{2}}^{2}+v_{x_{2}}^{2}=\left(U_{\xi} \xi_{x_{2}}+U_{\eta} \eta_{x_{2}}\right)^{2}+\left(V_{\xi} \xi_{x_{2}}+V_{\eta} \eta_{x_{2}}\right)^{2}=  \tag{4.15}\\
& \quad=\left(U_{\xi}^{2}+V_{\xi}^{2}\right) \xi_{x_{2}}^{2}+2\left(U_{\xi} U_{\eta}+V_{\xi} V_{\eta}\right) \xi_{x_{2}} \eta_{x_{2}}+\left(U_{\eta}^{2}+V_{\eta}^{2}\right) \eta_{x_{2}}^{2}
\end{align*}
$$

Taking into account the assumption that $H$ is a conformal mapping, i.e.

$$
\left\{\begin{array}{l}
U_{\xi}^{2}+V_{\xi}^{2}=U_{\eta}^{2}+V_{\eta}^{2}=\operatorname{det} H  \tag{4.16}\\
U_{\xi} U_{\eta}+V_{\xi} V_{\eta}=0
\end{array}\right.
$$

we deduce (4.14) by (4.13) and (4.15).
Let us now prove that

$$
\begin{equation*}
\frac{u_{x_{1}} u_{x_{2}}+v_{x_{1}} v_{x_{2}}}{J_{f}}=\frac{\xi_{x_{1}} \xi_{x_{2}}+\eta_{x_{1}} \eta_{x_{2}}}{J_{g}} \tag{4.17}
\end{equation*}
$$

Infact we have

$$
\begin{align*}
& u_{x_{1}} u_{x_{2}}+v_{x_{1}} v_{x_{2}}=\left(U_{\xi}^{2}+V_{\xi}^{2}\right) \xi_{x_{1}} \xi_{x_{2}}+\left(U_{\eta}^{2}+V_{\eta}^{2}\right) \eta_{x_{1}} \eta_{x_{2}}+  \tag{4.18}\\
&+\left(U_{\xi} U_{\eta}+V_{\xi} V_{\eta}\right)\left(\xi_{x_{1}} \eta_{x_{2}}+\eta_{x_{1}} \xi_{x_{2}}\right)
\end{align*}
$$

By (4.16) we obtain

$$
u_{x_{1}} u_{x_{2}}+v_{x_{1}} v_{x_{2}}=\operatorname{det} H\left(\xi_{x_{1}} \xi_{x_{2}}+\eta_{x_{1}} \eta_{x_{2}}\right)=\frac{J_{f}}{J_{g}}\left(\xi_{x_{1}} \xi_{x_{2}}+\eta_{x_{1}} \eta_{x_{2}}\right)
$$

i.e. (4.17). Similarly one can prove

$$
\frac{u_{x_{1}}^{2}+v_{x_{1}}^{2}}{J_{f}}=\frac{\xi_{x_{1}}^{2}+\eta_{\xi_{1}}^{2}}{J_{g}}
$$

establishing (4.9). The equality (4.10) follows then by Proposition 2.3.

## 5. Examples

Example 5.1. If

$$
A=\left(\begin{array}{ll}
a_{11}(x) & a_{12}(x) \\
a_{12}(x) & a_{22}(x)
\end{array}\right)
$$

then choosing the functions depending only on one variable, we obtain

$$
\begin{aligned}
& \mathfrak{A}\left(A, u\left(x_{1}\right)\right)=\left(\begin{array}{cc}
a_{11}(x) & a_{12}(x) \\
a_{12}(x) & \frac{1+\left(a_{12}(x)\right)^{2}}{a_{11}(x)}
\end{array}\right) \\
& \mathfrak{A}\left(A, v\left(x_{2}\right)\right)=\left(\begin{array}{rr}
\frac{1+\left(a_{12}(x)\right)^{2}}{a_{22}(x)} & a_{12}(x) \\
a_{12}(x) & a_{22}(x)
\end{array}\right) .
\end{aligned}
$$

Example 5.2. If the matrix $A$ is isotropic, i.e.

$$
A=\left(\begin{array}{cc}
a(x) & 0 \\
0 & a(x)
\end{array}\right)
$$

and $\nabla u \neq 0$ then

$$
\mathfrak{G}(A, u)=\frac{1}{|\nabla u|^{2}}\left(\begin{array}{cc}
a(x) u_{x_{1}}^{2}+\frac{1}{a(x)} u_{x_{2}}^{2} & \left(a(x)-\frac{1}{a(x)}\right) u_{x_{1}} u_{x_{2}} \\
\left(a(x)-\frac{1}{a(x)}\right) u_{x_{1}} u_{x_{2}} & \frac{1}{a(x)} u_{x_{1}}^{2}+a(x) u_{x_{2}}^{2}
\end{array}\right) .
$$

Example 5.3. If $A=\left(a_{i j}\right)$ and $a_{12}=0$ then, assuming $u_{x_{i}} \neq 0$ for $i=1,2$, the matrix

$$
\mathfrak{G}=\mathfrak{A}(A, u)=\left(\alpha_{i j}\right)
$$

verifies

$$
\alpha_{12}=0
$$

if and only if

$$
A=\mathfrak{G}
$$

Under our assumptions, we deduce $a_{11} u_{x_{1}}^{2}+a_{22} u_{x_{2}}^{2} \neq 0$ and

$$
\begin{equation*}
\alpha_{12}=\frac{\left(a_{11} a_{22}-1\right) u_{x_{1}} u_{x_{2}}}{a_{11} u_{x_{1}}^{2}+a_{22} u_{x_{2}}^{2}} . \tag{5.1}
\end{equation*}
$$

Therefore, if $\alpha_{12}=0$, by (5.1) we deduce $a_{11} a_{22}-1=0$, i.e. $\operatorname{det} A=1$. Using ( $i$ ) in Proposition 2.2 we get $\mathfrak{G}=A$.

## References

[1] C. Capone, Quasiharmonic fields and Beltrami operators. Comm. Math. Univ. Carolinae, 43, 2, 2002, 363-377.
[2] E. De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. U.M.I., 1, 1968, 135-137.
[3] De Arcangelis - P. Donato, On the convergence of Laplace-Beltrami operators associated to quasiregular mappings. Studia mathematica, t. LXXXVI, 1987, 189-204.
[4] M.R. Formica, On the $\Gamma$-convergence of Laplace-Beltrami operators in the plane. Annales Academiae Scientiarum Fennicae Matematica, vol. 25, 2000, 423-438.
[5] M.R. Formica, Degenerate Elliptic Operators with coefficients in EXP. Ph.D. thesis, Università di Napoli «Federico II», 2001.
[6] M.R. Formica, Beltrami operators in the plane. Preprint n. 6, Aracne editrice, Roma 2002.
[7] G.A. Francfort - F. Murat, Optimal bounds for conduction in two-dimensional, two-phase, anisotropic media. In: R.J. Knops - A.A. Lacey (eds.), «Nonclassical» continuum mechanics. London, Math. Soc. Lecture Notes Series, 122, Cambridge 1987, 197-212.
[8] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. of Math. Studies, 105, Princeton Univ. Press, 1983.
[9] L. Greco - C. Sbordone, Sharp upper bounds for the degree of regularity of the solutions to an elliptic equation. Comm. P.D.E., 27, 5-6, 2002, 945-952.
[10] T. Iwaniec - C. Sbordone, Quasibarmonic fields. Ann. Inst. H. Poincaré - AN 18, 5, 2001, 519-572.
[11] O. John - J. Maly - J. Stará, Nowhere continuous solutions to elliptic systems. Comm. Math. Univ. Carolinae, 30, 1, 1989, 33-43.
[12] A.I. Koshelev, Regularity of solutions of quasilinear elliptic systems. Russian Math. Survey, 33, 1978, 1-52.
[13] J. Maly, Finding equation from solutions. Draft 1999.
[14] C.B. Morrey, On the solution of quasilinear elliptic partial differential equations. Trans. Amer. Math. Soc., 43, 1938, 126-166.
[15] F. Murat, Compacité par Compensation. Ann. Sc. Norm. Pisa, 5, 1978, 489-507.
[16] L. Piccinini - S. Spagnolo, On the Hölder Continuity of Solutions of Second Order Elliptic Equations in two Variables. Ann. Sc. Norm. Pisa, 26, 1972, 391-402.
[17] J. Soucek, Singular solutions to linear elliptic systems. Comm. Math. Univ. Carolinae, 25, 1984, 273-281.
[18] S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Sc. Norm Sup. Pisa, vol. 22, fasc. 4, 1968, 571-597.
[19] S. Spagnolo, Some convergence problems. Symposia Mathematica, XVIII, 1976, 391-397.
[20] L. Tartar, Homogéneization et compacité par compensation. Cours Peccot, Collège de France, 1977.

Pervenuta il 10 maggio 2002,
in forma definitiva il 15 luglio 2002.
Dipartimento di Matematica e Applicazioni «R. Caccioppoli» Università degli Studi di Napoli «Federico II» Via Cintia - 80126 Napoli sbordone@unina.it mformica@unina.it

