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Analisi numerica. — Stability of finite element mixed interpolations for contact problems.
Nota di Klaus Jürgen Bathe e Franco Brezzi, presentata (*) dal Socio E. Magenes.

Abstract. — We consider the formulation of contact problems using a Lagrange multiplier to enforce
the contact no-penetration constraint. The finite element discretization of the formulation must satisfy
stability conditions which include an inf-sup condition. To identify which finite element interpolations
in the contact constraint lead to stable (and optimal) numerical solutions we focus on the finite element
discretization and solution of a «simple» model problem. While a simple problem to avoid the need for
technicalities, the analysis of the finite element discretizations to solve the problem gives valuable insight
and allows quite general conclusions on the use of different interpolation schemes.

Key words: Contact problems; Elasticity; Inf-sup condition.

Riassunto. — Sulla stabilità delle formulazioni miste per problemi di contatto. Si considera il problema
del contatto senza penetrazione di due corpi elastici, usando la tecnica dei moltiplicatori di Lagrange per il
trattamento del vincolo unilaterale. La discretizzazione con elementi finiti di tale problema deve soddisfare
opportune condizioni di stabilità, che includono una condizione di inf-sup . Per identificare la tipologia
degli elementi finiti che possono portare a schemi discretizzati stabili (ed ottimali) ci concentriamo sulla
discretizzazione di un problema modello «semplice». Tale scelta permette di evitare un certo numero di
tecnicismi, pur fornendo valide indicazioni sulle scelte da operare in contesti molto più generali.

1. Introduction

While contact problems are already being solved for some time, and many finite
element programs offer contact analysis capabilities that are being used daily in pro-
duction and research applications, efforts to reach more effective solution schemes are
still intense [6]. One reason is the multitude of different kind of contact problems that
are encountered, which can involve large relative motions, frictional forces, and static
or dynamic conditions. Problems involving contact between bodies are, for example,
analysed in mechanical designs of seals, in soil-structure interactions, in the analyses of
bridges, in metal forming simulations, and in automobile crash and crush analyses [6].

Another reason for the continued research on contact solution procedures is simply
the fact that a generally applicable, always effective, optimal and in practice easy-to-use
finite element contact solution scheme is still not available.

To reach such a solution scheme, a number of requirements need to be fulfilled [4].
These include that the contact constraints can be satisfied for arbitrary geometries of the
contacting bodies and for arbitrary analyis conditions, that a Jacobian of the contact
constraints should be available, that an effective use without user to-be-adjusted fac-
tors should be possible, and most importantly, that certain fundamental mathematical
conditions be satisfied by the contact solution algorithm.

(*) Nella seduta del 20 giugno 2001.
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In this paper we focus on the fundamental mathematical conditions that must be
fulfilled by an effective contact solution procedure. We assume that a Lagrange multi-
plier mixed formulation for the solution of the contact problems is used and we study
the stability of various finite element contact discretizations that can be employed.

In an earlier contribution, we proposed a new contact solution procedure that satisfies
the patch condition and the mixed formulation stability conditions [1]. This contact
solution algorithm shows optimal convergence in the solution, which means that as the
mesh is refined the errors at the contact interface diminish with the optimal rate. The
contact algorithm was proposed and analysed for stability using the numerical inf-sup
test, which is an appropriate test to perform when an analytical evaluation of the inf-sup
condition is not available. The objective of the present paper is to present an analytical
study of the stability of various contact discretizations considered in [1]. The study
gives very valuable insight in the solution scheme and confirms the numerical results
published earlier.

While we are interested in contact solution algorithms that are general in appli-
cations, see Section 2, for the purpose of the mathematical analysis carried out here
we can consider a «simple model problem». We present this problem in Section 3.
The solution of the problem encompasses the fundamental mathematical difficulties en-
countered in the solution of geometrically more complex contact problems but avoids
certain technicalities, the discussion of which would not add to the fundamental un-
derstanding of the stability of the solution scheme. For the same reasons, we do
not discuss regularity results for the solution of our model problem, that in any case
would be difficult to extend to more general situations. In Section 4, we then in-
troduce the solution scheme and the finite element discretizations considered and dis-
cuss abstract error norms. The importance of the inf-sup condition is clearly demon-
strated. In Section 5, we present stable finite element spaces which can be recom-
mended for general analysis use. Finally, in Section 6, we give the conclusions of this
investigation.

Throughout the paper, the usual notation for Sobolev spaces and for their norms
‖ · ‖ and seminorms | · | is used; see for instance [17, 11].

2. The generic contact problem considered

Figure 1 shows the generic contact problem considered. We show here two flexible
bodies, fixed on the boundary ΓD , and subjected to forces that bring the bodies into
contact over the area ΓC . Only two bodies and only one contact area are shown, but
the same principles discussed below are applicable when there are more bodies in contact
with many contact areas. Of course, in general, the area(s) of contact are unknown and
must be solved for as part of the overall solution of the problem.

Since we are focussing on the fundamental requirements for stability of the contact
solution procedure we assume conditions of zero friction and small displacements. The
results that we will derive will of course also be used when these conditions no longer
hold.
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Fig. 1. – Two bodies in contact.

The basic contact conditions are that

(2.1) λ ≥ 0; g ≥ 0; g · λ = 0

where λ is the contact normal traction between the bodies (positive for compression),
and g is the gap between the bodies. The gap is measured based on the original
geometries and the displacements of the bodies.

Let xI and xJ be the position vectors of material particles on the surfaces SI and SJ

respectively, see fig. 2. For a given xI ∈ SI let x∗
J on SJ be defined by

(2.2) ‖xI − x∗
J ‖2 = min

xJ ∈SJ

‖xI − xJ ‖2 :

Then the gap (or gap function) between the bodies at xI is given by

(2.3) g (xI ) = (xI − x∗
J ) · n∗

Body I

Body J

xI

n *

x *
J

S I

S J

Fig. 2. – Geometry used to calculate the gap.
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where n∗ is the unit normal vector on SJ (outward from body J ) at the material particle
with position vector x∗

J .
The third condition in (2.1) is the complementary condition which stipulates that

the contact force is zero if the gap is larger than zero, and vice versa.
The solution of the problem therefore requires that the conditions of equilibrium and

compatibility, and the constitutive relations be fulfilled for each differential element of
the bodies, subject to the boundary conditions, and that the contact conditions in (2.1)
be satisfied. For a complex problem, in finite element analysis, the principle of virtual
displacements is generally used with the contact conditions imposed as a constraint.

Figure 3 shows generic finite element discretizations of the bodies (shown here in
two-dimensional actions). We note that as long as there is no contact the solution
is obtained as in usual linear elastic finite element analysis, using for example the
displacement-based finite element procedures. However, when contact is established,
that is, the gap is closed anywhere along the surfaces of the bodies, an additional normal
contact traction is developed along the contact area and the magnitude of the traction
depends on the loading, the geometry, boundary conditions and elastic constants of the
bodies.

Body I

Body J

nodem

noden

K λnS I

S J

g x( )I

n*

mv2

mv1

Fig. 3. – Discretizations of bodies in contact region; nodal-point displacements (and nodal Lagrange
multiplier if used) are shown.

Various finite element approaches can be used to solve the contact problem. To
develop the basic principle of virtual displacements (weak formulation) subject to the
contact constraints (2.1) we can proceed as follows.

Let V be the Hilbert space of displacements v of the bodies, and KV ⊂ V be the
non-empty closed subset satisfying g (v) ≥ 0; under reasonable geometric assumptions,
KV turns out to be convex. Let finally f be an element of V ′; then the functional J (v)
is given by [13, 6, 4, 1, 3, 12, 16]

(2.4) J (v) :=
1
2

a(v; v) − (f; v)
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where a : V × V → R is the bilinear form of the elasticity problem considered and the
solution u is given as the minimizing argument of J over KV , that is

(2.5) J (u) = inf
v∈KV

J (v) :

The solution of (2.5) can also be obtained as the solution u of the variational
inequality [3, 12, 16]

(2.6)
{

find u ∈ KV such that:

a(u; u − v) ≤ (f; u − v) ’ v ∈ KV :

This is the basic principle of virtual displacements, where we note that in this inequality
the only variables are the displacements of the bodies. However, in practice, to reach
an effective solution algorithm for complex problems, it is expedient to introduce the
contact traction λ as an additional unknown for the solution of the problem. The re-
sulting solution procedure is then a mixed finite element method based on the unknown
displacements and contact traction (a Lagrange multiplier), which is closely related to
penalty methods, perturbed Lagrangian and augmented Lagrangian techniques [6, 4].
The basic step in this mixed finite element method is to assume the appropriate in-
terpolation for the contact traction/Lagrange multiplier λ for a given displacement in-
terpolation. The pair of interpolations must satisfy the stability conditions and ideally
correspond to an optimal solution scheme.

The crucial stability condition to be satisfied in the selection of the interpolations
is the inf-sup condition for the problem formulation [9, 8, 5], and we address the
difficulties to satisfy this condition in the next section. We do not wish to claim that
the results obtained below are all new, but present this exposition also in order to show
how the mathematical analysis can be performed in a rather simple and elucidating
manner.

3. The model mathematical problem

To simplify the notation and to avoid technicalities, we consider now a «simple
model» problem. The discussion of this problem is, in our opinion, very valuable to
clarify the difficulties related to the satisfaction of the inf-sup condition, and to obtain
very useful results (that have quite general applicability).

Figure 4 shows the problem considered. Two adjacent pretensioned membranes are
fixed on three of their edges and are free to displace into the x3-direction (only) on
the adjoining edge. The membranes are transversely loaded. Clearly, unless only a
specific loading is allowed, a gap will tend to open along the common boundary Γ of
the membranes. The physical requirement for the problem is that along the common
boundary the transverse displacement of the top membrane must be greater than or
equal to the transverse displacement of the bottom membrane. Hence, we have a
contact problem.

Let us now mathematically formulate the problem considered. In fig. 4 we consider
two rectangular domains, Ω1 and Ω2, with Ω1 =]0; 1[×]0; 1[ and Ω2 =]0; 1[×]1; 2[
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Fig. 4. – Model problem considered: two pretensioned membranes with displacement into the x3-direction,
tranverse loading into x3-direction is f (x1; x2).

and denote by Γ the common part of the two boundaries, that is Γ :=]0; 1[×{1}. For
the analysis we set, for i = 1; 2,

(3.1) Vi := {v ∈ H 1(Ωi); v = 0 on @Ωi \ Γ}
and, for ui; vi in Vi ,

(3.2) ai(ui; vi) :=
∫

Ωi

ci∇ui · ∇vidx

where clearly x = (x1; x2) and c1; c2 are positive constants (representing the prestress
in the two membranes). We also set

(3.3) V := V1 × V2 Ω :=]0; 1[×]0; 2[ :

Elements of V will be denoted by u = (u1; u2) and v = (v1; v2). For u and v in V
we set

(3.4) a(u; v) := a1(u1; v1) + a2(u2; v2)

and

(3.5) g (v) := (v2)|Γ − (v1)|Γ

and we consider the closed convex subset of V defined by

(3.6) KV := {v ∈ V; g (v) ≥ 0} :

It is clear that on Γ our functions v ∈ KV behave like the normal components of the
displacements on the contact surface of the previous section.

Our problem is now to find the minimizing argument u in KV of (see (2.4) to (2.6))

(3.7) J (v) :=
1
2

a(v; v) − (f; v)
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where f is a given (load) function in L2(Ω) and (:; :) denotes as usual the L2(Ω)-inner
product. The solution is obtained by solving

(3.8)
{

find u ∈ KV such that:

a(u; u − v) ≤ (f; u − v) ’ v ∈ KV :

As mentioned in the previous section, our aim is to impose the condition v ∈ KV by
means of a suitable Lagrange multiplier on Γ. For this we define the space

(3.9) M := (H 1=2
00 (Γ))′

and the convex cone

(3.10) KΛ := {µ ∈ M; µ ≥ 0} :

We also define the continuous bilinear form b on V × M

(3.11) b(v;µ) := 〈g (v);µ〉

where 〈 : ; : 〉 denotes the duality pairing between H 1=2
00 (Γ) and its dual space M , and

we consider the mixed variational inequality

(3.12)





find (u;λ) ∈ V × KΛ such that:

a(u; v) − b(v;λ) = (f; v) ’ v ∈ V

b(u;µ− λ) ≥ 0 ’ µ ∈ KΛ :

It is easy to check that (3.12) also has a unique solution (u;λ), where u coincides with
the solution of (3.8) and

(3.13) λ = c1

(
@u1

@n1

)

|Γ
= −c2

(
@u2

@n2

)

|Γ
= c1

(
@u1

@x2

)

|Γ
= c2

(
@u2

@x2

)

|Γ
:

The existence and uniquenes of the solution of (3.12) can be deduced, for instance, as
an application of [10], or as a particular case of the more general result in [2]. We note
that, in particular, by taking µ = 0 and then µ = 2λ in the second equation of (3.12)
we get

(3.14) b(u;λ) = 0 ;

which will be used later on.

Remark 3.1. We explicitly point out that the choice (3.9) for the space M of
Lagrange multipliers is essential in order to have the well-posedness of (3.12). Indeed
this is the choice which ensures that the continuous inf-sup condition holds: there exists
a βc > 0 such that

(3.15) sup
v∈V \{0}

b(v;µ)
‖v‖V

≥ βc‖µ‖M ’ µ ∈ M :

Other choices for M , as for instance M = L2(Γ) used in [15], will not satisfy (3.15)
and can result in nonoptimal estimates for the discretized problems.
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4. Discretization and abstract error estimates

If Vh and Mh are finite dimensional subspaces of V and M , respectively, and Kh a
closed convex cone in Mh , we can consider the discrete counterpart of (3.12):

(4.1)





find (uh;λh) ∈ Vh × Kh such that:

a(uh; vh) − b(vh;λh) = (f; vh) ’ vh ∈ Vh

b(uh;µh − λh) ≥ 0 ’ µh ∈ Kh :

Existence and uniqueness of the solution of (4.1) follow rather easily, by the arguments
in [10], provided we have, for all µh ∈ Mh with µh 
= 0:

(4.2) sup
vh∈Vh\{0}

b(vh;µh)
‖vh‖V

> 0 :

With classical arguments, assuming that

(4.3) Kh ⊂ KΛ

we have then, for uI ∈ Vh and λI ∈ Kh :

(4.4)

‖uh − u‖2
V = a(uh − u; uh − u) =

= a(uh − u; uI − u) + a(uh − u; uh − uI ) =

= I + b(uh − uI ;λh − λ) =

= I + b(uh − uI ;λI − λ) + b(uh − uI ;λh − λI ) =

= I + II + b(uh − uI ;λh − λI ) ≤

≤ I + II − b(uI ;λh − λI ) =

= I + II + b(u − uI ;λh − λI ) − b(u;λh − λI ) =

= I + II + III + b(u;λI − λh) ≤
≤ I + II + III + b(u;λI − λ) ;

where we used the ellipticity of a, additions and subtractions, the first equation of (3.12)
combined with the first equation of (4.1), and, in the fifth-to-sixth line, we used the
second equation of (4.1); finally, in the last line, we used the (positive) sign of b(u;λh),
and (3.14).

The pieces I and II in (4.4) are then easily estimated by the Cauchy-Schwarz
inequality, trace theorems, and usual interpolation estimates. However, in order to
estimate III we need an estimate for λh − λI . For this we need a stronger form
of (4.2), that is the usual inf-sup condition: there exists a β > 0, independent of h,
such that

(4.5) sup
vh∈Vh\{0}

b(vh;µh)
‖vh‖V

≥ β ‖µh‖M ’ µh ∈ Mh :

Using (4.5) we immediately obtain the existence of a wh ∈ Vh , with ‖wh‖V = 1, such
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that

(4.6)
β

2
‖λI − λh‖ ≤ b(wh;λI − λh) = b(wh;λI − λ) + b(wh;λ− λh) ≤

≤ C ‖λI − λ‖M + a(u − uh; wh) ≤ C (‖λI − λ‖M + ‖u − uh‖V );

where, here and in what follows, C is a constant independent of u and h, possibly
having different values at different occurrences. From (4.4) and (4.6) we have then
easily

(4.7)
‖u − uh‖

2
V ≤ C {‖u − uh‖V ‖u − uI ‖V + ‖uh − uI ‖V ‖λ− λI ‖M +

+ ‖u − uI ‖V (‖λ− λI ‖M + ‖u − uh‖V )} + b(u;λI − λ) :

Using the triangle inequality ‖uI − uh‖V ≤ ‖uI − u‖V + ‖u − uh‖V we then have
from (4.7)

(4.8)
‖u − uh‖

2
V ≤ C {‖u − uh‖V (‖u − uI ‖V + ‖λ− λI ‖M ) +

+ ‖u − uI ‖V ‖λ− λI ‖M } + b(u;λI − λ):

As usual, (4.8) can then be combined with (4.6) in order to have an estimate on
‖λ − λh‖M . For each particular choice of Vh , Mh , and Kh , the first term of (4.8) will
then be estimated by usual interpolation errors, while the last term will be estimated,
on a case by case basis, using the available regularity and possibly (3.14). Just to give
an idea we point out that, if λI is chosen as the L2(Γ)-projection of λ onto Mh , then
we can define g M

I as the L2(Γ)-projection of g (u) onto Mh and obtain

(4.9) b(u;λI − λ) =

∫

Γ

(g (u) − g M
I )(λI − λ)dx1

which reduces the whole estimate (4.8) to a classical interpolation error.
It is interesting to note that a different estimate can also be derived, assuming that

we can easily obtain a good approximation uI of u in KV . In this case, we can use, for
uI in KV ∩ Vh and λI ∈ Kh , the following estimate

(4.10)

‖uh − u‖2
V = a(uh − u; uh − u) =

= a(uh − u; uI − u) + a(uh − u; uh − uI ) =

= I + b(uh − uI ;λh − λ) =

= I + b(uh − uI ;λI − λ) + b(uh − uI ;λh − λI ) =

= I + II + b(uh − uI ;λh − λI ) ≤
≤ I + II − b(uI ;λh − λI ) ≤ I + II + b(uI ;λI ) =

= I + II + b(uI − u;λI ) + b(u;λI − λ);

(having used, to obtain the last line, the positive sign of b(uI ;λh) that was not used
in (4.4)). The estimate (4.10) immediately gives (using again the triangle inequality)

(4.11)
‖u − uh‖

2
V ≤ C {‖u − uh‖V (‖u − uI ‖V + ‖λ− λI ‖M ) +

+ ‖u − uI ‖V ‖λ− λI ‖M } + b(uI − u;λI ) + b(u;λI − λ) :

It is clear however that (4.11) can only provide an estimate for the error ‖u − uh‖V



176 k.j. bathe - f. brezzi

(although the estimate for ‖u − uI ‖V is more difficult now) but the error ‖λ − λh‖M

cannot be estimated without the inf-sup condition (4.5). Most importantly, without
having at least (4.2) we cannot even ensure the uniqueness of the solution of the
discrete problem (4.1).

Considering our next steps of analysis, it is not within the scope of this paper to
study the error estimates, in terms of powers of h and of the regularity of u, that
can be obtained from (4.8) or (4.11). Indeed, the results obtained would also not
be applicable for the solution of the practical problems we have in mind, which are
much more complicated than our model problem, see Sections 1 and 2. Instead, we
will focus on the stability of various possible approximations, and in particular on the
inf-sup condition (4.5). It is quite reasonable to expect that the stability results obtained
for our simple model problem will in fact hold for much more complex problems, and
in particular the contact problems considered in Sections 1 and 2.

Hence in the next section we consider several possible choices for Vh and Mh , and
check whether the inf-sup condition is satisfied.

5. Examples of stable finite element spaces

Assume now that we are given, for each i = 1; 2, a decomposition T i
h of Ωi . The

two decompositions are not supposed to be identical on Γ. For each i = 1; 2 and for
each integer k ≥ 1 we consider the spaces

(5.1) V k
hi := {v ∈ Vi; v|T ∈ Pk(T ) ’ T ∈ Thi}

and then the space

(5.2) V k
h := V k

h1 × V k
h2

where if the superscript k is not given, any k ≥ 1 is considered. Finally, we assume
that we are given a decomposition Gh of Γ. For any integer s ≥ 0 and r = 0; 1 we
consider the space

(5.3) Mr
s := {µh ∈ H r (Γ); µh |I ∈ Ps ’ I ∈ Gh}

and the closed convex cone

(5.4) Kr
s := {µh ∈ Mr

s ; µh ≥ 0 on Γ} :

In general, we use s = 0 or s = 1. For a larger s, the condition µh ≥ 0 is difficult
to enforce in a finite element code. In these cases, we might just require that µh ≥ 0
at the nodes, but the abstract estimates of the previous section must then be adjusted
since condition (4.3) will not hold. We also consider the space Mr

0;s and the cone Kr
0;s

defined as

Mr
0;s = {µh ∈ Mr

s ; µh(0) = µh(1) = 0};(5.5)

Kr
0;s = {µh ∈ Kr

s ; µh(0) = µh(1) = 0} :(5.6)

As we have seen in the last section, two inequalities are at the basis of the error
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estimate (4.8): the ellipticity of the bilinear form a(u; v) – that for our problem is
always satisfied for every choice of the discrete space Vh – and the inf-sup condition –
that, on the contrary, will heavily depend on the choices of the spaces Vh and Mh . We
are going to identify, in what follows, three families of choices for which the inf-sup
condition is satisfied. The proof, for each family, will be based on the so-called Fortin
trick [14] recalled in the following theorem.

Theorem 1. Let V and M be Hilbert spaces, and let b be a bilinear continuous form on
V ×M such that the continuous inf-sup condition (3:15) is satisfied. Assume that we are given
a family of subspaces Vh ⊂ V and Mh ⊂ M , where h is a parameter spanning the interval
]0; h0]. We assume that, for each h, we are given a linear operator Πh from V to Vh with the
following properties :

(5.7) b(v − Πhv;µh) = 0 ’ µh ∈ Mh

and there exists a constant CF , independent of h, such that

(5.8) ‖Πhv‖V ≤ CF ‖v‖V ’ v ∈ V :

Then the discrete inf-sup condition

(5.9) sup
vh∈Vh\{0}

b(vh;µh)
‖vh‖V

≥ β‖µh‖M ’ µh ∈ Mh :

holds with β = βc=CF .

The proof can be found in [9, 8, 14].
Of course, (3.15) holds for our problem. We are now going to consider particular

choices of spaces Vh and Mh . It is intuitively clear that, for a given decomposition Gh

of Γ, the worst possible scenario is obtained when the two decompositions Th1 and Th2,
restricted to Γ, coincide. This indeed minimizes the dimension of the space spanned
by all possible differences between vh1 and vh2 on Γ. If our aim is to prove the inf-sup
condition, it is clear that a sufficient condition would be to have it satisfied when the
supremum in (5.9) is just taken only on the pairs vh = (0; vh2). On the other hand, if
the two spaces (Vh1)|Γ and (Vh2)|Γ coincide, there is no gain in taking the supremum
on all vh ’s rather than just on the ones of the type (0; vh2). Hence the condition

(5.10) sup
vh∈Vh2\{0}

∫

Γ

vh µhdx1

‖vh‖V2

≥ β‖µh‖M ’ µh ∈ Mh :

is always sufficient for having (5.9), and becomes necessary when (Vh1)|Γ and (Vh2)|Γ
coincide. In what follows, we are therefore going to see whether a given choice of the
spaces Vh and Mh satisfies (5.10). The following lemma is an immediate consequence
of Theorem 1 and of the above discussion.

Lemma 1. Assume that the continuous version of (5:10) holds, namely, there exists a βc > 0
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such that

(5.11) sup
v∈V2\{0}

∫

Γ

v µdx1

‖v‖V2

≥ βc‖µ‖M ’ µ ∈ M :

Assume moreover that for each h ∈]0; h0] there exists a linear operator Πh from V2 into V k
h2

satisfying

(5.12)
∫

Γ

(v − Πhv)µhdx1 = 0 ’ µh ∈ Mh ;

and there exists a constant CF , independent of h such that

(5.13) ‖Πhv‖V2
≤ CF ‖v‖V2

’ v ∈ V2 :

Then (5:10) holds, and therefore (4:5) also holds.

To avoid technicalities, we assume that the decomposition cast on Γ by Th2 coincides
with Gh . This is a rather particular case, but not unrealistic. Finally, always in order to
simplify the exposition, we assume that the decomposition Th2 is quasi-uniform. Under
this assumption it is rather easy to check (see e.g. [19]) that for every vh ∈ V k

h2 we can
find a ṽh ∈ V k

h2 such that

(5.14) ṽh = vh on Γ ;

and

(5.15) ‖ṽh‖V2
≤ C ‖vh‖H 1=2

00 (Γ)
:

Under the above assumptions on the decompositions we have therefore the following
theorem.

Theorem 2. Let Wh be the space of the traces of V k
h2 on Γ, and assume that we are given,

for each h, an operator πh from H 1=2
00 (Γ) into Wh with the following properties :

∫

Γ

(w − πhw)µhdx1 = 0 ’ µh ∈ Mh ;(5.16)

‖πhw‖
H 1=2

00 (Γ)
≤ CΓ ‖w‖

H 1=2
00 (Γ)

’ w ∈ H 1=2
00 (Γ) ;(5.17)

where CΓ is a constant independent of h and v. Then an operator Πh satisfying (5:12) and (5:13)
exists (and hence the inf-sup condition (5:10) holds.)

Proof. Given v ∈ V2 we consider w := v|Γ and wh := πhw. We then lift wh , in

an arbitrary way, to an element vh ∈ V k
h2 such that vh = wh on Γ. Then we define

Πhv as vh̃ . Using properties (5.14) and (5.16) we immediately get (5.12). Then (5.17)
and (5.15) easily give (5.13).
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Remark 5.1. It is quite intuitive that the discrete inf-sup condition (5.10) should
depend only on the space Mh and on the space Wh of the traces of functions in Vh2,
even if norms over Ω2 are involved. The role of Theorem 2 is indeed to reduce the
proof of (5.10) to a property (the existence of a suitable πh) that depends only on Mh

and Wh .

In what follows we will keep Vh = V k
h fixed, and we consider three possible choices

for the corresponding Mh . We notice that, with the above choice for Vh , the space of
traces Wh will also be fixed, equal to

(5.18) Wh ={wh ∈C 0([0; 1]; such that wh |I ∈Pk ’ I ∈Gh; and wh(0)=wh(1)=0} :

The first choice corresponds to having as space of multipliers the same space that is
spanned by the traces of Vh (including the zero boundary conditions at the endpoints
of Γ).

Theorem 3. Assume that Vh := V k
h and Mh := M1

0;k . Then an operator πh satisfy-
ing (5:16) and (5:17) exists (and hence the inf-sup condition is satisfied. )

Proof. We note that, in this case, we have Wh = Mh . Then we can define πhw as
the L2(Γ)-projection of w on Wh = Mh . Property (5.16) is clearly verified. It is also
obvious that

(5.19) ‖πhw‖L2(Γ) ≤ ‖w‖L2(Γ) ’ w ∈ L2(Γ) :

By usual approximation properties we also have

(5.20) ‖πhw − w‖L2(Γ) ≤ C h ‖w‖H 1
0 (Γ) ’ w ∈ H 1

0 (Γ) :

From the inverse inequality, the triangle inequality, and usual interpolation estimates
we then have

(5.21)

‖πhw − wI ‖H 1
0 (Γ) ≤ C h−1 ‖πhw − wI ‖L2(Γ) ≤

≤ C h−1 (‖πhw − w‖L2(Γ) + ‖w − wI ‖L2(Γ)) ≤
≤ C ‖w‖H 1

0 (Γ) ’ w ∈ H 1
0 (Γ) ;

where wI is the usual interpolant of w.
From (5.21) we immediately obtain

(5.22) ‖πhw‖H 1
0 (Γ) ≤ ‖πhw − wI ‖H 1

0 (Γ) + ‖wI ‖H 1
0 (Γ) ≤ C ‖w‖H 1

0 (Γ) ’ w ∈ H 1
0 (Γ) :

Interpolating between (5.19) and (5.22) we obtain (5.17).

Remark 5.2. It is very easy to see that, taking a space of multipliers made of contin-
uous piecewise Pk functions that do not vanish at the endpoints, the inf-sup condition
will not hold. Indeed, the number of degrees of freedom for the space Mh of multi-
pliers would be, in the case of N intervals, equal to N × k + 1, which is bigger than
N × k − 1, the dimension of Wh . Hence the inf-sup condition cannot hold.

Before proceeding, we select a useful property that comes out immediately from the
proof of Theorem 3.



180 k.j. bathe - f. brezzi

Lemma 2. If Gh is quasi-uniform, then there exists a linear operator π1
h from H 1=2

00 (Γ) into
the space of piecewise linear functions on Gh , and two constants C1 and C 1, independent of h,
such that

(5.23) ‖π1
hw‖r;Γ ≤ C1|‖w‖r;Γ r = 0; 1 ;

and

(5.24) ‖π1
hw − w‖0;Γ ≤ C 1 h ‖w‖1;Γ ’ w ∈ H 1

0 (Γ) :

The proof, as we said, is a byproduct of the proof of Theorem 3, by taking k = 1.

We shall consider in a while two other possible choices of finite element spaces. For
them, the construction of the operator πh is made in two steps (see for instance [9]).
The strategy is to use the operator π1

h of Lemma 2, and look for another operator π2
h

with the properties

(5.25)
∫

Γ

(π2
hw − w)µhdx1 = 0 ’ µh ∈ Mh ;

and

(5.26) ‖π2
hw‖t;Γ ≤ C2 h−t ‖w‖0;Γ t = 0; 1 ;

and then to define πh as

(5.27) πh := π1
h − π2

h (π1
h − I ) :

It is then clear that from (5.27) and (5.25) we have

(5.28)

∫

Γ

(πhw − w)µhdx1 =

∫

Γ

(π1
hw − π2

h (π1
h − I )w − w)µhdx1 =

=

∫

Γ

((π1
hw − w) − π2

h (π1
hw − w))µhdx1 = 0;

for all µh ∈ Mh , that is (5.16); moreover, using (5.27), then (5.23) with r = 0, and
finally (5.26) with t = 0 we have, for all w ∈ L2(Γ):

(5.29) ‖πhw‖0;Γ ≤ C1‖w‖0;Γ + C2 ‖π
1
hw − w‖0;Γ ≤ (C1 + C2(1 + C1)) ‖w‖0;Γ :

On the other hand, using (5.27), then (5.23) with r = 1, then (5.26) with t = 1, and
finally (5.24) we obtain, for all w ∈ H 1

0 (Γ):

(5.30) ‖πhw‖1;Γ ≤ C1‖w‖1;Γ + C2 h−1 ‖π1
hw − w‖0;Γ ≤ (C1 + C2 C 1) ‖w‖1;Γ :

Equations (5.29) and (5.30) then easily imply, by interpolation,

(5.31) ‖πhw‖
H 1=2

00 (Γ)
≤ C ‖w‖

H 1=2
00 (Γ)

that is (5.17).
We summarize the above results in the following lemma.

Lemma 3. Let Wh be the space of traces of V 2
h , and let the decomposition T 2

h be quasi-
uniform. Assume that we can construct an operator π2

h , from H 1=2
00 (Γ) into Wh , with the
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properties (5:25) and (5:26); then the inf-sup condition (5:10) is satisfied (and hence (4:5)
also holds ).

Proof. The proof follows from the above construction of πh and Theorem 2.

Remark 5.3. The role of Lemma 3, as we shall see, is to reduce the verification
of the assumptions of Theorem 2 (and hence the proof of the inf-sup condition) to
the construction of a local operator π2

h . This was not possible for the first choice of
multipliers (considered in Theorem 3), but will be possible for the next two choices.

We now continue with our study of the different choices of spaces. The second case
that we consider corresponds to using a space of multipliers which are discontinuous
and have local degree k −2, with k ≥ 2, if k is the local degree of Vh . This is discussed
in the following theorem.

Theorem 4. Assume that Vh := V k
h with k ≥ 2, and Mh := M0

k−2. Then an operator π2
h

satisfying (5:25) and (5:26) exists (and hence the inf-sup condition holds by Lemma 3).

Proof. To construct π2
h we can easily proceed with an element by element (actually,

interval by interval) argument. For each I ∈ Gh and for each w in, say, L2(Γ) we
define π2

hw as the polynomial of degree k (in I), vanishing at the endpoints of I, and
satisfying

(5.32)
∫

I
(π2

hw − w)pk−2dx1 = 0 ’ pk−2 ∈ Pk−2 :

It is rather easy to check that properties (5.25) and (5.26) hold true.

Remark 5.4. It is easy to see that, by taking Mh to be the space of discontinuous
piecewise Pk−1 functions, the inf-sup condition will not hold. Indeed, as in Remark 5.3,
the dimensional count gives N × k as dimension of Mh , while Wh has dimension
N × k − 1.

The third case that we consider corresponds to using a space of multipliers which
are continuous, do not necessarily vanish at the endpoints of Γ, and have locally one
degree less than the degree used in Vh . Comparing with our first case, we see that here
(for the same Vh) the space for Lagrange multipliers has, in general, a much smaller
dimension. Indeed, with the same notation of Remarks 5.2 and 5.4, the dimension of
Mh is N × k − 1 for the first case, and N × (k − 1) + 1 for this last case. In view
of the previous result (that the inf-sup condition holds for case 1) we expect case 3,
reasonably, to work as well. However, the new space of multipliers is not a subspace
of the previous one, and an independent proof is therefore necessary. Consider the
following theorem.

Theorem 5. Assume that Vh := V k
h with k ≥ 2, and Mh := M1

k−1. Then an operator π2
h

satisfying (5:25) and (5:26) exists (and hence the inf-sup condition holds by Lemma 3).

Proof. To define π2
h we shall use a macro-element technique. In order to avoid the

technicalities related with the use of macro-elements, we shall detail the proof only in
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the case when the mesh on Γ has an even number of intervals. It should be clear
however that the result holds in general. Having an even number of elements, we can
take non-overlapping macro-elements J made of pairs of adjacent elements. In the
usual application of the macro-element technique (see [9] or [18]) the macro-elements
overlap. Our case is simpler. In each macroelement J , and for each w, say, in L2(Γ),
we contruct π2

h as the element of Wh having support in J and such that

(5.33)
∫

J
(w − π2

hw)pk−1dx1 = 0 ;

for all pk−1 continuous on J and polynomial of degree ≤ k − 1 in each of the two
elements I of Gh contained in J . The system (5.33) has 2k − 1 unknowns (the
dimension of continuous locally Pk functions, on a mesh of two elements, vanishing at
the endpoints) and 2k−1 equations (the dimension of continuos locally Pk−1 functions,
on a mesh of two elements, with no conditions at the endpoints). It is easy to check
that (5.33) has a unique solution, and that (5.25) and (5.26) hold true.

Remark 5.5. The analysis of the previous three cases, together with Remarks 5.2
and 5.4, can often help in deciding whether other possible choices are viable or not.
For instance, it is obvious that if we start from a case where the inf-sup condition holds
and we increase Wh or decrease Mh , then the inf-sup condition will still hold. On the
other hand, if we start from a case where the inf-sup condition does not hold, and we
decrease Wh or we increase Mh then the inf-sup condition will still fail to hold.

6. Conclusions

We have considered the solution of general contact problems for which a mixed finite
element interpolation is used. The solution approach involves a Lagrange multiplier to
interpolate the unknown normal contact tractions (in addition to the usual interpolations
of the displacements for the bodies). The mixed formulation needs to satisfy stability
requirements and the objective of this paper was to give insight into these requirements
and give specific results as to what Lagrange multiplier interpolation is appropriate, and
efffective, with a specific displacement interpolation.

While these results were derived by considering a simple model problem (in order to
avoid certain technicalities), valuable insight was gained and there is no reason why the
results should not be generally applicable. The analytical results reported in the paper
confirm also earlier obtained conclusions based on numerical tests [1].
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