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Equazioni differenziali ordinarie. — Density of chaotic dynamics in periodically forced
pendulum-type equations. Nota di Elena Bosetto, Enrico Serra e Susanna Terracini,
presentata (*) dal Socio A. Ambrosetti.

Abstract. — We announce that a class of problems containing the classical periodically forced pen-
dulum equation displays the main features of chaotic dynamics for a dense set of forcing terms in a space of
periodic functions with zero mean value. The approach is based on global variational methods.

Key words: Heteroclinic solutions; Variational Methods; Implicit Function Theorem.

Riassunto. — Densità delle dinamiche caotiche in equazioni di tipo pendolo forzato. Si annuncia che
una classe di problemi contenente l’equazione del pendolo forzato periodicamente presenta le principali
caratteristiche della dinamica caotica per un insieme denso di termini forzanti nell’insieme delle funzioni
periodiche a media nulla. I metodi sono di natura variazionale.

1. Introduction

Consider the equation

(1) ü(t ) + g (u(t )) = h(t );

we assume that the functions h and G (x) :=
∫ x

0 g (s) ds satisfy the following hypotheses:

(H1) h ∈ C(R;R) is n-periodic, n ∈ N, and
∫ n

0 h(t ) dt = 0;

(H2) G ∈ C3(R;R) is S -periodic;

(H3) if 0 < |x − y| < S and g (x) = g (y) = 0, then G (x) �= G (y).

When g (x) = sin x , equation (1) becomes the classical forced pendulum equation,
which is the main motivation for the results described in the present paper. Clearly, in
this case, assumptions (H2)-(H3) are satisfied.

Let

X =
⋃

n∈N
Xn =

⋃

n∈N

{
h ∈ C(R;R) = h is n-periodic and

∫ n

0
h(t ) dt = 0

}
:

The object of this Note is to announce that the set of forcing terms h ∈ X giving rise
to chaotic dynamics in equation (1) is dense in X . Since there is no precise nor unique
definition of chaotic dynamics, we will use the following agreement.

Definition 1.1. We say that equation (1) displays chaotic dynamics if
i) the solutions of (1) depend sensitively on the initial conditions ;

(*) Nella seduta del 9 febbraio 2001.
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ii) equation (1) has infinitely many periodic solutions with diverging periods ;
iii) equation (1) has an uncountable number of bounded, nonperiodic solutions ;
iv) the Poincaré map associated to equation (1) has positive topological entropy .

We refer to [16] for comments on the validity of i), : : : , iv) above as indicators of
the chaotic behavior of the dynamics of an equation of the form (1). Our main result
is the following.

Theorem 1.2. Assume (H2)-(H3) hold. Then the set of forcing terms h ∈ X for which
equation (1) displays chaotic dynamics is dense in X .

In order to prove Theorem 1.2 we use global variational techniques, aimed at the
construction of connecting orbits. A similar procedure has been used by Mather in [9]
in the discrete case. Genericity results for chaotic dynamics with global variational
techniques have been obtained recently in [2], where the authors studied problems
modelled on the Duffing equation.

Our approach takes advantage of results obtained in a recent paper, [4] (see also [6,
13]), where the authors proved that the existence of a certain class of multibump type
heteroclinic solutions to periodic motions implies the requirements of Definition 1.1.
The main result of [4] (see Theorem 2.1 below) states the conditions to obtain the
desired class of multibump solutions. In the present work we show that the assumptions
of Theorem 2.1 are satisfied for h in a dense subset of X .

The proof can be subdivided in three steps. First we make use of a result in the
spirit of the Sard-Smale theorem to simplify the setting of the problem; next we show
that a certain set of heteroclinic solutions enjoys some regularity properties and finally
we use the regularity to compute an analogue of the Poincaré function (a primitive of
the Melnikov function) and we derive from it the required conclusion. A part of the
last step is reminiscent of the recent work [3], though our setting is more complex.
The details of the proofs are contained in the forthcoming paper [5].

Notation. If u is an n-periodic function, we denote by u its mean value 1
n

∫ n

0 u(t )dt
and by ũ = u − u its zero mean part. By [u0; u1], when u0 and u1 are periodic
(continuous) functions, such that u0(t ) ≤ u1(t ) for all t , we denote the order interval
{u : dom(u) → R = u0(t ) ≤ u(t ) ≤ u1(t ) ’ t ∈ dom(u)}. Lastly, H 1

loc stands for
H 1

loc(R;R).

2. Preliminary results

We now state the main Theorem of [4]. To start with, let h ∈ Xn, denote by
L(u) = 1

2 u̇2 − G (u) + h(t )u the Lagrangian associated to (1) and let f be the action
functional

f (u) =

∫ n

0
L(u) dt

defined over En = {u ∈ H 1
loc = u(t + n) = u(t ) a:e:}. It is well known (see for exam-

ple [14]) that under assumptions (H1) and (H2) only, equation (1) possesses an ordered
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family of n-periodic solutions, which are the global minimizers of f over En.
Assume now that u0 and u1 are two consecutive minimizers, in the sense that there

are no other global minimizers of f lying in the order interval [u0; u1]. Set

ch = f (u0) = f (u1) = min
En

f:

The main result of [4] is based on the construction of heteroclinic and homoclinic
solutions to u0 and u1 when t tends to ±∞. To simplify notation we will write
q(−∞) = u0 instead of limt→−∞(q(t ) − u0(t )) = 0 for example, and similar expressions
at + ∞. Let

(2) Γ(u0; u1) = {q ∈ H 1
loc = q(−∞) = u0; q(+ ∞) = u1}

and

(3) Γ(u1; u0) = {q ∈ H 1
loc = q(−∞) = u1; q(+ ∞) = u0};

and consider the functional J : dom( J ) ⊂ H 1
loc → R defined by

J (q) =
∑

j∈Z

(∫ (j+1)n

jn

L(q) dt − ch

)
:

The renormalized functional J has been introduced by P.H. Rabinowitz in [10] and
used to prove existence and multiplicity of heteroclinic and homoclinic solutions to
periodic motions in [10-1]. To complete our description, let

S(u0; u1) =

{
q(0) ∈ (u0(0); u1(0)) = q ∈ Γ(u0; u1); J (q) = min

Γ(u0;u1)
J

}

and

S(u1; u0) =

{
q(0) ∈ (u0(0); u1(0)) = q ∈ Γ(u1; u0); J (q) = min

Γ(u1;u0)
J

}
:

These are the sets of points in the interval I(u0; u1) := (u0(0); u1(0)) through which
there passes a minimal level heteroclinic. Notice that, by the results of [4], they are
infinite subsets of I(u0; u1), and also that if the problem is autonomous, then they
both coincide with I(u0; u1), by invariance under real time shifts.

We can now state the main result from [4]. For further use we rephrase it here in
the following form.

Theorem 2.1 [4]. Assume that (H1)-(H2) hold. If f has two consecutive minimizers u0

and u1 over En and

(∗) S(u0; u1) �= I(u0; u1) and S(u1; u0) �= I(u0; u1);

then equation (1) displays chaotic dynamics.

In the more classical setting, where u0 and u1 are assumed to be hyperbolic, it has
been proved in [4] that (∗) is equivalent to W s(u0) �= W u(u1) and W u(u0) �= W s(u1),
a weaker condition than the transversality of the intersection of the stable and unstable
manifolds relative to u0 and u1 (see also [15]).



110 e. bosetto et al.

In order to prove that equation (1) displays chaotic dynamics for a dense set (in X )
of forcing terms we now show that there is such a set where the assumptions of Theo-
rem 2.1 hold.

3. Scheme of the proof

The proof is divided in three steps, as described in the Introduction. First of all we
show that equation (1) has consecutive minimizers of a special kind for a dense subset
of forcing terms h ∈ X . We begin with the following statement. From now on we
assume, without further repetition, that assumptions (H2)-(H3) hold.

Proposition 3.1. For all n ∈ N the set X̂n of forcing terms h ∈ Xn for which the
functional f has only nondegenerate critical points over En is open and dense in Xn.

The proof of this result can be found in [8], under the assumption that the set
of zeroes of g be totally disconnected. In our case it is enough to notice that (H3)
implies this property on g . We therefore assume, from now on, that h in equation (1)
is chosen in X̂n. For if this is not the case, we can modify it as little as we wish and
obtain the desired property.

By Proposition 3.1, f has, up to translations by integer multiples of the space
period S , only a finite number of critical points, and hence of global minimizers.
Moreover, using (H3) and the Hahn-Banach Theorem, we can prove the following
result.

Proposition 3.2. Let h ∈ X̂n. There exists h0 ∈ Xn such that for all δ > 0 small enough,
the functional f

δ : En → R defined by

f
δ(u) =

∫ n

0
L(u) dt + δ

∫ n

0
h0u dt

has only one global minimizer (up to translations by integer multiples of S ), which is still
nondegenerate.

This ends the first step. Now choose δ > 0 so small that Proposition 3.2 holds, fix
k ∈ N and h1 ∈ Xkn and consider the equation

(4) ü + g (u) = h + δh0 + εh1:

By the preceding results it is not difficult to show that for every ε ∈ R small enough,
equation (4) has only one solution with mean value in [0; S ) which minimizes the
corresponding action functional. We call uε

0 this solution and we set uε

1 = uε

0 + S .
Then uε

0 and uε
1 are consecutive minimizers, and we can try to apply Theorem 2.1.

This will work if we are able to show that assumption (∗) holds for some choice of ε.
We analyze only the first part of condition (∗), the other one being handled in a similar
way.

Let J ε be the functional J with h replaced by h + δh0 + εh1.
Arguing indirectly, assume that S(uε

0; uε
1) = I(uε

0; uε
1) for all ε small, say for all

ε ∈ (−ε; ε). This means (see [4]) that for all ε ∈ (−ε; ε) and all x ∈ I(uε
0; uε

1), there
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exists a unique qε

x such that

qε
x (0) = x and J ε(qε

x ) = min
Γ(uε

0 ;uε
1 )

J ε:

The most technical result concerning qε
x is contained in the next proposition. To

state it, let σ : R → [0; S ] be a smooth function such that σ(−∞) = 0;σ(+ ∞) = S
and σ̇ ∈ H 1(R;R). Then we can write qε

x as

qε

x = uε

0 + σ + ψε

x ;

with ψε
x ∈ H 2(R;R).

Proposition 3.3. In the above assumptions,

ε �→ uε
0 is C1 from (−ε; ε) to Ekn,

(x; ε) �→ ψε

x is C1 from I(uε

0; uε

1) × (−ε; ε) to H 2(R;R).

The proof of this proposition (actually of the second part) is rather involved and
uses a Lyapunov-Schmidt reduction. Moreover, also after the reduction the proof is not
trivial since it involves an operator which is not of the form «Identity + Compact». We
omit the technical details, beyond the scope of this note.

The regularity of qε

x allows us to arrive at the following conclusion. This is the last
step of the proof.

Proposition 3.4. In the above assumptions, if h1 ∈ Xkn is such that S(uε

0; uε

1) = I(uε

0; uε

1)
for all ε in a neighborhood of zero, then for all x; y ∈ I(u0; u1),

∫ +∞

−∞
(q0

x − q0
y )h1 dt = 0:

Sketch of the proof. Take x; y ∈ I(u0; u1) such that x; y ∈ I(uε
0; uε

1) for every
small ε. Then for all such ε’s,

(5) J ε(qε
x ) − J ε(qε

y ) = 0:

The regularity proved in Proposition 3.3 and the fact that each qε
z tends to uε

0 and
to uε

1 exponentially at −∞ and + ∞ respectively (recall that each uε
0 is hyperbolic),

allows us to differentiate (5) with respect to ε. The fact that each qε
z solves (4) and

some computing show that

d
d ε

(
J ε(qε

x ) − J ε(qε

y )
) ∣∣∣∣

ε=0

=

∫ +∞

−∞
(q0

x − q0
y )h1 dt;

which gives the desired equality.

This computation can be repeated for all k ∈ N and all h1 ∈ Xkn for which
S(uε

0; uε
1) = I(uε

0; uε
1) in a neighborhood of zero; notice that q0

x and q0
y do not depend

on ε. In this way we see that if the first part of (∗) does not hold for any h1 ∈ Xkn
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with k ∈ N, then
∫ +∞

−∞
(q0

x − q0
y )h1 dt = 0 for all h1 ∈

⋃

k∈N
Xkn;

which readily shows that q0
x − q0

y ≡ 0. This is a contradiction if x �= y.
We can therefore find (for infinitely many k ∈ N) an h1 ∈ Xk and a number ε

as small as we please such that the first part of (∗) is verified for equation (4). By
construction the set of h1’s enjoying this property is open in each Xkn; then, repeating
the above argument, we can perturb these functions as little as we like, until we obtain
that, when k is large enough, also the second part of (∗) holds.

We have thus shown that as close as we wish to h ∈ Xn there is some function
ĥ ∈ X for which equation

ü(t ) + g (u(t )) = ĥ(t )

satisfies all the assumptions of Theorem 2.1, and therefore displays chaotic dynamics.
Since the above reasoning does not depend on the minimal period of the starting forcing
term h in X , this readily proves Theorem 1.2.
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