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A TRIPLE RATIO ON THE SILOV BOUNDARY
OF A BOUNDED SYMMETRIC DOMAIN

Abstract. — Let D be a Hermitian symmetric space of tube type, S its Silov boundary and G the
neutral component of the group of bi-holomorphic diffeomorphisms of D. Our main interest is in studying
the action of G on S3 = S × S × S . Sections 1 and 2 are part of a joint work with B. Ørsted (see [4]). In
Section 1, as a pedagogical introduction, we study the case where D is the unit disc and S is the circle. This
is a fairly elementary and explicit case, where one can easily get a flavour of the more general results. In
Section 2, we study the case of tube type domains, for which we show that there is a finite number of open
G -orbits in S3, and to each orbit we associate an integer, called the Maslov index. In the special case where
D is the Siegel disc, then G is (isomorphic to) the symplectic group and S is the manifold of Lagrangian
subspaces. The result on the orbits and the number which we construct coincides with the classical theory
of the Maslov index (see e.g. [7]), hence the name. We describe a formula for computing the Maslov index,
using the automorphy kernel of the domain D. In the special case of the Lagrangian manifold, this formula
was obtained by Magneron [8] in a different approach. In Section 3, we study the case where D is the unit
ball in a (rectangular) matrix space. There is now an infinite family of orbits, and we construct characteristic
invariants for the action of G on S3. For the special case where D is the unit ball in C2, this coincides with
an invariant constructed by E. Cartan for the «hypersphere» (see [2]). In all cases, we follow the following
method: from an appropriate automorphy kernel for D we construct a kernel on D × D × D, satisfying a
simple transformation property under the action of G . We then define a dense open set of S3 (the set of
mutually transversal points in S ), on which the kernel (or some function of it) can be extended continuously,
and the resulting kernel is invariant or at least transforms nicely under the action of G .

Key words: Bounded symmetric domains; Silov boundary; Maslov index.

1. The circle

Let S be the circle, and denote by

S3
� = {(σ1;σ2;σ3) ∈ S3;σi �= σj for i �= j} :

Thinking of S as the projective line P1(R), it is a basic result in projective geometry
that the group PGL(2;R) acts transitively on S3

�. If we think of S as the boundary
@D of the open unit disc in the complex plane

D =
{

z = x + iy ∈ C; |z | < 1
}

;

then it is natural to look for the action of G = PSU (1; 1) (� the connected com-
ponent of PGL(2;R)) on S3

�. There are now two orbits, due to the fact that any
bi-holomorphic map of D extends to a neighbourhood of D and induces a transfor-
mation of S which preserves the orientation of S . An equivalent way of looking at
this result is to introduce the Maslov index. Let σ1;σ2;σ3 be three distinct points
on S . Then starting from σ1 and travelling counter-clockwise, one meets first either σ2

or σ3. The Maslov index ι(σ1;σ2;σ3) is defined to be + 1 in the first case and −1
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in the second case, as shown on figure 1. The Maslov index is clearly invariant under
PSU (1; 1) and characterizes the two orbits of G in S3

�.
Another way of computing the Maslov index is to use the ideal triangle having

σ1;σ2;σ3 as summits. Recall that the sides of the ideal triangle are (infinite) geodesics
for the Poincaré metrics on D, hence (arcs of) circles orthogonal to S .

Now a very classical result shows that the area of such an ideal triangle T is finite
and equal to π, with the standard normalization of the Poincaré metrics. More precisely,
it is possible to define the oriented area A(T ), which is + π if travelling along the sides
of the ideal triangle following the order σ1;σ2;σ3 corresponds to the counter-clockwise
orientation, and −π in the opposite case. Then we have the formula

ι(σ1;σ2;σ3) =
1
π
A(T ) :
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An ideal triangle may be seen as a limit of a geodesic triangle (z1 z2 z3), where zi ∈ D
for 1 ≤ i ≤ 3, whose summits tend respectively to the boundary points σ1;σ2;σ3. But
formulae for the area of a geodesic triangle are known, and for instance, it is not
difficult to prove that for the geodesic (oriented) triangle T = (z1 z2 z3) its area A(T )
is given by

A(T ) = arg
(

1 − z1z2

1 − z1z2

)
+ arg

(
1 − z2z3

1 − z2z3

)
+ arg

(
1 − z3z1

1 − z3z1

)
:

In the formula, an analysis-minded person will certainly recognize the role of the auto-
morphy kernel of D. For z; w ∈ D, define

k(z; w) = 1 − zw :

This kernel is well defined and does not vanish on D × D, is holomorphic in z ,
antiholomorphic in w and obeys a simple transformation rule under the action of

PSU (1; 1), namely, for g =
(
α β

β α

)
∈ PSU (1; 1)

k(gz; gw) = (βz + α)−1k(z; w)(βw + α)−1 :

Then define for z1; z2; z3 ∈ D

c(z1; z2; z3) = k(z1; z2)k(z2; z1)−1k(z2; z3)k(z3; z2)−1k(z3; z1)k(z1; z3)−1 :

As D is simply connected, it is possible to define an argument for the function c over
D ×D ×D, so that

A(T ) = arg c(z1; z2; z3) :

Then, for (σ1;σ2;σ3) ∈ S3
�

ι(σ1;σ2;σ3) =
1
π

lim arg c(z1; z2; z3)

for zj −→ σj; j = 1; 2; 3.
This formula will be the key to generalize the Maslov index in the higher rank case.

2. Tube type domains and the generalized Maslov index

Let D = G=K be a Hermitian symmetric space of the non-compact type. The group
G is a real semi-simple Lie group, whose Lie algebra g has a Cartan decomposition
g = k ⊕ p. Let J be the complex structure on p, and accordingly, decompose the
complexification pC as p+ ⊕ p−, where J|p+ = i; J|p− = −i.

The Harish Chandra’s embedding realizes G=K as a bounded domain D in p+.
Let S be its Silov boundary. Then D is of tube-type if

dimR S = dimC D :

There is a nice approach to tube-type domains through the theory of Euclidean Jordan
algebras. By a Euclidean Jordan algebra we mean a (finite dimensional) vector space
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V over R, with a bilinear map V × V −→ V , a unit element e and an inner product
〈 ; 〉, such that

xy = yx; ex = x(J 1)

x2(xy) = x(x2y)(J 2)

〈x; yz〉 = 〈xy; z〉(J 3)

for all x; y; z ∈ V .
The basic example is V = Sym (r;R) with the Jordan multiplication
x:y = 1

2 (xy + yx), the unit element e = Ir and the inner product 〈x; y〉 = Tr (xy).
If r = 1, then the corresponding Jordan algebra is just R with its usual sum and
multiplication.

We refer to [5] for details on the structure of the Euclidean Jordan algebras. There is a
spectral analysis for elements of V , and in particular there is a specific linear form, called
the trace and denoted by tr , and a certain polynomial on V called the determinant and
denoted by det . The degree r of this polynomial is called the rank of the Jordan algebra.

Denote by L(x) the multiplication operator y 	→ xy, and let

x�y = L(xy) + [L(x; L(y)] :

Let V the complexification of V and extend all previously defined operators by C-
linearity. Then

D = {z ∈ V; I − z�z 
 0}

is a bounded symmetric domain of tube-type, and all such domains are obtained by
this process. Let G be the neutral component of the group of all bi-holomorphic
transforms of D.

The Silov boundary of D is easily described as

S = {z ∈ V; z = z−1} :

The reason to call these domains «of tube type» comes from another realization, which
we now describe. Let Ω = {x ∈ V | L(x) 
 0}. It is an open proper convex self-
adjoint cone in V , which is homogeneous under the action of G (Ω), the group of
linear transformations preserving Ω. Now form the tube

TΩ = V + iΩ ⊂ V :

Define the Cayley transform c by the formula

c(w) = i(e + w)(e − w)−1 :

Then c is well-defined on D and it is a bi-holomorphic map from D onto TΩ.
The corresponding group G (TΩ) = c ◦ G ◦ c−1 is given a simple description: it the

group generated by
i) the translations tv : z 	→ z + v with v ∈ V

ii) the complexified action of the linear group G (Ω)
iii) the inversion s : z 	→ −z−1.
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The Cayley transform extends to (almost all of) the Silov boundary, and maps it
onto V ⊂ T Ω. The (rational) action of group G (TΩ) on V can be seen as a realization
of the conformal group of the Jordan algebra V (see [1]).

Example. For V = Sym (r;R), we get

TΩ = Siegel half-plane

G (TΩ) � Sp2r (R)

S � manifold of Lagrangian subspaces in R2r :

We are interested in the action of G on triplets of points in S . We need the important
notion of transversality.

Two points σ; ζ ∈ S are said to be transverse (we then denote this property by
σζ) iff det (σ − ζ) �= 0. A few facts are easily established for this relation. It is stable
under the action of G . The elements σ ∈ S transverse to e are exactly the points of S
for which the Cayley transform c is well defined, and so the set of such elements is in
1 − 1 correspondance with V under the Cayley transform.

Let

S3
� =

{
(σ1;σ2;σ3) ∈ S3;σiσj; for i �= j

}
:

Theorem 1. G has a finite number of orbits in S3
�.

To give a precise description of the orbits, we need a Peirce decomposition e =

= c1 + c2 + · · · + cr , where the (ci); 1 ≤ i ≤ r form a system of primitive orthogonal
idempotents. For 0 ≤ j ≤ r , let

εj =

j∑

i=1

ci −
r∑

i=j+1

ci :

Then {(e;−e;−iεj ); 0 ≤ j ≤ r} is an exhaustive family of representatives of the orbits

in S3
�.

Define the generalized Maslov index by

ι(σ1;σ2;σ3) = j − (r − j) = 2j − r

if (σ1;σ2;σ3) belongs to the orbit of (e;−e;−iεj ).
By construction, the Maslov index is invariant under the action of G , but the

definition is not really useful for investigating its properties. Inspired by the results
presented for the circle in the first section, we similarly introduce the (scalar) canonical
automorphy kernel k(z; w) for the domain D. Its definition is somewhat involved (see [9]
for a precise statement). The Bergman kernel (familiar to classical analysts) is a certain
power of this scalar automorphy kernel. It is well defined and does not vanish on
D × D, is holomorphic in z , satisfies the symmetry property k(z; w) = k(w; z) (hence
is antiholomorphic in w) and transforms under the action of G by the following rule:

k(g (z); g (w)) = j(g; z)k(z; w)j(g; w)
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where j(g; z) = d (g:z)
dz is the so called automorphy factor .

Now as before, let for z1; z2; z3

c(z1; z2; z3) = k(z1; z2)k(z2; z1)−1k(z2; z3)k(z3; z2)−1k(z3; z1)k(z1; z3)−1 :

There is a continuous determination of the argument of c on D × D × D which can
be continued to S3

�.

Theorem 2. For (σ1;σ2;σ3) ∈ S3
�

i(σ1;σ2;σ3) =
1

2π
arg c(σ1;σ2;σ3) :

The proof consists in proving the formula for the canonical representatives of the different orbits
as described after Theorem 1.

The main (and immediate) consequence of this theorem is the cocycle relation for the
generalized Maslov index,

ι(σ1;σ2;σ3) = ι(σ1;σ2;σ4) + ι(σ2;σ3;σ4) + ι(σ3;σ1;σ4)

if σiσj , for i �= j . In fact, from its definition it is easily seen that c satisfies a similar
(multiplicative) cocycle relation on D × D × D. Taking the argument and passing to
the limit gives the relation for the Maslov index.

Appendix. Classification of tube type domains and their Silov boundaries.

V V D � G=U S

Sym (r;R) Sym (r;C) Sp(2r;R)=U (r) U (r)=O(r)

Herm(r;C) Mat(r;C) SU (r; r)=S (U (r) × U (r)) U (r)

Herm(r;H) Skew(2r;C) SO∗(4m)=U (2r) U (2r)=SU (r;H)

R×Rn−1 C×Cn−1 SO0(2; n)=SO(2) × SO(n) (U (1) × Sq−1)=Z2

Herm(3;O) Mat(3;O) E7(−25)= U (1):E6 U (1):E6= F4

Remark. In Section 1, we use the relation of the kernel c(z1; z2; z3) with the area
of the geodesic triangle having z1; z2; z3 as summits. In the case of a general tube type
domain, a similar interpretation is possible. Instead of the area, one has to integrate
the canonical Kähler 2-form of the domain D on any surface bounded by the geodesic
triangle through the three points. As the Kähler form is closed, the integral does not
depend on the surface. In turn, this is related to the study of the bounded cohomology
of Hermitian symmetric spaces (see e.g. [10]).

3. The unitary Stiefel manifold and E. Cartan’s invariant

Similar ideas can be used for Hermitian symmetric spaces not of tube type. It is no
longer true that there are a finbite number of open orbits in S3

�, but it is still possible
to construct characteristic invariants. We treat here the case of the unit ball in a matrix
space.
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Let p ≥ q and

D =
{

z ∈ Mat (p × q;C) | Iq − z∗z 
 0
}

It is a bounded symmetric domain, with group of holomorphic transforms G =SU (p; q)
acting by

g =

(
a b
c d

)
g (z) = (az + b)(cz + d )−1 :

The corresponding (matrix valued) automorphy factor is

j(g; z) = cz + d :

If z ∈ D and g ∈ G , then j(g; z) is invertible.
The Silov boundary of D is the unitary Stiefel manifold

S =
{
σ ∈ Mat (p × q;C) | σ∗σ = 1q

}
:

Let σ; ξ be two elements of S . The transversality condition now reads

σξ ⇐⇒ det (1q − ξ∗σ) �= 0

and define S3
� as before.

If p �= q, then there are an infinite number of orbits in S3
�. It is possible to describe

representatives of each G -orbit, but it requires some more work (see [3] for details).
There is also a Cayley transform in this case. The corresponding domain c(D) is no
longer of tube type, but is a Siegel domain of type II, which makes the description
more complicated. Here we concentrate on the construction of characteristic invariants
by a process similar to what we did for tube-type domains.

For z; w ∈ D, let

k(z; w) = (Iq − w∗z)−1 :

It takes values in GL(q;C) and is a (kind of) matrix-valued automorphy kernel for
D, satisfying holomorphy properties and a simple transformation rule under the action
of G . Form

T (z1; z2; z3) = k(z1; z2)k(z3; z2)−1k(z3; z1) :

The transformation property of the automorphy kernel under G implies the following
transformation property for T :

T (g (z1); g (z2); g (z3)) = j(g; z1)T (z1; z2; z3)j(g; z1)∗ :

One can prove that T can be extended by continuity to S3
�. The limit, denoted by

T (σ1;σ2;σ3) is still invertible.

Theorem 3. Let (σ1;σ2;σ3) and (τ1; τ2; τ3) belong to S3
�. They belong to the same

G -orbit if and only if T (σ1;σ2;σ3) and T (τ1; τ2; τ3) belong to the same GL(q;C)-orbit
for the action

(γ; X ) 	−→ γX γ∗

of GL(q;C) on Mat (q;C).
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The determination of the orbits of this action is possible, but there is another
version of this theorem, which refers now to the (more natural) action of GL(q;C) by
conjugacy. Introduce the associated angular matrix

A(z1; z2; z3) = T (z1; z2; z3)∗
−1

T (z1; z2; z3) :

Now, under the action of G , the matrix-valued function A transforms by conjugacy
(we use the notation A ∼ B to denote conjugacy under GL(q;C)). The kernel A still
extends by continuity to S3

�. We also need to construct a continuous determination of
arg det T (z1; z2; z3) on D × D × D and its extension to S3

�.

Theorem 4. Let (σ1;σ2;σ3) and (τ1; τ2; τ3) belong to S3
�. They belong to the same

G -orbit if and only if

A(σ1;σ2;σ3) ∼ A(τ1; τ2; τ3)

and

arg det T (σ1;σ2;σ3) = arg det T (τ1; τ2; τ3) :

In the special case where p = 2 and q = 1, the first condition is void and the
second corresponds to an invariant already constructed by E. Cartan in 1935 (see [2]).
If (slightly) more genrally, we consider the unit ball in Cp, then the Silov boundary
coincides with the topological boundary and is just the unit sphere. Using a Cayley
transform, the boundary is realized as the (2p−1)-dimensional Heisenberg group under
the action of its group of «conformal transformations» PSU (p; 1). M. Reimann and A.
Korányi in 1987, working on this model of the Silov boundary essentially rediscovered
this invariant (see [6]).
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