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Analisi matematica. — Some results on critical groups for a class of functionals defined on
Sobolev Banach spaces. Nota di Silvia Cingolani e Giuseppina Vannella, presentata (*)
dal Socio A. Ambrosetti.

Abstract. — We present critical groups estimates for a functional f defined on the Banach space
W 1;p

0 (Ω), Ω bounded domain in RN , 2 < p < ∞, associated to a quasilinear elliptic equation involving
p-laplacian. In spite of the lack of an Hilbert structure and of Fredholm property of the second order
differential of f in each critical point, we compute the critical groups of f in each isolated critical point via
Morse index.

Key words: p-laplacian; Critical groups estimates; Morse index.

Riassunto. — Alcuni risultati sui gruppi critici per una classe di funzionali definiti su spazi di Sobolev
Banach. Presentiamo stime di gruppi critici per un funzionale f definito sullo spazio di Banach W 1;p

0 (Ω),

Ω dominio limitato in RN , 2 < p < ∞, associato a una equazione ellittica che coinvolge il p-laplaciano.
Nonostante la mancanza di una struttura di Hilbert e di proprietà di Fredholm del differenziale secondo di
f nei punti critici, valutiamo i gruppi critici di f in ogni punto critico isolato mediante l’indice di Morse.

1. Introduction and statement of the results

In this Note we outline some results discussed in [4] in a more complete form. We
present critical groups computations for some functionals associated to a class of quasi-
linear elliptic problems, involving p-laplacian. Precisely, we shall consider the functional
f : W 1;p

0 (Ω) → R defined by setting

(1.1) f (u) =
1
p

∫

Ω

|∇u|p dx +
1
2

∫

Ω

|∇u|2 dx +

∫

Ω

G (u) dx

where 2 < p < ∞ and Ω is a bounded domain of RN (N ≥ 1), with sufficiently
regular boundary @Ω. Here G (t ) =

∫ t

0 g (s) ds and g ∈ C 1(R;R) satisfies the following
assumption:

(g ) |g ′(t )| ≤ c1|t |
q + c2 with c1; c2 positive constants and 0 ≤ q < p∗ − 2, p∗ =

= Np=(N − p) if N > p, while q is any positive number, if N = p.

Otherwise, if N < p, no restrictive assumption on the growth of g is required.
We point out that the computation of critical groups classically requires an Hilbert

space structure. In particular we recall that, if H is an Hilbert space and f : H → R is
a smooth functional, a critical point u of f is said to be non degenerate if the second
order differential f ′′(u) : H → H ∗ is an isomorphism.

When u is a non degenerate critical point in H , the Morse splitting lemma holds. As
a consequence the local behaviour of the functional near u is quite clear and computing
the critical groups is possible via the Morse index m(f; u), namely the supremum of
the dimensions of the subspaces on which f ′′(u) is negative definite. In the case

(*) Nella seduta del 20 giugno 2001.
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in which f ′′(u) is a Fredholm operator from H to H ∗ (so even if f ′′(u) is not an
isomorphism) a generalized Morse lemma, due to Gromoll and Meyer, holds, giving
the basic tool for the effective computation of the critical groups. Therefore we can
say that critical groups estimates seem to require an Hilbert space structure and the
presence of Fredholm operators. We emphasize that a lot of difficulties arise from the
fact that the functional (1.1) is defined on a Banach (not Hilbert) space.

First of all, it is not at all clear what can be a reasonable definition of non de-
generate critical point in this setting. In fact, using the classical definition given for
Hilbert spaces, any critical point u of f is degenerate, as, being p > 2, W 1;p

0 (Ω) is not
isomorphic to the dual space W −1;p′ (Ω) (1=p + 1=p′ = 1). Furthermore, in our setting
f ′′(u) can not be a Fredholm operator, so not only the classical Morse Lemma does
not hold, but even generalized Morse lemmas of Gromoll-Meyer type fail.

In spite of these difficulties, we are able to obtain critical groups estimates for
functional f in u.

Before stating the main results, we introduce some notations. For any a ∈ R, we
denote by f a the set {x ∈ W 1;p

0 (Ω) : f (x) ≤ a}: If u is an isolated critical point of f
and c = f (u), then we denote by m(f; u) the Morse index of f in u and by m∗(f; u)
the sum of m(f; u) and the dimension of the kernel of f ′′(u) in W 1;p

0 (Ω). Moreover
Cq(f; u) denotes the q-th critical group of f in u with respect to a field K, defined by

Cq(f; u) = H q(f c; f c \ {u}) ;

q = 0; 1; 2; : : : ; where H q(A; B) stands for the q-th Alexander-Spanier cohomology
group of the pair (A; B) with coefficients in K.

The first result we state is the following theorem.

Theorem 1.1. Let u be an isolated critical point of the functional (1:1) such that f ′′(u) is
injective. Then m(f; u) is finite and

Cq(f; u) ∼= K; if q = m(f; u) ;

Cq(f; u) = {0}; if q �= m(f; u) :

This theorem extends a classical result in Hilbert spaces for non degenerate critical
points, showing that the critical groups of f in u depend only upon its Morse index.
It is interesting to observe that the usual non degeneracy condition, namely f ′′(u) is an
isomorphism, can be weakened by requiring only the injectivity. This suggests, in the
setting of functional (1.1), a new definition of non degenerate critical point, i.e.

u is a non degenerate critical point of f if f ′′(u) : W 1;p
0 (Ω) → W −1;p′

0 (Ω) is injective.

We mention that in literature some authors have introduced different weaker non
degeneracy conditions for the critical points of functionals defined on a Banach space
(see e.g. [2, 3, 9, 10]). However these non degeneracy conditions seem to be rather
involved and in general not easy to be verified.

In the case in which f ′′(u) is not injective, we shall prove that the number of non
trivial critical groups of f in u is finite. Precisely, we state the following result.
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Theorem 1.2. Let u be an isolated critical point of the functional (1:1). Then m(f; u) and
m∗(f; u) are finite and

Cq(f; u) = {0}
for any q ≤ m(f; u) − 1 and q ≥ m∗(f; u) + 1.

We remark that the case q ≥ m∗ + 1 corresponds to study f ′′(u) on an infinite
dimensional subspace. In order to overcome this difficulty, we obtain a suitable reduc-
tion to finite dimension. We quote that in a recent paper by Lancelotti [6], a finiteness
result on the non trivial critical groups is obtained for a class of continuous functionals
defined on Hilbert spaces via a finite dimensional reduction.

In a forthcoming paper, the critical groups estimates, obtained in Theorems 1.1
and 1.2, will be applied to get a multiplicity result for a quasilinear elliptic problem
arising in the mathematical description of solitons propagation phenomena (see, for
example, [1]).

2. Sketch of the proof of Theorems 1.1 and 1.2

In what follows, we denote by (·|·) the scalar product in RN , by ‖·‖ the usual norm
in W 1;p

0 (Ω). Let us denote Br (u) = {v ∈ W 1;p
0 (Ω) : ‖v − u‖ < r}, where u ∈ W 1;p

0 (Ω)
and r > 0. Moreover we denote by 〈·; ·〉 : W −1;p′ (Ω) × W 1;p

0 (Ω) → R the duality
pairing.

Standard arguments prove that f is a C 2 functional on W 1;p
0 (Ω) and it is easy to

prove that the second order differential of f in u is given by

〈f ′′(u)v; w〉 =

∫

Ω

(1 + |∇u|p−2)(∇v|∇w) dx +

+

∫

Ω

(p − 2)|∇u|p−4(∇u|∇v)(∇u|∇w) dx +

∫

Ω

g ′(u)vw dx

for any v; w ∈ W 1;p
0 (Ω).

Let us fix an isolated critical point u ∈ W 1;p
0 (Ω) of f and set c = f (u). By [7, 8],

we can infer that u ∈ C 1(Ω). Let b(x) = |∇u(x)|(p−4)=2∇u(x) ∈ L∞(Ω): Let Hb be the
closure of C ∞

0 (Ω) under the scalar product

(v; w)b =

∫

Ω

(1 + |b|2)(∇v|∇w) dx + (p − 2)(b|∇v)(b|∇w) dx :

We emphasize that the space Hb is W 1;2
0 (Ω) equipped by an equivalent Hilbert structure,

which depends on the critical point u, being suggested by f ′′(u) itself. In such a way
W 1;p

0 (Ω) ⊂ Hb continuously.
Now let us denote H ∗

b the dual space of Hb and 〈·; ·〉b : H ∗
b × Hb → R the duality

pairing.
Being u ∈ C 1(Ω), f ′′(u) can be extended to a Fredholm operator Lb : Hb → H ∗

b

defined by setting

〈Lbv; w〉b = (v; w)b +

∫

Ω

g ′(u)vw dx
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for any v; w ∈ Hb . Lb is a Fredholm operator with index zero, as it is a compact
perturbation of the Riesz isomorphism from Hb to H ∗

b . Therefore we can consider the
splitting

Hb = H − ⊕ H 0 ⊕ H +

where H −; H 0; H + are, respectively, the negative, null, and positive spaces, according
to the spectral decomposition of Lb in L2(Ω).

Since u ∈ C 1(Ω), we can deduce from standard regularity theory that

H − ⊕ H 0 ⊂ W 1;p
0 (Ω) ∩ L∞(Ω):

Consequently, denoted by W = H +∩W 1;p
0 (Ω) and V = H −⊕H 0, we get the splitting

W 1;p
0 (Ω) = V ⊕ W :

Furthermore, denoting by ‖ · ‖b the norm induced by (·; ·)b , it is obvious that there
exists c > 0 such that

〈Lbv; v〉b + c

∫

Ω

v2 dx ≥ ‖v‖2
b ’ v ∈ Hb :

Therefore one can easily show that

(2.1) ∃µ > 0 s:t: 〈Lbv; v〉b ≥ µ‖v‖2
b ’ v ∈ H + :

and, by (2.1) we infer

(2.2) 〈f ′′(u)v; v〉 ≥ µ‖v‖2
b ’ v ∈ W :

In particular m∗(f; u) = dimV is finite.
Note that (2.2) does not assure that f is convex in u along the direction of W ,

as ‖ · ‖b is weaker than the norm of W 1;p
0 (Ω). Furthermore in general (2.2) does not

guarantee an «uniform weak convexity» of f near u along the direction of W .
Nevertheless we are able to prove a sort of local convexity in the bounded sets of

L∞(Ω) along the direction of W .
This allows to obtain a finite dimensional reduction. More precisely we get the

following crucial result.

Lemma 2.1. There exist r > 0 and ρ ∈ ]0; r[ such that for any v ∈ V ∩Bρ(0) there exists
one and only one w ∈ W ∩ Br (0) ∩ L∞(Ω) such that for any z ∈ W ∩ Br (0) we have

f (v + w + u) ≤ f (v + z + u) :

So we can introduce the map ψ : v ∈ V ∩ Bρ(0) �→ w ∈ W ∩ Br (0) where w is the
unique minimum point of the function w ∈ W ∩ Br (0) �→ f (u + v + w), and it is
possible to show that ψ is continuous. Furthermore the function φ : V ∩ Bρ(0) → R
defined by φ(v) = f (u + v + ψ(v)) is a continuous map with φ(0) = f (u) = c .

Now let us introduce the set

Y = {u + v + ψ(v) : v ∈ V ∩ Bρ(0)} :
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Using a suitable pseudogradient flow it can be proved that

Cj (f; u) = Cj (f|Y ; u) :

Moreover it is quite simple to show that

Cj (φ; 0) = Cj (f|Y ; u) :

So finally

Cj (f; u) = Cj (φ; 0)

where φ is defined on a subset of the finite dimensional space V .
In particular, if f ′′(u) is injective, it can be deduced that 0 is a local maximum of

φ in V ∩ Bρ(0), so that Theorem 1.1 comes.
More generally, not requiring the injectivity of f ′′(u), it is clear that Cj (φ; 0) =

= {0} when j ≥ m∗(f; u) + 1 = dimV + 1. Finally Theorem 2.6 of [6] assures that
Cj (φ; 0) = {0} if j ≤ m(f; u) − 1 and thus Theorem 1.2 derives.
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