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Fisica matematica. — Oxygen exchange between multiple capillaries and living tissues:
An homogenisation study. Nota di Andro Mikelić e Mario Primicerio, presentata (*) dal
Socio M. Primicerio.

Abstract. — A mathematical model for a problem of blood perfusion in a living tissue through a system
of parallel capillaries is studied. Oxygen is assumed to be transported in two forms: freely diffusing and
bounded (to erytrocytes in blood, to myoglobin in tissue). Existence of a weak solution is proved and a
homogensation procedure is carried out in the case of randomly distribuited capillaries.

Key words: Oxygen diffusion; Hemodynamics; Homogenisation.

Riassunto. — Scambio di ossigeno tra un tessuto e un sistema di capillari. Uno studio di omogeneizzazione.
Si studia un modello matematico per un problema di perfusione sanguigna in un tessuto vivente da parte di
un sistema di capillari paralleli. Si suppone che l’ossigeno sia trasportato in due forme: libero di diffondere
e legato (agli eritrociti nel sangue, alla mioglobina nel tessuto). Si dimostra l’esistenza di una soluzione
debole e si utilizza un procedimento di omogeneizzazione per il caso di capillari distribuiti aleatoriamente.

1. Introduction

This paper deals with the analysis of a mathematical model for a problem of advec-
tion/diffusion/consumption of oxygen in a living tissue which is perfused by a network
of capillaries. The problem has been widely studied also in its mathematical aspects
starting from the pioneering paper of Krogh [8] in 1919. Substantial information on
classical literature can be found in [13, 5], while review of more recent papers is pro-
vided e.g. in [16, 9, 4].

There are two main ingredients that make the peculiarity of the problem: (i) the
presence of a large number of capillaries, and (ii) the dynamics of transport of oxygen
in blood and in tissues.

Concerning (i), a self-suggesting technique is homogenisation. In this paper we
consider a rather simplified geometry, i.e. a bundle of parallel and non interconnected
capillaries, but this is, in our knowledge, the first attempt to use these techniques in
the area of microcirculation (see [15, 16], for the other approaches used to deal with
multicapillary system). Question under (ii) requires some explanation: oxygen is carried
by blood essentially in two forms: (a) dissolved in blood plasma (the substrate) and (b)
bound to erytrocytes (i.e. red cells) in form of hemoglobin. The same is true for oxygen
in the tissue that can be freely diffusing or bound to myoglobin.

Let us refer e.g. to blood. In the framework of continuum physics, in any REV
(representative elementary volume) of the blood it is possible to define three quantities:
the concentration c of oxygen in plasma (mass O2 per unit volume of plasma), the

(*) Nella seduta dell’8 febbraio 2002.
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concentration l of oxygen in erythrocytes (mass O2 per unit volume of red cells) and
the volume fraction α ∈ [0; 1] occupied by plasma. Thus the time derivative of

(1.1) M = αc + (1 − α)l

will be set equal, in the mass balance, to the proper flux and/or volumetric sources or
sinks.

Note that in convective flux both c and l will appear (assume α is a given constant,
for sake of simplicity), but only ∇c will be present in the diffusive flux.

Thus, the problem has to be completed by prescribing a relationship between c and l .
The dynamics of the exchange between bound and free oxygen can be modeled in

different ways. Some authors postulate that

(1.2) τ
dl
dt

= ϕ(c − l );

where ϕ is a non-decreasing function ϕ(0) = 0, or more generally

(1.3) τ
dl
dt

= ϕ(γ(c) − l )

where γ(c) is a monotone function (γ(0) = 0) representing the equilibrium concentra-
tion of the bound oxygen corresponding to concentration c of the substrate and τ is the
relaxation time. But in most cases the time scale of the phenomena under consideration
is large enough, so that one can take τ = 0 and assume that equilibrium is realized at
any time (see [2] as well as the papers quoted above):

(1.4) l = γ(c):

A typical equilibrium profile is given by the so-called Michaelis-Menten law

(1.5) l = β
c s

c s + Bs

where β and B are given constants and s (the Michaelis-Menten exponent) is a given
number which for blood is approximately 2.5 (see e.g. [9], an alternative law for
equilibrium profile is quoted in [14]).

Having in mind this approach we can pass to the description of a model problem
(one capillary surrounded by living tissue) to introduce the problem which will be
considered in the sequel.

Let the capillary be the cylinder r ≤ R; z ∈ [0; B] and let R be small enough
so that radial variations of the relevant quantities within the capillary as well as axial
diffusion can be neglected w.r.t. convection.

The latter assumption is justified by noting that D1=uB << 1 where D1 is the
diffusivity of oxygen in blood (which is of the order of 10−5 cm2/sec) and u is the
speed of blood in the capillary, assumed to be constant. Mass balance for oxygen in
the capillary reads

(1.6)
(

@
@t

+ u
@
@z

)
(αc + (1 − α)l ) = F
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where F is the flux of O2 through the walls of capillary. Using assumption (1.4) we
can write with obvious notation

(1.7)
@
@t

Φ(c) + u
@
@z

Φ(c) = F:

Equation (1.7) (in which term F will be specified) has to be supplemented with con-
dition on t = 0 and on z = 0.

In the tissue we will have, with obvious analogous meaning of C and L,

(1.8)
@
@t

(αC + (1 − α)L) = D∆C + Q

where Q represents the power of volumetric sources/sinks and D is the oxygen diffusion
coefficient assumed constant. Again an assumption as (1.4) transforms the l.h.s. of (1.8)
in the derivative @

@t M (C ), where M (C ) is an increasing function of C .
The mathematical scheme is completed once conditions on the «outer» boundary and

for t = 0 are given and once the situation on the boundary r = R is better described.
Concerning the latter, a reasonable assumption is that c and C are proportional,

through the solubility constant ν (Henry law):

(1.9) C = νc; at r = R:

Alternatively, one could assume, as in [12] a Robin’s law of linear relationship berween
flux and jump of concentrations. On the other hand , now we are in position of giving
the flux term in (1.7).

(1.10) F =
D

πR2

∫ 2π

0

@C
@er

∣∣∣∣
r=R

Rd θ:

Having in mind the model problem discussed above, we can pass to the statement and
the analysis of the problem we will study in Sections 2-5 and that will be homogenized
in Section 6. According to the example of the Michaelis-Menten law we will assume:

(H1) Φ(c) is a strictly monotone Lipschitz continuous function on R with subquadratic
growth.

(H2) M (C ) is a strictly monotone Lipschitz continuous function on R with sub-
quadratic growth.

2. Statement of the problem

Let x = (x; y; z) ∈ R3 and consider the cylinders

(2.1) Ci ≡
{

x : (x − xi)
2 + (y − yi)

2 < Ri; 0 < z < B
}

; i = 1; 2; : : : ; n

In our model the set

(2.2) Ωc =
n⋃

i=1

Ci
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will represent the space occupied by an array of parallel cylindrical capillaries. Assume
that Ωc is strictly contained in the box

(2.3) Ω ≡
{

x ∈ R3 : 0 < x < L; 0 < y < L; 0 < z < B
}

;

and that

(2.4) ΩT = Ω\Ωc

is occupied by the living tissue. According to the model discussed in Section 1, we
assume that the oxygen concentration C in the tissue satisfies

(2.5)
@
@t

M (C ) − D∆C = Q; in ΩT × (0; T );

and that the oxygen concentration of the blood in the i th capillary satisfies

(2.6)
@
@t

Φ(c) + u
@
@z

Φ(c) =
D
πRi

∫ 2π

0

@C
@er

(Ri; θ; z; t )d θ in Ωc × (0; T )

where u is the speed of the blood assumed to be a given positive number. On the
boundary Si between the i th capillary and the tissue we have C (Ri; θ; z; t ) = νc(z; t ),
where we wrote C (Ri; θ; z; t ) to denote C (xi + Ri cos θ; yi + Ri sin θ; z; t ), θ ∈
∈ (0; 2π) and ν denote the (positive) solubility ratio. Upon rescaling (νc → c), we can
write

(2.7) C (Ri; θ; z; t ) = c(z; t ); on Si × (0; T ); i = 1; 2; : : : ; n:

Let Γ0 ≡ (x ∈ @Ω : z = 0) and ΓB ≡ (x ∈ @Ω : z = B) denote the «bottom» and «top»
faces of Ω and set

Γ0C = Γ0 ∩ ΩC ; ΓBC = ΓB ∩ ΩC :

Let C 0(x) be a function such that C 0 ∈ H 1(Ω)∩L∞(Ω); and that C 0 = C 0i(z); for
x ∈ Ci:

We give the following boundary conditions

C = tr C 0F (t ); x ∈ Γ0\Γ0C ; t ∈ (0; T );(2.8)

c = tr C 0F (t ); x ∈ Γ0C ; t ∈ (0; T );(2.9)

D · ∇C · n = 0; x ∈ @Ω\(Γ0 ∪ ΓBC ); t ∈ (0; T ):(2.10)

Finally, we assume that for t = 0 c and C coincide with C 0 in their respective domain
of definition

C (x; 0) = C 0(x); x ∈ ΩT ;(2.11)

c(x; 0) = C 0(x); x ∈ ΩC :(2.12)

We will give problem (2.5)-(2.12) a suitable variational formulation in Section 3. In
Section 4 we will summarize the proof of existence of a weak solution; then we will
derive in Section 5 basic estimates, independent on the number n of the capillary tubes.
Finally, Section 6 will be devoted to the homogenisation of the problem.
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3. Variational formulation

We denote by gi(z) (i = 1; : : : ; n) any set of unknown functions in H 1(0; B),
each defined on the boundary of the i-th capillary and not dependent on the angular
variable θ on it. Let

(3.1) V =
{
ϕ ∈ H 1(Ω) : ϕ = gi(z) on @Ci ∩ Ω; ϕ(x; y; 0) = 0

}
:

Then, ’ϕ ∈ V; (2.6) implies
∫

@ΩC ∩Ω

D
@C
@er

ϕdΣ =
n∑

i=1

D

∫ B

0

∫ 2π

0

@C
@er

(Ri; θ; z; t )ϕ(Ri; θ; z)Rid θdz =

=
n∑

i=1

πR2
i

∫ B

0
gi(z)

[
@
@t

Φ(c) + u
@
@z

Φ(c)
]

dz:

Using the notation C |i ≡
1

2π

∫ 2π

0
C (Ri; θ; z; t )d θ and setting Ĉ 0(x; t ) = C 0(x)F (t ),

assuming F (0) = 1 we state the following

Problem (P). Find C (x; t ), s.t.

(a) C − Ĉ 0 ∈ L2(0; T ; V )

(b) M (C ) ∈ L∞(0; T ; L1(Ω))

(c) Φ(C |i) ∈ L∞(0; T ; L1(0; B))

(d ) Mt (C ) ∈ L2(0; T ; V ′)

(e) Φt (C |i) ∈ L2(0; T ; H −1(0; B))

(f ) initial conditions (2.11), (2.12) are satisfied in the sense that

’ξ ∈ L2(0; T ; V ) ∩ W 1;1(0; T ; L∞(Ω)); ξ(T ) = 0

it is
∫ T

0
< Mt (C ); ξ >V ′;V dt +

∫ T

0

∫

ΩT

[
M (C ) − M (C 0)

]
ξt dxdt = 0(3.2)

∫ T

0
< Φt (C |i); ξ|i >H−1(0;B);H 1(0;B) dt +(3.2′)

+

∫ T

0

∫ B

0

[
Φ(C |i) − Φ(C 0|i)

] @
@t

ξ|idzdt = 0 i = 1; :::; n :

(g ) The following integral relationship is satisfied for any ξ ∈ L2(0; T ; V )
∫ T

0
< Mt (C ); ξ >V ′;V dt +

n∑

i=1

πR2
i

∫ T

0
< Φt (C |i); ξ|i >H−1(0;B);H 1(0;B)dt +

+
n∑

i=1

πR2
i u

∫ T

0

∫ B

0
ξ|iΦz (C |i)dzdt + D

∫ T

0

∫

ΩT

∇C∇ξd xdt =

∫ T

0

∫

ΩT

Qξdzdt:
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The variational formulation (a)-(g ) is in the same line as in [1] with the modifications
needed to incorporate condition (2.6). These modifications will be reflected in the proof
of the existence theorem and will require the Lipschitz conditions (H1), (H2) on the
non-linearities M (C ) and Φ(C ).

Incidentally, we note that if u < 0 everything can be repeated provided that- as
it is obvious- conditions (2.8),(2.9) are prescribed on ΓB\ΓBC and on ΓBC respectively
and condition (2.10) is imposed on @Ω\(ΓB ∪Γ0C ). Hence definition of V is changed
accordingly.

4. Existence

The following existence theorem holds true.

Theorem 1. Let M and Φ satisfy assumptions (H1) and (H2) of Section 1. Let C 0 ∈
∈ H 1(Ω)∩L∞(Ω), @C 0

@z ∈ L∞(Ωc ), C 0(x) = C 0i(z) for x ∈ Ci ; finally let F (t ) in (2:8), (2:9)
be such that

∣∣∣∣
dF
dt

∣∣∣∣
L1(0;T )

≤ K;(4.1)

F (0) = 1 :(4.2)

Then problem (2:5)-(2:12) has a weak solution, i.e. problem (P) has a solution.

Proof. The proof is rather technical and its arguments follow the strategy of [1].
Therefore, we confine ourselves to sketch the main steps of the proof, assuming in
addition that the source/sink term Q is a smooth function of x and t and does not
depend on C .

Actually, introducing this additional nonlinearity introduces just formal complica-
tions in the existence proof. On the other hand dependence of Q on C has crucial role
in the estimate of the norm of the solution which is considered in detail in Section 5
below where we will assume Q = Q (C; x; t ).

Step 1. We choose a base vj ∈ V ∩ L∞(Ω) and we select Vm = span(v1; : : : ; vm)

and define C 0
m by projection. Then, we discretize time interval (0; T ) in N steps of

width h = T
N and define

Fh(t ) = 1; −h < t < 0;(4.3)

Fh(t ) =
1
h

∫ kh

(k−1)h
F (τ )d τ; t ∈ ((k − 1)h; kh); k = 1; : : : ; N;(4.4)

thus defining Ĉhm(t; x) = C 0
m(x)Fh(t ). At this point, we can look for a function

(4.5) Chm(t; x) = Ĉ 0
hm(t; x) +

m∑

j=1

µhm
j (t )vj (x)
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where µhm
j ∈ L∞(0; T ) are to be found solving the system of equations obtained by

writing (3.3) in each time step once the time derivatives have been replaced by backward
difference quotients and ξ ∈ Vm.

This system can be written as a system Ψhm(vµ) = 0 of m nonlinear algebraic
equations in v

µ
=
∑m

j=1 µj vj for every value of t . We define

β(C ) = M (C )C −
∫ C

0
M (s)ds;(4.6)

Ξ(C ) = Φ(C )C −
∫ C

0
Φ(s)ds;(4.7)

Then, using (H1), (H2) and therefore the non-negativity of Legendre transforms of
potentials of M and Φ, we conclude Ψhm(vµ)µ →+ ∞ when |µ| →+ ∞.

Hence µhm
j can be actually be found.

Step 2. We prove the energy estimate

(4.8)

sup
t∈(0;T )

{∫

ΩT

β(Chm)d x +
∑

i

πR2
i

∫ B

0
Ξ(Chm|i)dz

}
+

∫ T

0

∫

ΩT

|∇Chm|
2d xdt ≤

≤K

[
sup

(0≤σ≤C )

{M (σ)+ Φ(σ)}[C +C
3
+ ‖Q‖2

L2(ΩT ×x(0;T )) + ‖Ĉ 0
hm‖

2
L2(ΩT ×x(0;T ))]

]
;

with K depending on C , where

(4.9) C = ‖Ĉ 0
hm‖C ([0;T ];L∞((0;L)2);W 1;∞(0;B))):

To obtain (4.8), we use as test function in the discretized version of (3.3) ξ = Chm−Ĉ 0
hm,

we make use of the monotonicity of M and Φ and of the obvious inequality

(4.10) |M (σ)| ≤ δβ(σ) + sup
σ∈(0;δ−1)

|M (σ)|; ’δ > 0:

Step 3. Take any τ ∈ (0; T ) and k such that τ + kh ≤ T: Define τj = τ + jh,
j = 1; : : : ; k.

From the discretized version of (3.3) one obtains

(4.11)

∫

ΩT

{M (Chm(τ + kh; x)) − M (Chm(τ; x))}ξd x +

+
n∑

i=1

πR2
i

∫ B

0
{Φ(Chm(τ + kh; z)|i) − Φ(Chm(τ; z)|i)}ξ|idz +

+ h
n∑

i=1

πR2
i

k−1∑

j=0

∫ B

0
u

@
@z

Φ(Chm(τj+1; z)|i)ξ|idz +

+ Dh
k−1∑

j=0

∫

ΩT

∇Chm(τj+1; x)∇ξd x = h
k−1∑

j=0

∫

Ω

Qξd x:
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Now we choose the test functions in the following way

(4.12) ξ(τ; x) = Chm(τ + kh; x) − Chm(τ; x) ≡ ωk
hm(τ; x)

and integrate with respect to τ .

(4.13)
∫ T −kh

0

∫

ΩT

h@−h
t Mωk

hmd xd τ +
n∑

i=1

πR2
i

∫ T −kh

0

∫ B

0
h@−h

t Φ|iω
k
hm|idzd τ = J1 + J2 + J3;

where J1 is the integral containing u
@Φ

@z
and J2 and J3, containing ∇C∇ω and Qω are

readily estimated as

(4.14) |J2| + |J3| ≤ Khk

for some constant K .

Step 4. Estimating |J1| is the most delicate point of the proof, where the assumption
u =constant is crucial.

By rather standard steps we obtain

(4.15) |J1| ≤ Khk

∫ T

0

n∑

i=1

πR2
i ‖chm(τ; z)|i‖

2

H
1
2 (0;B)

d τ :

Next, one estimates ‖v‖
H

1
2 (0;B)

by ‖v‖H 1(ΩT ) using Fourier transform; passing through

lenghty calculations the following estimate is obtained

(4.16) |J1| ≤ C

(
n∑

i=1

Rp+1
i

d p−1
i

)2=p

‖Chm‖
2
L2(0;T ;H 1(ΩT ))

for any p > 1, where di is the distance from the i−th capillary to the nearest one.
In addition, we suppose that

g (p) =

(
n∑

i=1

Rp+1
i

d p−1
i

)1=p

will remain uniformly bounded (when we will let n increase in the homogenisation
procedure) for some p and we note that for a periodic system of capillaries g (p) is
uniformly bounded with respect to n for any p > 1.

Finally, recalling (4.13) and (4.14) and using the estimate (4.8) of Step 2 above, we
obtain

(4.17)

∫ T −kh

0

∫

ΩT

h2@−kh
t M (Chm(τ + kh; x))@−kh

t Chm(τ + kh; x)d xd τ +

+
n∑

i=1

πh2R2
i

∫ T −kh

0

∫ B

0
@−kh

t Φ(Chm(τ +kh; x)|i@
−kh
t (Chm(τ +kh; x)|idzd τ ≤ Kkh :

Step 5. Since Chm is piecewise constant in time, we can replace kh by any instant η ∈
∈ (0; T ).Now, estimates (4.16), with kh = η and (4.8) allow us to choose a subsequence
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{Chm} with the following properties (see [1, 6] for more details):

Chm −→ C strongly in L2(0; T ; L2(ΩT ));(4.18)

Chm|i −→ C |i strongly in L2(0; T ; L2(0; B)); i = 1; 2; : : : ; n(4.19)

Chm * C weakly in L2(0; T ; V ):(4.20)

Convergences (4.18)-(4.20) allow to pass to the limit in (4.11) and thus to conclude
the proof of Theorem 4.1.

5. Additional estimates

First, we prove

Proposition 5.1. Let Q be a smooth bounded function of C , x and t such that

(5.1) Q (C; x; t ) ≥ 0 for C ≤ 0:

Moreover assume

(5.2) C 0(x) ≥ 0; F (t ) ≥ 0:

Then

(5.3) C (x; t ) ≥ 0 a:e: in ΩT × (0; T ):

Proof. We follow the idea of [6] and consider the problem discretized in time after
passing to the limit for m → ∞. We have a family of functions {C k

h }1≤k≤N satisfying
the following elliptic system

(5.4)

n∑

i=1

πR2
i

∫ B

0
Φ(C k

h |i)ξ|idz +

∫

ΩT

M (C k
h )ξd x +

+ h
n∑

i=1

πR2
i

∫ B

0
ξ|iuΦz (C k

h |i)dz + Dh

∫

ΩT

∇C k
h ∇ξd x =

= h

∫

Ωt

Q (C k
h ; x; t )ξd x +

∫

ΩT

M (C k−1
h )ξd x +

+
n∑

i=1

πR2
i

∫ B

0
Φ(C k−1

h |i)ξ|idz; ’ξ ∈ V; i = 1; : : : ; n:

It is sufficient to prove that C k−1
h ≥ 0 a.e. implies C k

h ≥ 0 a.e. ’k.
We use as test functions

(C k
h )− = −min(C k

h ; 0); (C k
h )− ∈ V a:e: in (0; T ):

The r.h.s of (5.4) with this choice of ξ is non-negative because of our assumptions.
Moreover, writing C instead of C k

h to save notation and setting C+ = max(C; 0),
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so that C = C
+
− C−; we have for the second term in the l.h.s. of (5.4)

(5.5)
∫

ΩT

M (C )C−d x =

∫

ΩT

{M (C ) − M (C
+

)}(C
+
− C )d x ≤ 0:

For the first term, noting that for C ∈ V it is C−|i = (C |i)− so that we simply
write Ci−.

(5.6) Φ(Ci)(Ci−) = Φ(−Ci−)Ci− ≤ 0:

In the third term of the l.h.s. we find

(5.7)

∫ B

0
Φ′(Ci)

(
@
@z

Ci

)
Ci−dz = −

∫ B

0
Φ′(−Ci−)

(
@
@z

Ci−

)
Ci−dz =

= −u
{

Ξ(−Ci−(B; t ) − Ξ(−Ci−(0; t ))
}
≤ 0;

because the first term is non-negative and the second is zero by our assumptions.
Summing up, we have that the last term on the l.h.s. is non-negative, i.e.

(5.8) −Dh

∫

ΩT

|∇C−|
2dx ≥ 0:

Thus yielding (C k
h )− = 0 a.e. in ΩT and the conclusion of the proof.

Next we have

Proposition 5.2. Let assumptions of Proposition 5.1 be satisfied. Assume in addition

C 0(x) ≤ E;(5.9)

Q (C; x; t ) ≤ 0; for C ≥ E:(5.10)

Then

(5.11) C (x; t ) ≤ E; a:e: in ΩT × (0; T ):

Proof. It is analogous to the proof of Proposition 5.1, but now we choose the test
function ξ in (5.4) as (C k

h − E )+. The conclusion is

(5.12) (C k
h − E )

+
= 0 a:e:

and thus the proof of Proposition 5.2.

6. Homogenisation of a random network of parallel capillaries

In this section we consider the model with many capillaries obtained as a realization
of randomly placed circular sections.

Following [7] we choose the appropriate setting to describe the random circular
structure.

Let (G;O;µ) be a probability space and let T be a dynamical system with
2-dimensional time given on O. With this measurable dynamics we associate a
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2-parameter group of strongly continuous unitary operators on L2(G ) = L2(G;O;µ)
by (U (x; y)f )(ω) = f (T (x; y)ω); f ∈ L2(G ).

We suppose that the dynamical system {T (x; y)} is ergodic and we fix a measurable
set F ∈ O, such that µ(F) > 0 and the porosity ϑ = µ(G \ F) > 0. Then we consider
a random stationary set F ⊂ R2, obtained from F by

(6.1) F = F (ω) = {(x; y) ∈ R2; T (x; y)ω ∈ F} :

The set F = F (ω) is said to be a random circular structure if, for almost all ω ∈ G , F
consists of closed circles having no interior points in common; the radii of the balls
belong to a fixed interval [R1; R2], 0<R1 <R2 <+ ∞, R1, R2 being independent of ω.

We suppose F to be a random circular structure and introduce Fε by Fε = {(x; y) ∈
∈ R2 : ε−1(x; y) ∈ F } (homothetic dilation by ε−1 times) and define the set of capillary
tubes T

ε by

(6.2) T
ε =
⋃

i

{all circles from Fε strictly contained in (0; L)2} :

The tissue part is

(6.3) Ωε
tis =

(
(0; L)2 \ Tε

)
× (0; B) :

As already noted for similar problems in [7, 11], the main difficulty in homogenizing
PDEs in such geometries and with our particular boundary conditions is with extending
the fluxes to (0; L)2 × (0; B), ’t:

The extension problem was considered in [7, 11] for 3D structures. The approach
from [7] leads, after lengthy calculations, to the following precise results

Lemma 6.1 (Extension lemma). Let Z = {x ∈ R2 : |xi | < 1; i = 1; 2}, Bh = {x ∈
∈ R2 : |x | < h < 1} and let p ∈ L2(Z \ Bh)2 satisfy the conditions

−div p = f in Z \ Bh(6.4)

∫

@Bh

p · −→n dσ =

∫

Bh

f dxdy(6.5)

where f ∈ L2(Z ) and −→n is the outward unit normal at @Bh .
Then there exists a vector field p̃ ∈ Lα(Z )2 such that ’α < 2

(6.6) p̃ = p in Z \ Bh ; −div p̃ = f in Z

and

(6.7) ‖p̃ ‖2
Lα(Bh )2 ≤ c0(α)

1 − h

(
‖p‖L2(Z\Bh )2 + ‖f ‖2

L2(Z )

)
:

Now it is clear that the extension of solenoidal vector fields requires some additional
conditions to be imposed on the arrangement of balls: For each circular component of
the set F we introduce the parameter ν = min{ d

�
; 1

2}, where d is the distance from



160 a. mikelić - m. primicerio

the component to the nearest one and � its radius. For (a.e) ω ∈ G we set

(6.8) lim sup
r→+∞

r−2
∑

i

ν−k
i = ‘k <+ ∞

where the summation is performed over all circles from F = F (ω), which intersect the

circle
√

x2 + y2 ≤ r and k > 1.
Using Lemma 6.1 and after lengthy calculations we obtain

Lemma 6.2. Let (6:8) hold true for some k > 1 and let ψ ∈ L2(0; L)2. Let pε ∈
∈ L2((0; L)2 \ Tε)2 satisfy for every ξ ∈ C ∞([0; L]2), ∇ξ = 0 on Tε,

∫

(0;L)2\Tε

pε∇ξ dxdy =

∫

(0;L)2\Tε

ψξ dxdy;(6.9)

〈ρε · −→n ; 1〉− 1
2 ; 1

2
=

∫

Cε
i

ψ dxdy; for every ball Ci ⊂ Ti:(6.10)

Then there is an extension p
ε̃∈ L2(0; L)2 such that

∫

(0;L)2
pε̃∇ξ dxdy =

∫

(0;L)2
ψξ dxdy; ’ξ ∈ C ∞([0; L]2)(6.11)

p
ε̃
= pε on Tε and, for α =

2k
k + 1

;(6.12)

‖pε̃‖Lα((0;L)2)2 ≤ c0

{
‖pε‖L2((0;L)2\Tε)2 + ‖ψ‖L2((0;L)2)2

}
:(6.13)

Corollary 1. Let (6:8) hold true. Then there exists an extension operator Eα

ε
∈

∈ L(L2((0; L)2 \ Tε)2; Lα((0; L)2)2), Eα
ε pε = pε̃ for almost every ω.

Next, we define the stochastic auxiliary problem.
Let X be the closure in L2(G )2 of all potential vector fields with zero expectation,

attaining the zero value on F . Then for a given λ ∈ R2, ηs
λ ∈ X is a unique solution for

(6.14) inf
h∈X ;E{h}=0

∫

G\F
|λ + h|2 dµ;

if ηs is a random matrix with columns ηε
ej

, then we set

(6.15) As =

∫

G\F
(I + ηs) dµ :

It is easy to see that As is symmetric and positive definite matrix. Furthermore, the
Birkhoff ergodic theorem implies

(6.16)





Eα
ε ηs

λ

(
T
(x
ε

;
y
ε

)
ω
)

* Asλ weakly in Lα
loc(R

2);

(a.e.) on G

χ(0;L)2\Tε
* ϑ = µ(G \ F) weakly in Lβ

loc(R
2);

’β ∈ [1; + ∞); (a.e.) on G:
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Before passing to the limit in the solution C ε, we extend it to (0; L)2×(0; B)×(0; T ) =

= QT :

For a random circular structure F , let P̃ z be the extension of z inside the i-th circle
by its boundary value. Let

(6.17) V ε = {ϕ ∈ H 1(Ωε
tis)| ϕ is cte(z) on @T

ε
⊂ (0; L)2 and ϕ|z=0 = 0}

and

(6.18) Ṽ ε = {ϕ ∈ H 1((0; L)2 × (0; B))| ∇x;yϕ = 0 on Tε× (0; B) and ϕ|z=0 = 0}

Theorem 2. Let us suppose (6:8) with k > 1 and let M and Φ be strictly monotone
continuously differentiable functions. Let C ε be a weak solution for the problem (2:5)-(2:12),
let Q = Q (C; x; t ) and let the hypothesis of Theorem 4:1 and Propositions 5:1-5:2 hold true.
Then C̃ ε = P̃ εC ε satisfies the following a priori estimates

‖C̃ ε‖L∞(QT ) ≤ E ; C̃ ε ≥ 0 on QT ; C̃ ε ∈ P̃ εC 0;ε + L2(0; T ; Ṽ ε)(6.19)

sup
0≤t≤T

∫ B

0

{∫

(0;L)2
B(C̃ ε(t )) dxdy +

∫

(0;L)2\Tε

Ξ(C̃ ε(t )) dxdy

}
dz +(6.20)

+ D

∫ T

0

∫

(0;L)2×(0;B)
|∇C̃ |2 dxdydzdt ≤ C

∫ T −η

0

∫

(0;L)2×(0;B)
|M (C̃ ε(τ + η)) − M (C̃ ε(τ ))| dxdydzd τ ≤ Cηβ;(6.21)

for some β > 0. Furthermore,

(6.22) C̃ ε → C ∈ L2(0; T ; H 1(Ω)) ∩ L∞(QT ); C ≥ 0

weakly in L2(0; T ; H 1(Ω)) and weak* in L∞(QT ) and

(6.23) C̃ ε → C strongly in L1(QT ) and (a.e.) on QT as ε → 0:

Proof. We note that (6.8) implies the bound for J2 in the 4th step of Theorem 4.1,
with p = k + 1. Other calculations are straightforward.

Remark 6.1 The result of Theorem 6.1 is valid for almost every ω ∈ G and C

depends on the realization ω. We denote D

(
@C ε

@x
;

@C ε

@y

)
by Υ

ε
.

Let d̃iv and ∇̃ be the operators div and ∇, but only with respect to x and y.
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Let ϕ ∈ H 1(0; B);ϕ(0) = 0 and ξ ∈ H 1(0; T ); ξ(T ) = 0. Then we write our
differential equation in the form

− d̃iv{D∇̃
∫ T

0

∫ B

0
C εϕ(z)ξ(t ) dzdt} = ϕε(x; y)(6.24)

(a.e.) in (0; L)2 \ Tε, where

ϕε(x; y) =

∫ T

0

∫ B

0
Q (C ε; x; t )ϕξ dzdt +

∫ T

0

∫ B

0
M (C ε)ϕ@tξ dzdt +(6.25)

+

∫ B

0
M (C 0;ε)ϕ(z)ξ(0) dz − D

∫ T

0

∫ B

0

@C ε

@z
@ϕ
@z

ξ dzdt

Υε
ˆ = D∇̃

∫ T

0

∫ B

0
C εϕ(z)ξ(t ) dzdt =

∫ T

0

∫ B

0
Υεϕ(z)ξ(t ) dzdt(6.26)

ϕ̃ε(x; y) =





ϕε(x; y) if (x; y) ∈ (0; L)2 \ Tε

∫ B

0
Φ

(
−
∫

@T ε
i

C 0;ε

)
ϕξ(0) dz +

+

∫ T

0

∫ B

0
Φ

(
−
∫

@T ε
i

C ε

)
(ϕ@tξ + uξ@zϕ) dzdt

−
∫ T

0
Ψ(F (t ))−

∫

@T ε
i

C 0;ε|z=B)ϕ(B)ξ dt in Tε

(6.27)

Proposition 6.1. Under the assumptions of Theorem 6:1, we have forα= (2k)=(k + 1)> 1

− d̃ivEα

ε Υε
ˆ = ϕ̃ε in (0; L)2(6.28)

(a.e.) and

‖Eα

ε Υε
ˆ‖Lα((0;L)2) ≤ C :(6.29)

Furthermore, there is Υ ∈ Lα(QT )2 such that

(6.30) Eα

ε
Υ

ε
→ Υ weakly in Lα(QT )2:

Υ satisfies the following PDE

(6.31)
− d̃ivΥ − @2C

@z2 +
@
@t

{ϑM (C ) + (1 − ϑ)Φ(C )} + (1 − ϑ)u
@
@z

Φ(C ) =

= ϑQ (C; x; t ) in D′(QT )

Proof. For proving (6.28)-(6.29) we use Lemma 6.2 and (6.27). (6.31) is a conse-
quence of Theorem 6.1.
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Theorem 3. We suppose the assumptions of Theorem 6:1: Then for almost every realizationω,
there is a subsequence of C̃ ε, denoted by the same symbol, converging weakly in L2(0;T ; H 1(Ω)),
weak* in L∞(QT ) and strongly in L1(QT ) to a limit C ∈ L2(0; T ; H 1(Ω)) ∩ L∞(QT ),
C ≥ 0, satisfying the variational equation

(6.32)

−
∫

QT

{ϑM (C ) + (1 − ϑ)Φ(C )}@tξ dVdt−

−
∫

(0;L)2×(0;B)

{∫

G\F
M (C 0(T (x;y)ω;z))dµ+

∫

F
Φ(C 0(T (x;y)ω;z))dµ

}
ξ|t=0dV +

+

∫

QT

D

[
As 0
0 1

]
∇C∇ξ dVdt + (1 − ϕ)u

∫

QT

@
@z

Φ(C )ξ dVdt =

=

∫

QT

ϕQ (C; x; t ) dVdt;

’ ξ ∈ L2(0; T ; H 1((0; L)2 × (0; B))) ∩ W 1;1(0; T ; L∞((0; L)2 × (0; B)));

ξ(T ) = 0 and ξ|z=0 = 0

C |z=0 = E{C 0}|z=0(6.33)

@t{ϑM (C ) + (1 − ϑ)Φ(C )} ∈ L2(0; T ; H −1((0; L)2 × (0; B)));(6.34)

where C 0;ε = C 0(T (
x
ε

;
y
ε

)ω; z) is a given Lipschitz function in z and continuous in x and y.

Proof. We know after [7, 11] that Υ = DAs∇̃C The rest follows.

Theorem 4. For almost every realization ω, every bounded weak solution for (6:32)-(6:34)
is an entropy solution. Furthermore, for every realization ω, C is unique.

Proof. We refer to the theory of entropy solutions for degenerate parabolic equation
from [3].

Corollary 2. Under assumptions of Theorem 6:1, the whole sequence {C̃ ε} converge to the
unique limit C which is deterministic.

Proof. For every realization ω, C (ω) is unique. Since the limit problem does not
depend on realizations, C is deterministic.
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UFR mathématiques
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