Rendiconti Lincei Matematica E Applicazioni

Enrico Bombieri, Alberto Perelli

 Zeros and poles of Dirichlet series

 Zeros and poles of Dirichlet series}

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 12 (2001), n.2, p. 69-73.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_2001_9_12_2_69_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 2001.

Teoria dei numeri. - Zeros and poles of Dirichlet series. Nota di Enrico Bombieri e Alberto Perelli, presentata (*) dal Socio E. Bombieri.

Abstract. - Under certain mild analytic assumptions one obtains a lower bound, essentially of order r, for the number of zeros and poles of a Dirichlet series in a disk of radius r. A more precise result is also obtained under more restrictive assumptions but still applying to a large class of Dirichlet series.

Key words: General Dirichlet series; Almost-periodic functions; Nevanlinna theory.

Riassunto. - Zerie poli delle serie di Dirichlet. Sotto ipotesi molto generali di tipo analitico si dimostra una stima dal basso, essenzialmente di ordine r, per il numero di zeri e poli di una serie di Dirichlet in un cerchio di raggio r. Un risultato più preciso si ottiene sotto ipotesi più restrittive.

1. Results and proofs

For a meromorphic function $f(s)$ in the complex plane, we denote by $n(r, a ; f)$ the number of solutions, counted with multiplicity, of the equation $f(s)=a$ in the disk $|s| \leq r$, and write as usual

$$
\begin{aligned}
N(r, a ; f) & =\int_{0}^{r} \frac{n(t, a ; f)-n(0, a ; f)}{t} d t+n(0, a ; f) \log r \\
m(r, a ; f) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|\frac{1}{f\left(r e^{i \theta}\right)-a}\right| d \theta \\
m(r, \infty ; f) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta \\
T(r, f) & =N(r, \infty ; f)+m(r, \infty ; f) .
\end{aligned}
$$

The order $\rho(f)$ of $f(s)$ is given by

$$
\rho(f):=\varlimsup_{r \rightarrow+\infty} \frac{\log T(r, f)}{\log r}
$$

By Nevanlinna's first theorem, we have $N(r, a ; f)+m(r, a ; f)=T(r, f)+O(1)$ for every fixed a. In particular,

$$
\begin{equation*}
T(r, f) \geq N(r, a ; f)-O(1) \tag{1}
\end{equation*}
$$

An analytic function $f(s)$ of the complex variable s is said to be uniformly almost periodic (briefly, u.a.p.) in a strip $b<\Re(s)<c$ (b and c may be $\pm \infty$) if for every $\varepsilon>0$ the set of real numbers τ such that

$$
|f(s+i \tau)-f(s)|<\varepsilon \quad \text { for } \quad b<\Re(s)<c
$$

(*) Nella seduta del 9 febbraio 2001.
is relatively dense, in other words if for every $\varepsilon>0$ there is an $l>0$ such that every interval of length l contains such a number τ.

It is well known (see for instance [1, Ch. III, Th. 6, Cor.]) that the sum of an exponential series

$$
f(s)=\sum_{n=1}^{\infty} a_{n} e^{\lambda_{n} s}, \quad \lambda_{n} \in \mathbb{R}
$$

uniformly convergent in the strip $b<\Re(s)<c$ is u.a.p. there. An immediate consequence of almost periodicity and uniform convergence in a strip is that if the equation $f(s)=a$ is soluble in the strip, then it will have infinitely many solutions, and their imaginary parts will form a relatively dense set; in particular $N(r, a ; f) \gg r$. This is a well-known application of Rouché's Theorem (see for example [3, 6. Theorem]), which we repeat for reader's convenience. Let s_{0} be a zero of $f(s)-a$ in the strip. Then there exists an $\eta_{0}>0$ such that the circle $C=\left\{s:\left|s-s_{0}\right|=\eta_{0}\right\}$ is contained in the strip and $f(s) \neq a$ there. Take ε to be the minimum of $|f(s)-a|$ along C. By u.a.p., there is l such that every interval of length l contains τ such that $|f(s+i \tau)-f(s)|<\varepsilon$ along C. By Rouché's Theorem, we deduce that $f(s)-a$ and $f(s+i \tau)-a$ have the same number of zeros inside the circle C, proving what we want.

Thus by (1) if $f(s)$ is non-constant and u.a.p. in a strip then

$$
\begin{equation*}
T(r, f) \gg r \quad \text { and } \quad \rho(f) \geq 1 \tag{2}
\end{equation*}
$$

as $r \rightarrow+\infty$.
We prove the following theorem.
Theorem 1. Let $f(s)=\sum a_{n} e^{\lambda_{n} s}, \lambda_{n} \in \mathbb{R}$, be the sum of an exponential series uniformly convergent in a half-plane $\Re(s)>b$, admitting an analytic continuation in the whole complex plane as a non-constant meromorphic function of finite order. Suppose also that $f(s)$ tends to a non-zero finite limit as $\Re(s) \rightarrow+\infty$. Then for any fixed $\gamma<1$ we have

$$
\varlimsup_{r \rightarrow+\infty} \frac{N(r, 0 ; f)+N(r, \infty ; f)}{r^{\gamma}}>0 .
$$

Proof. We may assume that $f(s) \rightarrow 1$ as $\Re(s) \rightarrow+\infty$. Since $f(s)$ has finite order, we can write

$$
f(s)=\frac{A(s)}{B(s)} e^{h(s)},
$$

where $A(s)$ and $B(s)$ are the Weierstrass products associated to the zeros and poles of $f(s)$, and where $h(s)$ is a polynomial. The degree of $h(s)$ and the orders of the entire functions $A(s)$ and $B(s)$ do not exceed the order of $f(s)$.

Let $\omega>0$ and let τ be the operator

$$
\tau f(s)=f(s) / f(s+\omega)
$$

Then if q is an integer greater than the degree of $h(s)$ we have

$$
f_{q}(s):=\tau^{q} f(s)=\frac{\tau^{q} A(s)}{\tau^{q} B(s)}
$$

because $h(s)$ has degree at most $q-1$ and hence its finite difference of order q vanishes. In particular,

$$
\begin{equation*}
\rho\left(f_{q}\right) \leq \max (\rho(A), \rho(B)) . \tag{3}
\end{equation*}
$$

Next, we verify that $f_{q}(s)$ is not constant. Otherwise we would have $f_{q}(s)=1$ identically and since $f_{q}(s)=f_{q-1}(s) / f_{q-1}(s+\omega)$ the function $f_{q-1}(s)$ would be periodic, with period ω. But $f_{q-1}(s)$ is bounded for $\Re(s)$ sufficiently large, hence $f_{q-1}(s)$ would be bounded everywhere and it would be a constant by Liouville's theorem. Since $f(s) \rightarrow 1$ as $\Re(s) \rightarrow \infty$, we would get $f_{q-1}(s)=1$. By descending induction, we would find that $f(s)$ is a constant, which was excluded.

Note also that $f_{q}(s)$ is again u.a.p. in some right half-plane. Therefore, by (2) and (3) we obtain

$$
1 \leq \max (\rho(A), \rho(B))
$$

On the other hand, if $N(r, 0 ; f)+N(r, \infty ; f) \ll r^{\gamma+\varepsilon}$ for any fixed $\varepsilon>0$, we have $\max (\rho(A), \rho(B)) \leq \gamma$. Hence $\gamma \geq 1$, proving what we want.

Remark. A more difficult argument, which we leave to the interested reader, yields the stronger result that on the hypotheses of the theorem the sum $\sum 1 /(1+|\rho|)$, taken over all zeros and poles of $f(s)$ counting multiplicities, is divergent. A proof can be obtained using the rather delicate Cartan's Lemma, see [5, I.8.Th.11].

It remains an open question whether the conclusion of the theorem holds with $\gamma=1$, which would be best possible. One can prove

Theorem 2. In addition to the hypotheses of Theorem 1, suppose that $f(s)$ is u.a.p. in some half plane $\Re(s)<c$ and $f(s)$ tends to a non-zero finite limit as $\Re(s) \rightarrow-\infty$. Then we have

$$
\varlimsup_{r \rightarrow+\infty} \frac{N(r, 0 ; f)+N(r, \infty ; f)}{r}>0
$$

Proof. Let $k \geq 0$. The function $g(s)=f(k+s) f(k-s)$ is meromorphic, of order at most the order of $f(s)$, and is u.a.p. in some right half-plane. Let again $g_{q}(s)=\tau^{q} g(s)$, where q is larger than the degree of $h(s)$. By (2), we have $T\left(r, g_{q}\right) \gg r$ and $\rho\left(g_{q}\right) \geq 1$ provided $g_{q}(s)$ is not constant, and we can satisfy this condition by choosing k and ω appropriately.

On the other hand, $g_{q}(s)$ is even; therefore, we have $g_{q}(s)=\psi\left(s^{2}\right)$ for some meromorphic function $\psi(s)$. Since $T\left(r, g_{q}\right)=T\left(r^{2}, \psi\right)$, we have

$$
\rho(\psi)=\rho\left(g_{q}\right) / 2
$$

Note also that $N\left(r, a ; g_{q}\right)=N\left(r^{2}, a ; \psi\right)$.
If $\rho\left(g_{q}\right)>1$, we verify as in (3) that $\rho\left(g_{q}\right) \leq \max (\rho(A), \rho(B))$ and we end the proof as we did for Theorem 1.

If instead $\rho\left(g_{q}\right)=1$, we obtain $\rho(\psi)=\frac{1}{2}$. By a theorem of R. Nevanlinna (see for
instance [4, Ch. 4, Th. 4.5]) we deduce

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{N(r, 0 ; \psi)+N(r, \infty ; \psi)}{T(r, \psi)} \geq \frac{1}{2} \tag{4}
\end{equation*}
$$

By (2), we have $T\left(r^{2}, \psi\right)=T\left(r, g_{q}\right) \gg r$; hence using

$$
\begin{aligned}
N\left(r^{2}, 0 ; \psi\right)+N\left(r^{2}, \infty ; \psi\right) & =N\left(r, 0 ; g_{q}\right)+N\left(r, \infty ; g_{q}\right) \leq \\
& \leq 2^{q+1}[N(r+k+q|\omega|, 0 ; f)+N(r+k+q|\omega|, \infty ; f)]
\end{aligned}
$$

and (4) we get Theorem 2.

2. Concluding remarks

A typical example of function $f(s)$ as in Theorem 2 is the quotient of two L-functions $F(s)$ and $G(s)$ satisfying the same functional equation. In this case, Theorem 2 provides a lower bound for the cardinality $D_{F, G}(T)$ of the symmetric difference of the non-trivial zeros up to T, counted with multiplicity, of such L-functions. In particular, it follows from Theorem 2 that under the above condition

$$
\begin{equation*}
D_{F, G}(T)=\Omega(T) \tag{5}
\end{equation*}
$$

Observe that (5) is obtained using only the function-theoretic properties of $F(s)$ and $G(s)$, disregarding their arithmetical aspects. This is, in fact, our viewpoint in Theorems 1 and 2. We recall that (5) has been proved by Murty and Murty [6] for any two distinct L-functions $F(s)$ and $G(s)$ in the framework of the Selberg class [8]. However, the Selberg class deals only with Dirichlet series satisfying a functional equation of standard type and certain additional arithmetic conditions, and these conditions are much more restrictive than those which have been considered here. The better lower bound

$$
D_{F, G}(T) \gg T \log T
$$

is expected to hold in the Selberg class, which would be best possible.
We conclude by remarking that our results do not imply any lower bound for the cardinality $D(F, G ; T)$ of the asymmetric difference of the non-trivial zeros up to T, i.e. the excess of zeros of $F(s)$ over those of $G(s)$, counted with multiplicity. In fact, from our hypotheses we cannot exclude, for example, that $F(s)$ divides $G(s)$. The problem of the asymmetric difference of zeros is studied in [2], where the best possible lower bound

$$
D(F, G ; T) \gg T \log T
$$

is obtained for $F(s)$ and $G(s)$ in a rather general class of L-functions, under some natural conditions needed to exclude divisibility phenomena and an additional technical hypothesis on the density of the off-line zeros. This problem has also been recently investigated in [7] for certain concrete families of L-functions, with the aim of proving that $D(F, G ; T) \rightarrow \infty$. However, most results in [7] can be obtained as special cases
of a general result showing that $D(F, G ; T) \rightarrow \infty$ for pairs of L-functions in the Selberg class satisfying functional equations of the same degree. A proof of such a result can be obtained by a straightforward analysis of the integral representation of the n-th coefficient of the Dirichlet series $G(s) / F(s)$, using a formula akin to Landau's well-known formula for the Von Mangoldt function $\Lambda(n)$.

References

[1] A.S. Besicovitch, Almost Periodic Functions. Cambridge University Press 1954.
[2] E. Bombieri - A. Perelli, Distinct zeros of L-functions. Acta Arith., 83, 1998, 271-281.
[3] H. Davenport - H. Heilbronn, On the zeros of certain Dirichlet series (second paper). J. London Math. Soc., 11, 1936, 181-185; Collected Works, vol. IV, Academic Press, 1977, 1774-1779.
[4] W.K. Hayman, Meromorphic Functions. Oxford University Press, 1964.
[5] B. Ja. Levin, Distribution of Zeros of Entire Functions. Math. Monograph Transl., 5, Amer. Math. Soc., Providence, RI 1964.
[6] M. R. Murty - V. K. Murty, Strong multiplicity one for Selberg's class. C. R. Acad. Sci. Paris Sér. I Math., 319, 1994, 315-320.
[7] R. Raghunathan, A comparison of zeros of L-functions. Math. Res. Letters, 6, 1999, 155-167.
[8] A. Selberg, Old and new conjectures and results about a class of Dirichlet series. In: E. Bombieri et al. (eds.), Proc. Amalfi Conf. Analytic Number Theory, Università di Salerno 1992, 367-385; Collected Papers, vol. II, Springer-Verlag, 1991, 47-63.

Pervenuta il 26 ottobre 2000,
in forma definitiva il 10 gennaio 2001.

> E. Bombieri:
> Institute for Advanced Study
> School of Mathematics
> Princeton, NJ 08540 (U.S.A.)
> eb@math.ias.edu
> A. Perelli:
> Dipartimento di Matematica
> Università degli Studi di Genova
> Via Dodecaneso, 35-16146 GENOVA
> perelli@dima.unige.it

