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Yves M eyer

WAVELETS AND FUNCTIONS W ITH BOUNDED VARIATION 
FROM IMAGE PROCESSING TO PURE MATHEMATICS

A b s tra c t .  — JPEG-2000 has the potential to be the most significant advance in still image compression 
since the introduction of JPEG over a decade ago. JPEG-2000 is a wavelet based algorithm and it relies 
on new estimates on wavelet coefficients of functions of bounded variation. These new estimates have far 
reaching implications in pure mathematics.

Key w o rd s: Wavelets; Image processing; Functions with bounded variation.

One goal of these lectures is to provide you with some information about what is 
happening in the still image compression standard which is developped under the name 
of JPEG-2000. A second goal consists in explaining how this technological challenge 
is motivating some advances in pure mathematics. This will eventually lead to some 
remarkable improvements on the Gagliardo-Nirenberg inequalities.

Explaining the performances of JPEG-2000 requires a model for still images. Among 
several models, the one on which this discussion is based was proposed by Stan Osher 
and Leonid Rudin. In this model, the simplified image is assumed to be a function with 
bounded variation. Then the efficiency of wavelet based algorithms will be related to the 
remarkable properties of wavelet expansions of functions with bounded variations (B V ).

Once the fundamental properties of wavelet coefficients of 2?V-functions are better 
understood, this will yield some new Gagliardo-Nirenberg estimates. As it was pointed 
out by Albert Cohen and Ron DeVore, a similar strategy can be used for proving the 
«averaging lemma» of P.L. Lions and Ron DiPerna.

This lecture is organized as follows. In Section 1, a few experiments are illustrating 
the efficiency of wavelets based algorithms in still image compression technology. In 
Section 2, some terminology used in image compression will be clarified. In Section 3, 
u +  v models for still images are introduced. Best-basis algorithms are introduced in 
Section 4. Section 5 is devoted to the already obsolete JPEG standard. This standard 
is often justified as being a particular example of a general methodology, named prin
cipal component analysis or Karhunen-Loève expansion, a concept which is analyzed in 
Section 6. In Section 7, the limitations of such a Karhunen-Loève approach to com
pression will be illustrated with a counter-example. In Section 8, we will return to the 
■ u +  v models for still images on which this work is based. In Section 9, some well 
known properties of functions with bounded variations (BV) will be listed for the reader 
convenience. In Section 10, this space B V  is used for modeling still images. A survey 
of wavelet analysis will be provided in Section 11. Then in Section 12, quantization 
issues will be addressed. Fourier series expansions of B V  functions will be compared to
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their wavelet expansions in Section 13. Finally in Section 14, the preceding tools will 
be applied to improving Gagliardo-Nirenberg estimates.

This talk is based on a joint work with Albert Cohen and Frederic Oru.

1. W a v el ets  a n d  still  im a g e  c o m p r e s s io n

Let us begin with some examples of technological applications of wavelets. The first
example is extracted from the Web page of the Pegasus company (http://www.jpg.com).
It reads the following:

«Pegasus Imaging Corporation has partnered with Fast Mathematical Al
gorithms & Hardware Corporation and Digital Diagnostic Corporation 
to develop new wavelet compression technologies designed for applica
tions including medical imaging, fingerprint compression, video compres
sion, radar imaging, satellite imaging and color imaging».
«Pegasus provides wavelet compression technology for both medical and 
non-medical application. Pegasus’ wavelet implementation has received 
FDA market clearance for medical devices».
«This software is the only FDA-approved lossy compression software for 
image processing. Recent clinical studies have shown that the algorithm 
is comprehensively superior to other similar compression methods. It is 
licensed to multiple teleradiology developers and medical clinics includ
ing the Dutch software vendor Applicare Medical Imaging and the UK 
telecom giant British Telecom».

The second advertisement comes from a company named «Analog Devices». It reads:

«Wavelet compression technology is the choice for video capture and 
editing. The ADV601 video compression IC is based on a mathematical 
breakthrough known as wavelet theory . . .  This compression technology 
has many advantages over other schemes. Common discrete schemes, 
like JPEG and MPEG, must break an image into rectangular sub-blocks 
in order to compress it . . .  Natural images highly compressed with DCT 
schemes take on unnatural blocky artifacts . . .  Wavelet filtering yields a 
very robust digital representation of a picture, which maintains its natural 
look even under fairly extreme compression. In sum ADV601 provides 
breakthrough image compression technology in a single affordable inte
grated circuit».

A third success story tells us about the FBI and fingerprints. It says:

«The new mathematical field of wavelet transforms has achieved a ma
jor success, specifically, the Federal Bureau of Investigation’s decision to 
adopt a wavelet-based image coding algorithm as the national standard 
for digitized finger-print records . . .  ».
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The interested reader is referred to a paper by Christopher Brislawn [2] or to the 
remarkable Web site of Christopher Brislawn.

Our next advertisement for wavelet-based image compression is coming from the 
celebrated Sarnoff Research Center. It reads:

«A simple, yet remarkably effective, image compression algorithm has 
been developed, which provides the capability to generate the bits in the 
bit stream in order of importance, yielding fully hierarchical image com
pression suitable for embedded coding or progressive transmission . . .  ».

Finally the last example will concern the upcoming JPEG-2000 still image compres
sion standard. While the JPEG committee is still actively working, it is very likely 
that the JPEG-2000 standard will be based on a combination of wavelet expansion 
(the choice of the filter is not fixed, and could include biorthogonal filters such as the 
9/7, as well as 2-10 integer filters) and trellis coding quantization. Applications range 
from Medical imagery, client/server application for the world wide web, to electronic 
photography and photo and art digital libraries.

These examples are showing that still image compression is a rapidly developing 
technology with far reaching applications.

2. A FIRST GLANCE TO STILL IMAGE COMPRESSION

We now turn to some mathematical models for image compression. We start with 
the superficial approach that an analog image on a domain D  can be viewed as a 
function f ( x 1 , x2) — f ( x )  belonging to the Hilbert space H  =  Z2(Z)). The energy 
of such an image is, by definition, f D \f(x)\2dx. It is obvious that an arbitrary such 
function f ( x )  in H  is far from being a natural image or something looking similar 
but this hot issue will be later clarified. Indeed our main problem will be to try to 
understand how an image differs from an arbitrary L1 function.

For sampling this analog image into a digital image we need to fix a grid which 
is defined as being N ~ lZ  x N ~ lZ  for some large N . We then speak of a fine grid. 
Generally N  = 2J and the corresponding grid is denoted by These T . are embedded 
since I \  is contained in F.+1. A digital image jf is now a matrix indexed by points 
in T . and, at this time of the discussion, we do not want to bother the reader with a 
precise definition of the mapping P. which maps f  to jf. This mapping is certainly not 
a simply minded restriction from Z2 (D) onto I2 (IF) since this restriction does not make 
any sense. A smoothing is needed before sampling. Indeed these two operations are 
combined together inside a pyramidal algorithm. We then can move one step further 
and follow A. Rosenfeld who defines sampling by computing the coefficients of the 
image in some orthonormal basis Z . Indeed one can construct an analyzing wavelet ^  
and a scaling function p  such that the effect of the pyramidal algorithm amounts to 
computing the coefficients of the expansion of the analogue image in the orthonormal 
basis generated by this wavelet and this scaling function. This point will be later clarified 
when wavelets will be defined (Section 11).
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If D  is the unit square, this digital image f. G l2(T\) is now a huge matrix ĉ k =  
—Jj(x1 > x?) where x1 =  k2~J , x2 = 12~], k and / ranging from 0 to 2̂ —1. These entries ck / 
are called pixels and each ck / measures the gray level of the given image at (k2~J , l2~J). 
Here we are talking about a white and black image and a colour image has a similar defi
nition with the difference that ck l is now vector valued. Our digital image can be viewed 
as a vector inside a 4; dimensional vector space. The gray levels ck l are finally quantized 
with a eight bit precision which provides 256 gray levels. This discrete representation 
of an image needs to be compressed in order to be efficiently stored or transmitted.

Compressing still images means taking advantage of the local correlations between 
neighboring pixels in order to find some lower dimensional approximations. For in
stance, if a given pixel is bright and red, its neighboring pixels are more likely to be 
bright red than dark blue. That is not to say that abrupt changes do not happen but 
they are mainly occuring on curves or one-dimensional subsets. These curves are often 
the edges of the objects to be detected in the image and are therefore providing some 
important information.

Compression might also be based on some other geometrical properties of images. 
One may argue that an image represents objects which have a specific geometrical 
organization in the three dimensional space. The edges we find in an image tell us 
something about this organization. For example occlusions in the 3-D scene correspond 
to T-junctions for the corresponding edges. An other viewpoint was advocated by 
Benoit Mandelbrot who proposed self-similar stochastic models for image processing. 
These models led to beautiful simulations of natural landscapes.

All scientists working on image processing agree on the possibility of compressing 
images but they immediately diverge when one is asking about the precise mathematical 
description of the models for natural images on which the compression algorithms 
crucially rely.

A large group of scientists was following a method which was successful in mathe
matical physics. One team discovered the fundamental equation (PDE) which governs 
image processing. Indeed this equation (mean curvature motion) tells you what defor
mations or evolutions of an image are consistent with contrast changes. An other group 
proposed some plausible axioms (or laws) which are aimed to provide good models for 
natural images together with mathematical formulations of the specific and concrete 
tasks to be performed on some given collections of images. We will be more specific 
about these two approaches. Then many tasks in image processing can be reformu
lated as problems in mathematics. This methodology uses tools and strategies which are 
quite familiar in other parts of applied mathematics and heavily relies on the resources 
of numerical analysis. Important examples are the Osher-Rudin model [19] on which 
this talk relies (this model will be presented in Section 10) and the variational formu
lation of image segmentation which was proposed by David Mumford and Jayant Shah 
[17]. J.M. Morel and his school went one step further. They completely described and 
studied all nonlinear evolutions which are aimed to provide accurate sketches of a given 
image. These evolution laws are consistent with some specific invariance properties 
which are expected in image processing (contrast invariance etc.) [14].
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An other group of scientists is advocating for a more experimental study. They 
claim that stochastic models for collections of natural images should be learnt from 
large data sets. For example, a model used for the faces of male graduate students at 
MIT should differ from the one used for the faces of female students at NYU. In other 
words each collection of natural images should be given a separate stochastic model 
[16]. In this approach, simple and elegant fundamental laws simply do not exist and 
image processing tasks are performed by statistical methods. However these statistical 
methods are mathematically founded and this empirical approach to image processing 
will eventually become a piece of science when the statistical modeling of collections of 
natural images will be fully available.

Since large data sets of natural images are already at our disposal, compression 
algorithms which are based on a mathematically oriented axiomatization of image pro
cessing can be experimented and tested. These checkings are playing a crucial role since 
the choice of the axioms or fundamental laws suffer from some arbitrary. Moreover 
trained experts are needed for such checkings since there are no scientific criteria to 
measure the quality of a reconstructed image. The human vision system seems the best 
judge.

These experimental studies have been conducted in the five above mentioned exam
ples. The experts acknowledged the improvements obtained by wavelet methods. The 
competing algorithm is the already obsolote JPEG standard. This celebrated JPEG al
gorithm will be visited in Section 5. The difference between the old JPEG with wavelet 
methods will amount to comparing Fourier analysis to wavelet analysis.

3. A FIRST VISIT TO U T V MODELS FOR STILL IMAGES

Why do wavelet algorithms perform better than Fourier methods in image compres
sion? One answer to this problem relies on an axiomatic model proposed by Osher and 
Rudin (among others). This model is named a u +  v model. This model is introduced 
in this section and will be revisited in Sections 8 and 10.

In a u -P v model, images are assumed to be a sum of two components u(x) and 
v(x). The first component u(x) is modeling the objects or features which are present 
in the given image while the v(x) term is responsible for the texture and the noise. But 
the textures are often limited by the contours of the objects and u(x) and v(x) should 
be coupled by some geometrical constraints. These constraints are absent from most of 
the u(x) T  v(x) models.

A main challenge in image processing consists in finding some relevant objects or 
features (some tanks, for example) inside a noisy image. In the u +  v models, this 
amounts to isolate the u(x) component from the v(x) component in a sum f ( x )  — 
.= u(x) +  v(x). Extracting u(x) from u(x) +  v(x) can be compared to obtaining a 
drawing by Ingres from a painting by Renoir or Monet. This u(x) component will 
provide a sketchy approximation to the given image. In the following discussion we 
will view the u(x) component as a good approximation to the given image since u(x) is 
expected to retain the most important features which are present in f (x ) .  Compression



82 Y. MEYER

algorithms will be judged on their ability to preserve the u(x) component of an image 
which is still waiting for a precise definition.

Precise stochastic models are not yet available for describing this u(x) component 
and many scientists decided to switch to a functional space model. In a functional 
space model, this u component si assumed to belong to a ball of a functional Banach 
space B. Anticipating a discussion to be continued in Section 10, let us now give a few 
examples of some Banach spaces B which are used. In the Osher-Rudin model [19], 
B is the space B V  of functions with bounded variations. In the DeVore-Luder model 
[5], B is a slightly smaller Besov space which admits a trivial wavelet characterization. 
Finally in the Mumford-Shah model [17], u is indeed a pair (u ,K ) where K  is a 
collection of curves or more generally a one-dimensional set and u, once restricted to 
the complement of K, belongs to the Sobolev space H l .

Let us now say a few words about the v component of an u +  v model. This v 
component is not structured and will be modeled by an arbitrary function in Z2(Z)). 
In all the u -F v models, the Banach space B which is used for modeling u is contained 
in l}(D ) and the reader may wonder what is then the difference between the u and 
the v component. The answer is the following: the v component should have a small 
i}  norm: imi2 < e for some small e. A second and more accurate answer is that v can 
both include a textured component with a small energy and an additive noise.

Let us now relate these u -F v models to quantization.
Quantization is a crucial segment of a compression scheme. In a compression scheme 

the first step maps a given image into a string of coefficients. These coefficients are real 
numbers and these numbers are replaced by some digital approximations depending on 
the computer precision. Once quantization is performed, the image can be transmitted 
and the reconstructed image will be affected by the quantization. The error which affects 
the reconstructed image heavily depends on the orthonormal basis Z  which is used. We 
would like this quantization error to be less damageable to the u(x) component than 
to the v(x) one. In the ideal case, the u(x) component should remain untouched while 
the v(x) might disappear. Then quantization would de-noise the given image. If it 
is the case, then the function which is reconstructed from the quantized coefficients 
yields an approximation to the given image which keeps track of the main features 
(edges . . .  ). All these features were assumed to be present in the u(x) component of 
the image. However the texture will unfortunately be treated as being noisy by this 
scheme and wiped out. To conclude, an image is always distorted after quantization 
and transmission and we would like to minimize this distortion by a best-basis search. 
This issue will be soon clarified.

Thresholding is closely related to quantization and raises fascinating mathematical 
problems. We will accept the working hypothesis that what is happening to an image 
after thresholding gives a good indication on what happens after quantization. Let us 
define thresholding. A given signal or image f ( x )  is decomposed in some orthonormal 
basis Z  of Hilbert space H. This reads f ( x )  = Y2T cneS *)• The coefficients cn that 
appear in this expansion are sorted out. All coefficients cn such that k „ l<  e where e 
is a given threshold are viewed as being insignificant and replaced by 0. In short we
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define qe{x) =  x  if |x| >  e and qe(x) =  0 otherwise and the thresholding operator Q  is 
defined by

oo
(3-D =

0
Then the resulting error measured in the H  norm is Re =  11 Q J f)  ~  /II//- Computing 
other errors HQX/) — f \ \ B for more general Banach spaces B is a fascinating problem 
which will be later addressed (Theorem 4). Returning to the Hilbert space case, the 
error Re is easily estimated if the coefficients \cn\ are sorted out (or rearranged) as a 
non-increasing sequence c*. We then obtain

(3 -2 )  R c = ( j 2 « A
\n > N  )

where N is defined as the lowest index n such that c*n < e. The error Re depends on 
the threshold e and on the decay of c*. This decay depends on the signal and also on 
the specific orthonormal basis Z  which is being used.

Quantization and thresholding are related issues where a key role is played by the 
orthonormal basis Z  in which we expand the given signal. This leads to a best basis 
search as described in the following section.

4 . B e s t - basis a l g o r it h m s  in  sig n a l  p r o c e s s in g

David Marr was insisting on the role played by the choice of a particular represen
tation for achieving some signal processing tasks. He wrote in his famous Vision'.

«A representation is a formal system for making explicit certain entities 
or types of information, together with a specification of how the sytem 
does this. And I shall call the result of using a representation to describe 
a given entity a description of the entity in that representation. For 
example, the Arabic, Roman and binary numerical systems are all formal 
systems for representing numbers. The Arabic representation consists in 
a string of symbols drawn from the set 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 
the rule for constructing the description of a particular integer n is that 
one decomposes n into a sum of multiple of powers of 10 . . .  A musical 
score provides a way of representing a symphony; the alphabet allows the 
construction of a written representation of words . . .  A representation, 
therefore is not a foreign idea at all we all use representations all the 
time. However, the notion that one can capture some aspects of reality 
by making a description of it using a symbol and that to do so can be 
useful seems to me a fascinating and powerful idea . . .  ».

Many orthonormal bases are currently used in signal processing. Sometimes the 
choice of a particular basis is not seriously justified. A Fast Fourier Transform (FFT) is
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cheap and available and one is tempted to use it without questioning. However many 
scientists took an opposite view and argued that one should relate the basis (or the 
representation in David Mart’s language) to the tasks to be performed. If this task is 
compression, a systematic search for an optimal basis led to the celebrated Karhunen- 
Loève algorithm which will be analyzed in Sections 6 and 7.

Let us indicate how a best basis search for quantization and thresholding can be 
further conducted in the framework of a u + v model.

If the u +  v model is accepted, we can write f{ x )  =  u(x) +  v(x) where u(x) 
represents the important features of the given signal or image while v{x) represents the 
noise or some components of the signal which are less interesting. We do not want 
the u(x) component to be damaged by a quantization or a thresholding. This amounts 
to finding a «better perspective» from which u(x) and v{x) would be clearly and neatly 
separated. This new perspective or view point will be provided by a new orthonormal 
basis en{x) , n £ N ,  in which the coefficients of u{x) should be clearly distinguishable 
from the coefficients of v(x). If v{x) is a white noise, then its coefficients in any 
orthonormal basis will be i.i.d. N {0 , a) where a  is the noise level. In other words the 
coefficients vn of v(x) are extremely flat and in contrast we would like the coefficients 
un of u(x) to plunge as fast as possible. Since the /2 norm of these coefficients un 
does not depend on the ortho normal basis e (x) which is used, the fact that un might 
plunge faster in a particular basis implies that they also peak higher. Using a metaphor 
which is familiar to climbers, the sequence un should resemble the high peaks which 
still receive the sunset light while the sequence vn is like the valleys which are already 
buried in the darkness of the coming night.

Returning to signal or image processing, let us assume that an orthonormal basis 
en(x) can be found such that the sorted coefficients of u(x) have a fast decay. Then 
by thresholding the coefficients cn of f ( x )  in this basis, we will retain much of the 
energy of the u(x) component and wipe out v(x). Similarly the expansion of u will be 
compressed with a few terms in this particular basis.

Faced to these challenges, wavelet analysis will perform much better than Fourier 
analysis, under the following two conditions. The first condition says that an u +  v 
model based on a specific Banach space B is adapted to our problem and the second 
condition tells us that the wavelet coefficients of functions in B should plunge much 
faster than the corresponding Fourier coefficients. For instance the sorted wavelet co
efficients of a function with bounded variation decay as 1 /  n (Theorem 7) while the 
sorted Fourier coefficients of functions with bounded variation may decay as badly as 
n~l!2 if we ignore logarithmic factors. If the Osher-Rudin model for still images is 
accepted, Theorem 7 will explain the performances of wavelets in image compression.

5. T h e  o l d  JPEG

The old JPEG algorithm is based on the DCT (discrete cosine transform). The 
DCT is an alternative to the usual Fourier series expansion. We start with a function 
f ( x )  iri I?{R) that we want to analyze over the interval [0,7t]. We then restrict the
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given function to this interval and get a function g(x) in Z2(0,7r). We do not want 
to extend this new function as a 7r-periodic function of x, since this would create 
artificial discontinuities at the end points of our interval. Instead we extend g(x) into a 
27r-periodic function h{x) by imposing the mirror conditions h(x) — h(—x), h{x) = g(x) 
over [0,7r) and finally h(x) — h{2tï — x). Then this h(x) can be written as a Fourier 
series. This is equivalent to directly starting with the orthonormal basis of Z2(0 ,7r) given 
by e0(x) = ^/l/7T and e (x) =  y j2 / it cos(nx) , n > 1. The discrete cosine transform 
(DCT) is nothing else but the discrete version of the preceding orthonormal basis. 
There are some variants on this DCT algorithm and one consists in extending g(x) 
into a 47T-periodic function h(x) which satifies h(x) = h(—x), h{x) =  g(x) over [ 0 ,7t] 
and finally h(x) =  — h{2n — x). It amounts to using the orthonormal basis of -Z2(0,7r) 
given by f n(x) =  y /2 /n  cos((n +  l/2 )x).

The old JPEG consists in dividing the sampled image into 8 x 8  blocks. For a 
512x512 image there are 4096 such blocks. Inside each block (defined by 1 < x, y  < 8) 
the two-dimensional DCT is using the orthonormal basis given by the vectors

(5.1) 4~1 cos(n{k +  \/2 )x)  c o s (7t ( /  +  \ /2 )y ) , 1 < x, y , k , I < 8 .

Finally the 64 resulting coefficients are quantized in each block. It means that the 
real numbers which arise as the coefficients in the DCT expansion are replaced by the 
nearest approximations which are compatible with the machine precision and the bit 
budget which we are allowed to spend. From this discussion we already observe that it 
is not reasonable to impose a compression factor larger than 100 to the old JPEG. In 
such a case all the coefficients in a given 8 x 8  block might disappear!

The old JPEG can be interpreted as a windowed Fourier analysis. It means that 
JPEG is computing a local frequency. If the given image is smooth on some 8 x 8  block, 
then most of the (local) Fourier coefficient will vanish. This is the only place where 
some compression might happen. In contrast a function with a sharp discontinuity 
along a curve is poorly compressed in such a Fourier basis.

Using DCT for still image compression is a decision which is often motivated by 
a more general paradigm concerning Karhunen-Loève (KL) bases. These KL bases are 
aimed to provide an optimal compression. This leads us to discuss the strength and the 
weaknesses of Karhunen-Loève expansions in the next section.

6 . K a r h u n e n -L o è v e  e x p a n s io n s

The Karhunen-Loève representation algorithm is based upon a mean square error 
approach to compression. We are given a collection Xl , . . .  , Xn of vectors belonging to 
Rn  (N  is huge). For the sake of simplicity it will be assumed that Xl +  • • • +  Xn =  0. 
We want to compress a generic vector X. belonging to this collection. By «generic» we 
mean that the index j  is chosen at random in the probability space Q =  {1, . . .  y n\ 
where the same probability \ j n  is given to every j .  We want to reduce the large 
dimensionality N  to a much smaller one q. In a linear compression scheme it means 
that the compressed vectors Yx , . . .  ,Y n should belong to a ^-dimensional vector space
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Vq. All errors are measured with the usual energy given by the euclidean structure of 
Rn  which implies that Y. is the orthogonal projection of X- onto V . Our goal is to 
minimize the mean square error which results from replacing X- by Y. when 1 < j < n -  
As it was said before we consider that all X?s , 1 < j < n ,  have the same probability. 
This leads for a given q to finding the ^-dimensional vector space which offers an 
optimal fit with the cloud of vectors X l , . . .  , Xn. In other words Ylj= î lî Ç — I^||2 should 
be minimal. It is easily proved that these vector spaces are embedded: V0 = {0} is 
simply the arithmetical mean (center of gravity) of our vectors Xx , . . .  , X ,  Vx is the 
inertia axis and so on until we reach VN =  RN.

The Karhunen-Loève basis then consists in the new orthonormal basis ex, . . .  , eN of 
Rn  defined by the property that for each q, ex, . . .  , eq is a basis of Vq. A Karhunen- 
Loève expansion is the most efficient way to compress a collection of signals and images 
by a linear algorithm in which we want to minimize a mean square error. It should 
be stressed that one cannot compute a Karhunen-Loève basis if we are not given a 
stochastic model for the collection of signals or images we want to compress. Here this 
stochastic model consisted in agreeing that all f s  were given the same probability.

Returning to image processing, some authors used the working hypothesis that most 
collections of natural images are translation invariant. This is obviously false ( in many 
cases. An obvious counter-example is given by the faces of human beings. Indeed we 
never accept large translations on such pictures but rather demand that the faces be 
correctly centered. If we accept this translation invariance, it implies that the trigono
metric system is indeed the Karhunen-Loève basis. A Fourier expansion provides the 
best average compression for such translation invariant families of images. This is the 
argument which is used in favor of JPEG but it does not tell us why we should first 
segment our images into 8 x 8  blocks before using a DCT.

Before questioning the Karhunen-Loève algorithm, let us state that this algorithm 
can obviously be generalized to stochastic processes. We assume that X{t,  uj), a < t < b, 
u; E fi, belongs to L2{[a, b]) where we are given an a priori probability law duj on 0 . 
Then the Karhunen-Loève expansion of X { ty u) reads

oo

(6 .1 ) =  £ > „ ( * )  r »
0

where en(t) is an orthonormal sequence in L2\a> b\ while the sequence rn{uS) is orthog
onal in L2(n>duj). Then the partial sums en^ rn(oj), q > 1 provide the best
linear approximations in Lr{[a, b] x f2).

7 . A n  e x a m pl e  w h e r e  t h e  K a r h u n e n -L o è v e  a p p r o a c h  is in e f f ic ie n t : t h e  r a m p  f u n c t io n

During one of the many wavelet conferences at Marseille I challenged the estab
lished Karhunen-Loève algorithm with a counter-example which was aimed to show 
that wavèlets were superior. My example was the following process. We pick a point at 
random oo in (0, 1). Then the random ramp function we want to analyze is f u(t) = t if
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0 < t<  cu while / ( / )  = t — 1 if üü < t <  1. It is trivial to check that the corresponding 
Karhunen-Loève basis is the Fourier basis ^  smpKnt) , 1 < n. But each realization of 
this process is poorly approximated in this basis. The reason being that the Fourier 
coefficients cn o f / / )  decay as 1/n. If we want an Z2-norm error less than 10-3, we 
need 106 terms in the expansion! In contrast when one is using a wavelet basis with 
two vanishing moments (for example the Alpert-Rokhlin wavelets), the error will be less 
than 2~n/2 with N  terms only. The reason why these Alpert-Rokhlin wavelets are not 
selected as the Karhunen-Loève basis is due to the fact that the location of these few 
terms in the wavelet series expansion o f / / )  depends on uj. This amounts to saying 
that the wavelet coefficients need to be sorted in order to pick the N  non trivial terms 
in the wavelet expansion. This finite set F(uS) is defined by the condition that the 
support of the wavelet 2^ 2 ip (2h  — k) should contain uj.

Then David Donoho told me that I was cheating. I was challenging a linear approx
imation scheme with a non-linear one. In the Karhunen-Loève algorithm one is trying 
to find an optimal ^-dimensional vector space Vq which provides a best average fit with 
the data set. In the second case one is using a ^-dimensional manifold M  defined as 
the collection of all linear combinations of q wavelets whatever be their location and 
size. Then is not a linear space. It is a curved manifold and this curvature is 
responsible for a much better approximation rate as q tends to infinity.

This ramp example can be made periodic and the corresponding process will then be 
stationary. It can also be generalized to two dimensions. However the approximation 
rates in the 2 — D  case are distinct from the 1 — D  example. If we want the Z2-norm of 
the error to be less than N ~ l, the number of needed wavelets is 0 (N 2) while 0 {N 4) 
terms in the Fourier expansion are necessary for achieving the same precision.

If an image is modeled by a random finite collection of smooth curves delimitating 
some objects, the preceding discussion shows why wavelets perform better than Fourier.

8. A SECOND VISIT TO U +  V IMAGE MODELS

As it was already mentioned, a common feature in all u +  v models is that natural 
images f ( x )  are decomposed into a sum u(x) +  v(x). The first component u(x) is well 
structured and has a simple geometric description since it models the objects that are 
present in the image. The second component v(x) both contains the textured parts and 
the noise.

These two components u(x) and v(x) cannot be viewed as orthonormal or indepen
dent and this decomposition is not unique. For example both u(x) and v(x) contain 
arbitrarily high frequencies and a simply minded filtering cannot separate u(x) from 
v(x•). Such a filtering would certainly kill v(x) but also erase the edges which are 
present in u(x).

This /  =  u +  v modeling is reminiscent of approximation theory and more precisely 
it mimics the theory of interpolation. In this context, one wants to write a generic 
function f  (x) as a sum of a «good function» u(x) which is more regular than f  (x) 
plus a «bad function» v(x) which is small in some sense. An example is the celebrated
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Calderón-Zygmund decomposition of an Ü  function f ( x )  into a sum of an Z2 function 
u(x) plus an oscillating part v(x) carried by a set with a small measure.

We now want to explain why in many u 4- v image models, the u(x) component 
is assumed to be a function with bounded variation. In the case of image processing, 
we want to detect objects delimitated by contours. Then these objects can be modeled 
by some planar domains Dx , . . .  , Dn and the corresponding contours or edges will be 
modeled by their boundaries dD i , . . .  , dD n. In this model, the function u(x) is as
sumed to be smooth inside Dl , . . .  , Dn with jump discontinuities across the boundaries 
dD x , . . .  y dD n. However we do not want to break an image into too many pieces and 
the penalty for a domain decomposition of a given image will be the sum of the lengths 
of these edges dD x , . . .  , dD n. But this sum of lengths is approximatively one of the 
two terms which appear in the B V  norm of u(x). The B V  norm of a function f ( x )  
is defined as the total mass of the distributional gradient of f ( x )  and we will return to 
this definition in the next section.

This discussion leads to a specific u +  v model where u(x) will be assumed to belong 
to the space B V  of functions with bounded variation and v(x) will be measured by a 
simply minded energy criterion which says that \\v\\2 is sufficiently small.

9 . T h e  spa c e  B V  o f  f u n c t io n s  w it h  b o u n d e d  v a r ia t io n  in  t h e  pl a n e

We first consider the general case where the dimension n is larger than 1. In the 
one-dimensional case, the space B V  is trivial since it is isomorphic to the space of all 
bounded Radon measures on the line. Assuming n > 2, we say that a function f{ x )  
defined in Rn belongs to B V  if (a) f ( x )  vanishes at infinity in a weak sense and (b) 
the distributional gradient of f ( x )  is a bounded Radon measure. The B V  norm of f  is 
denoted by | | / | |5i/ and defined as the total mass of the distributional gradient of f{x) .  
The condition at infinity reads: / *  p  tends to 0 at infinity whenever p  is a function 
in the Schwartz class.

A second and equivalent definition reads the following:

D e f in it io n  1. A function f ( x )  belongs to BV(Rn) if it vanishes at infinity in the 
weak sense and if there exists a constant C such that

(9.1) [  \f(x  + y ) - f { x ) \ d x  < C\y\
J Rn

for each y  G Rn.

From this second definition, it is immediately concluded that if a real valued function 
f ( x )  belongs to BV, so do f +(x) =  sup(/(x), 0) and f~ (x )  = sup(—f (x )  ,0). In other 
words, it is often sufficient to consider non-negative functions in BV.

From now on the discussion will be restricted to the two-dimensional case. Then 
the space BV(R2) is contained in L2(R2). This fact and some improvements on this 
Sobolev embedding theorem depend on the coarea identity we need to state explicitely.

If E  is a measurable set, then \ e denote the indicator function of E  and we 
would like to compute the B V  norm of this indicator function Xe whenever it is
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finite. If E  is a Jordan domain delimited by a rectifiable boundary T, then the BV  
norm of Xe is die total length of T. However if E  is an open set whose boundary 
is denoted by dE , the B V  norm of \ e is ln general smaller than the 1-dimensional 
Hausdorff measure H l (T) of its boundary T = dE  since Xe ~  Xe almost everywhere 
does not imply H l (dE) =  H l (dF). An obvious counter-example is E  = D  where D  
is the unit disc and F = D \ L  where L is any radius of our disc. A more interesting 
counter-example is provided by a swiss-cheese open set Li with the following properties: 
Li is a countable union of open squares , its closure is the unit square C and its 
boundary dE = C \L i  is a connected compact set K  with a positive Lebesgue measure. 
However the B V  norm of Xq ls just die sum °f the lengths of <9(). In order to explain 
these facts, De Giorgi defined the reduced boundary d* E  of a measurable set E and 
proved that the B V  norm of Xe Is die 1-dimensional Hausdorff measure of its reduced 
boundary.

With these new notations the coarea identity reads as follows.

T h e o r e m  1. Let f ( x )  be a real valued measurable function defined on the plane and let t 
be a real number. Let us denote by Lit the measurable set in the plane defined by

(9.2) Lit =  { x \ f (x )  > t}.

Let d*Lif be the reduced boundary o f Lit and l{t) the 1 -dimensional Hausdorff measure o f 
d*Lit. Then one has

/oo 

-oo

This identity needs to be completed with the following observation.

(9.4) f ( x )  = lim fJ —1
Xn,(x)dt — m

which, together with the coarea identity shows that a B V  function admits a remarkable 
atomic decomposition. Here Xa denotes the indicator function of the set A.

Let us be more specific and assume for the sake of simplicity that f ( x )  is a smooth 
positive function vanishing at infinity. The atoms aQ(x) which will be used are in
dicator functions Xq ° f  bounded connected open sets fÌ with rectifiable boundaries 
d£l (x ^ M  =  1 on fG XqM  =  0 elsewhere). We will further restrict the definition 
of an atom by assuming that Q is connected and simply connected. We know that 
the B V  norm of such an atom Xq ls the total length of the reduced boundary d*£l. 
If f ( x )  is a positive function in the Schwartz class, then the indicator function of 
Q =  { x \ f ( x )  > t} y t  >  0, is not an atom in general but rather a series of atoms 
with disjoint supports. Finally (9.3) and (9.4) show that any function f ( x )  in B V  is a 
Boçhner integral J0°° a fx)d t  of such atoms. More precisely (9.3) implies

(9.5) fJo
b t \\Bvd t= \ \ f \ \ i

In what follows, we will prove some embedding theorems for the Banach space BV. 
Thfe proof is based on the atomic decomposition. Indeed we can limit the discussion
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to the weakly dense subclass of B V  consisting of simple functions. The weak density 
of simple functions inside B V  refers to the weak-star topology of BV. This topology 
makes sense since the Banach space B V  is a dual space X * of a functional Banach space 
X . Returning to simple functions, we have f ( x )  = ]T}U° c-a-{x) where the a-{x) are the 
above defined atoms, the sum is indeed finite and |c.| | |^ ||5l/ =  il/ii B V

For proving an embedding theorem of the type B V  C Z  where Z  is some Banach 
space, it suffices to check that there exists a constant C such that the Z-norm of any 
atom a^ix) in B V  does not exceed C times the length of d*Q.

Using this scheme one easily shows that B V  is contained in the Lorentz space 
L2,1(R2) which is included in L2. Embeddings of B V  inside Besov spaces will be 
discussed in Section 13.

10. A LAST VISIT TO THE U +  V MODELS

We now return to the general u +  v model for image processing which was intro
duced in Section 8. This model has several variants. Some of them are deterministic 
and some are stochastic. In the deterministic models, v(x) is taking care of the textures 
which are present in the given image and in the stochastic models, v(x) also contains 
an additive noise.

The first model is due to Osher and Rudin [19]. The corresponding mathematical 
problem reads the following: knowing that a given function f ( x )  is the sum f ( x )  = 
=  u(x) T  v(x) with explicit bounds on the BV norm of the unknown function u(x) 
and on the Z2-norm of the unknown function v(x), we want to recover these unknown 
functions u(x) and v{x). The explicit condition on u reads ||«|[5^ < C and the one 
on v(x) is IÎ H2 <  e. There is no uniqueness and some more conditions are needed to 
find u and v. For instance, an optimal decomposition can be defined as follows. We 
keep the constraint on the B V  norm of u and try to minimize the I? norm of v. To 
prove existence and uniqueness for this optimal decomposition, it suffices to consider 
the closed subset K  of Z2(i?2) defined by ||«||5Vr < C and to define the optimal u as 
the point in K  which minimizes the i}  distance to f{x ).

As it was already mentioned a second and related problem consists in finding a fast 
algorithm that would yield a sub-optimal decomposition f ( x )  =  g(x) +  h(x) where the 
corresponding bounds for g and h might be enlarged by a fixed multiplicative amount. 
This problem is addressed in [3].

A third approach to the «good and bad function decomposition» is the following. 
Given a function f ( x )  in L2(R2), we want to solve the variational problem

(10.1) cu(X) = inf{J(u) = \\u\\BV + \\\v\\2; f  =  u +  v} .

The tuning given by the large factor A =  e-1 implies that the Z2-norm of v should 
be of the order of magnitude of e. It is clear that solving this variational problem yields 
a suboptimal decomposition of f (x ) .  The mathematician will be intested in relating the 
growth of uj(X) as A tends to infinity to some properties of the L2 function f (x ) .  For
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instance the space of all functions f ( x )  for which u;(A) =  0(A7) as A tends to infinity 
will be characterized in Section 13, Theorem 8.

A fourth splitting algorithm was proposed by Mumford and Shah [17]. In this al
gorithm, the u component belongs to the subspace SB V  of B V , which consists of func
tions in B V  whose distributional gradient does not contain a singular diffuse measure. 
In other words, this distributional gradient Gradu is the sum between an Ll function 
and a measure carried by a one dimensional singular set K. Then the Mumford-Shah 
penalty on the u(x) component is a sum between two terms. The first term is the 
one-dimensional Hausdorff measure of K. The second one is the square of the L2 
norm of the gradient of u{x) calculated on the complement of this singular set K. The 
third term of the ]{u) functional is the square of the Z2 norm of v(x) [15].

A fifth approach to the decomposition u +  v was proposed by DeVore and Lucier. 
They replaced the B V  norm of u by a Besov norm [6] in J(u) as defined by (10.1).

A sixth approach concerns de-noising. Here u{x) is an unknown function in BV  
which satisfies |M |W < C and we are given noisy data f{ x )  =  u(x) +  v(x). The noise 
v(x) is often assumed to be a gaussian white noise and everything is sampled on a fine 
grid. It means that the sampled noise is a sequence which is i.i.d. N (0 , a). We plan 
to apply this model to situations in image processing for which a correct stochastic 
model for images has not yet been found. The noise is assumed to be explicitely 
known and all expectations are calculated with respect to the corresponding probability 
law. Then the problem consists in finding an estimator u =  F (f)  which minimizes 
suplZfH^— z/||2]} where the supremum is taken over the ball ||z/||5K < C. This ball is 
modeling our knowledge about the signal u(x). An estimator is here defined as a non 
linear mapping F  from the functional space containing u to the one containing the 
estimator. The interested reader is referred to an outstanding paper by David Donoho 
and Iain Johnstone [8] where these matters are discussed.

We do not intend to solve these problems and rather refer the reader to the existing 
literature. Our goal is less ambitious and our modest task will consist in comparing 
a Fourier analysis of B V  functions to a wavelet analysis in order to conclude that the 
latter is a much better one. For that purpose some basic facts on wavelets need to be 
reviewed. The reader who is familiar with wavelet analysis should skip the following 
section and jump to Section 12.

1 1 . W a v e l e t  analysis v s . F o u r ie r  a n a ly sis: d e f in in g  t e r m s

The goal of this section is to remind the reader of some basic properties of wavelet 
expansions which will be needed in Section 13.

It was clear from the very beginning of signal processing that plain Fourier analysis 
does not make any good sense for real life signals. Indeed performing a Fourier analysis 
means integrating a given function f ( t )  against cos(ujt +  p) from minus infinity to plus 
infinity. In the case of speech signal processing, this integration would imply that we 
have to wait until the end of a speech to begin a Fourier transformation. This is not 
compatible with real-time transmission. Returning to mathematics, one cannot perform
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a Fourier analysis on the domain of definition of a function. In several dimensions 
it often happens that a function f ( x )  is only defined on an open domain Q. One 
cannot perform a Fourier analysis of f ( x )  on this domain fL If we extend the function 
f ( x )  by 0 outside O, this would cause jump discontinuities across the boundary of Q 
and a Fourier analysis of this artificial function might be more sensitive to these jump 
discontinuities than to the intrisic properties of f ( x )  inside fL

Scientists with such a gigantic stature as John von Neumann, Dennis Gabor, Leon 
Brillouin, Eugene Wigner, . . .  pioneered modern signal processing in the forties. They 
addressed this problem and advocated for a windowed Fourier analysis. A windowed 
Fourier analysis is using a sliding window which is denoted by w{t). This window 
is compactly supported and smooth. This smoothness condition is crucial. Otherwise 
multiplying the signal by this window would seriously alter the high frequency infor
mation contained in the signal and instead of analyzing the signal we would analyze the 
window. This window w(t) is now translated by r  and modulated by multiplications 
with exp(/u;£). We then obtain the famous Gabor wavelets as r = w(t — r) exp(icjt). 
But Gabor, von Neumann and the other scientists in his group were not satisfied by this 
continuous Gabor wavelet analysis. Indeed it mapped a function f ( t )  of a real variable t 
into a function F(uj , r)  of two variables uj and r . If a given signal is sampled over 105 
points we are now dealing with IO10 points in the time-frequency plane. We do not 
want to waste our bit budget in such a foolish way. That is why the above mentioned 
pioneers wanted a discrete version of this Gabor wavelets analysis. Some heuristics about 
paving the time-frequency plane with Gibbs cells led to define the optimal sampling by 
t  — Ik'K y uj — j , j , k £ Z . But it was later proved by two other physicists (Francis 
Low and Roger Balian) that there exist I? functions that cannot be decomposed into 
a convergent series of such Gabor wavelets. Finally everything was repared when Ken
neth Wilson (Nobel Prize winner in 1984) reshaped Gabor and produced orthonormal 
time-frequency atoms leading to fast algorithms for local Fourier analysis. The key idea 
of Wilson was to modify the modulation by exp(iuJt) in a way that is reminiscent of 
the DCT algorithm. We will not yield further details and more details can be found 
in [11].

Tithe-scale algorithms and wavelet analysis can be defined as an alternative to the 
classical windowed Fourier analysis and to time-frequency analysis. In the latter case 
the goal is to measure the local frequency content of a signal while in the wavelet case 
one is comparing several magnifications of this signal, with distinct resolutions. These 
magnifications are often called «zoomings». The building blocks of a windowed Fourier 
analysis are sines and cosines (waves) multiplied by a sliding window. In a wavelet 
analysis the window is already oscillating and is called a mother wavelet. This mother 
wavelet ìp(t) has a compact support (or a rapid decay at infinity), is smooth and satis
fies the fundamental condition J ï p ( t )  dt =  0, which means that in some weak sense 
ijj(t) is oscillating. Moreover the mother wavelet should also satisfy a technical but 
crucial condition which will be revealed soon. The mother wavelet is no longer mul
tiplied by sines or cosines. Instead it is translated and dilated by arbitrary translations 
and dilations. That is the way the mother wavelet ip{t) generates the other wavelets
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ipa f t )  = a ~ b)/a) (where a > 0 , —oc <  b < +  oc) which are the build
ing blocks of a wavelet analysis. The parameter a measures the average width of the 
wavelet ^  b(t) while the parameter b gives the position. These dilations (by 1 /a) are 
precisely the magnifications we alluded to. The wavelet coefficients of a function f { t )  
of the real variable t are the scalar products W(a, b) = < / ,  ^ a>b >  (where a >  0 and 
—oo <  b < +  oc). Here and in what follows <  u, v> =  f+°° uv dt. In other words one' J —oo
is computing the correlations between the function to be analyzed and translated and/or 
dilated versions of the analyzing wavelet ì)j . The original function f ( t )  can always be 
recovered as a linear combination of these wavelets b(t) and, up to a normalization 
which will be specified, the coefficients of this combination are precisely the wavelet 
coefficients W(a, b).

A wavelet analysis is either continuous, semi-discrete, orthonormal or biorthogonal. 
In the first case one is using Calderon’s reproducing identity. For the reader’s conve
nience, let us stress the relationship between this identity and a wavelet analysis and 
take this opportunity for giving the precise definition of a wavelet. We now consider 
the n-dimensional case. An analyzing wavelet iß(x) is a function which satisfies the 
condition

/•oo
( 11. 1) /  \fao\2dt/t=i

Jo
for almost every £ in Rn. This condition is named «admissibility». Then the continuous 
wavelet coefficients of a function f ( x )  in L2(Rn) are defined as F(x, t) —< f ,  /ißx t > 
where t/i (y) = t~n̂ 2ip((y — x)/t).  For recovering /^) it suffices to combine all these 
wavelets ipx t with precisely these coefficients. In other terms, we obtain

(11.2) f{ x )  =  [  [  F(y,t)ip (x)dydt/tn+1
Jo J r n

which is exactly Calderon’s reproducing identity. The relevance of a continuous wavelet 
analysis will heavily depend on the properties of the analyzing wavelet ip(x). Two usual 
choices are the Morlet wavelet (a modulated gaussian which does not exactly satisfy the 
admissibility requirement) or the mexican hat (the second derivative of a gaussian).

What Calderon’s reproducing identity tells us is the following: a wavelet analysis 
gives a recipe for (a) measuring the local fluctuation coefficients of a given function / ,  
around any point x, at any scale t and for (b) reconstructing /  with all these fluctuation 
coefficients. In other terms at any given scale a >  0, /  is decomposed into the sum of 
a trend at the scale a and of a fluctuation around this trend. The trend is given by 
the contribution of scales t>  a in Calderon’s reproducing identity and the fluctuation 
is given by the scales t<  a.

Let us now return to the one-dimensional case and study orthonormal wavelet bases. 
A «mother wavelet» will now be defined as a function ip(t) enjoying the three following 
properties:

(11.3) VKt) is a smooth function (with r — 1 continuous derivatives and a 
bounded derivative of order r)
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(11.4) 'î/Ht) together with its derivatives of order less than r has a rapid 

decay at infinity

(11.5) the collection ipj k(t) defined by ^  k(t) =  2^2̂ (2h  — k ) , j ,  k G Z y

is an orthonormal basis for l}{K).

The first problem in the theory is to construct such functions ip(t) and the second 
one is to show that the wavelet coefficients yield a relevant information. The very first 
example of a mother wavelet was given by A. Haar in 1909. The Haar wavelet h{t) is 
defined by h(t) = 1 on [0 ,1 /2 ), h(t) =  —1 on [1 /2 ,1 ) and h(x) =  0 elsewhere. In 
that case r =  0.

But about eighty years were needed until Ingrid Daubechies proved that for each 
r > 1, one can construct a function of class Cr with compact support and satisfying 
the above conditions (11.3) and (11.5), the second condition being obvious [4], A 
detour with a visit to the signal processing community and a reshaping of the subband 
coding algorithms were needed to build these Daubechies wavelets. Today we know that 
this detour is absolutely necessary. Let us provide the reader with a leisurely description 
of this detour. It begins with the definition of a multiresolution analysis.

A multiresolution analysis of l}{R) is a ladder Vj > j  £ Z y of closed subspaces of 
I?(R) enjoying the following four properties:

(11.6) the intersection f iV.y j ^ Z y is reduced to {0},

(11.7) the union UVj y j  E Z y is dense in L2(R),

(11.8) f ( t )  belongs to V. if and only if f  (21) belongs to K+1 and finally

(11.9) there exists a smooth and localized function f ( t )  such that the collection 

( — k) , k e Z y be an orthonormal basis for V0. This function (p(t)
is named the «scaling function».

Multiresolution analysis is a natural concept for people working on splines since 
refinements of meshes provide trivial examples. The relation between our wavelet basis 
and a multiresolution analysis is given by the condition that xfj(t — k) , k G Z y is an 
orthonormal basis of the orthogonal complement WQ of VQ in Vv  By an obvious 
rescaling one obtains the fact that 2^2<0(2h  — k) , k G Z y is an orthonormal basis for 
the orthonormal complement Wj of V- into Vj+1. It is then clear that the full collection 
ijjj k is an orthonormal basis for In this construction the «mother wavelet» is built
from the scaling function tp(t). The converse problem consists in asking whether any 
orthonormal wavelet basis 2^2iß(2h  — k) , j  G Z , k G Z ,  can always be constructed by 
this procedure. This cannot be true in general, as a counter-example due to J.L. Journé 
shows. However if ip(t) satisfies some reasonable smoothness and localization properties, 
P-G. Lèmarié-Rieusset proved that an orthonormal wavelet basis is always coming from 
a multiresolution analysis [9].
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Multiresolution analysis is a mathematical concept which highlighted pyramidal al
gorithms and subband coding. This dictionary between mathematical analysis and signal 
processing was elaborated by Stéphane Mallat and the author [10, 12]. Let us provide 
the reader with a few entries from this dictionary.

First the quadrature mirror filters used in subband coding give the matrix represen
tation of this orthonormal decomposition K+1 =  V. © W-.

Similarly the pyramidal algorithms which were used in image processing and mul
tiresolution analysis of Z2(/?2) are closely related concepts. If IT , j  6 Z y are the sampling 
grids, then the sampling operator P. : Z2(i?2) —» /2(r 'p is nothing else but the orthogonal 
projection from l}(h P) onto V-. To clarify this correspondence, it suffices to associate 
each vector of the 2 — D  orthonormal basis 2  ̂cp (2  ̂x  — k) , k G Z 2 of V. to the corre
sponding point kl~J of the grid T -. This is a natural choice since this scaling function is 
centered around this point. It will provide an isometrical isomorphism between V. and 
/2(r\). The «coarse to fine» algorithm in the pyramidal algorithm reflects the canonical 
embedding of VJ inside Vj+l while the «fine to coarse» algorithm corresponds to the 
orthogonal projection from Vj+l onto V-.

The multiresolution analysis used by Ingrid Daubechies to construct her wavelets is 
highly non standard and was never considered by «spline people» who were unaware of 
the work achieved by signal processing researchers on quadrature mirror filters. More
over spline specialists were not interested in the spaces W. giving the missing details 
needed for a «coarse to fine algorithm».

As it was already mentioned, this connection between wavelet analysis, multiresolu
tion analysis, pyramidal algorithms and subband coding was first stressed by S. Mallat 
[7] and the filters which produce the Daubechies wavelet by a cascade algorithm 
were not unfamiliar to the signal processing community. The reason why they did not 
discover these Daubechies wavelets seems due to the fact that they did not know that 
any signal could be decomposed into a sum of wiggling waveforms which are obtained 
by dilations and translations from a mother wavelet ip(x). This idea however was quite 
familiar to mathematicians around Guido Weiss who created the so-called atomic de
compositions of the Hardy space H l (Rn). However most of the atoms used by Guido 
Weiss do not satisfy the smoothness conditions we imposed on wavelets [12]. Strikingly 
all the ingredients needed to build Daubechies orthonormal wavelet bases were available 
in separate places of science or technology. To my opinion the «wavelet wisdom» de
veloped by A. Grossmann and J. Morlet was the essential unifying concept that helped 
the construction of these remarkable orthonormal bases.

One cannot expect any serious understanding of what wavelet analysis means with
out a deep knowledge of the corresponding operator theory. Indeed there are several 
interesting choices of orthonormal wavelet bases and one needs to know if some results 
obtained by using one specific basis would still be true with an other one. For an
swering this problem one needs a dictionary between all those bases. This dictionary 
is provided by the Calderón-Zygmund theory. Indeed unitary operators that map one 
orthonormal wavelet basis into an other one are Calderón-Zygmund operators. One
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key ingredient in this operator theory is the ability of rescaling global Z2-estimates for 
obtaining pointwise information. Therefore, as stressed by E. Stein, the group of dila
tions plays a crucial role in the Calderon-Zygmund theory. The Hilbert transform H , 
defined by / + 00

f i x  -  y) dy/y
-oo

is the prototype of a Calderón-Zygmund operator. It is the only non-trivial operator 
which is translation and dilation invariant (only positive dilations are considered). If 
ip(x) is a mother wavelet generating an orthonormal wavelet basis, its Hilbert transform 
H(ip) = w has the same property and H  maps the orthonormal basis onto the 
ortho normal basis w. k. Therefore any information obtained by inspecting coefficients 
in some orthonormal wavelet expansion is necessarily invariant under the action of the 
Hilbert transform. For example, one cannot decide if a function is continuous by 
inspecting its wavelet coefficients. Indeed continuity is not preserved by the Hilbert 
transformation. Similarly it is impossible to obtain a wavelet coefficients based criterion 
for deciding if a given distribution is a measure. Finally similar remarks apply to the 
2 — D  case and the space B V  cannot be characterized by size estimates on the wavelet 
coefficients since B V  is not preserved by Calderón-Zygmund singular integral operators. 
The Beurling transformation B is defined by 2?(^=) =  ^  , z  = x  +  iy. Then B is a 
Calderón-Zygmund singular integral operator which is unitary on Z2. Aline Bonami 
and S. Poornima proved the following theorem [1]:

T h e o r e m  2 . The Beurling transformation B does not map B V  into itself.

Theorem 2 is given an interesting perspective if one returns to the definition of 
the Hardy space H l (R) which is the collection of all functions f  in Z1 whose Hilbert 
transform H (f)  also belongs to Z1. Similarly, as it will be later explained, the space 
B V , up to a trivial isomorphism, is the space of all real valuedfunctions g  such that 
both g  and B(g) are bounded Radon measures. The Hilbert transformation H  acts 
continhously on H l and it was not unreasonable to conjecture that B mapped B V  
into itself. For a better understanding of the relation between B V  and the Beurling 
transformation, one starts with a function f  in B V  and writes u ~ d f  /d x ,  v = d f  jdy. 
Then g = u — iv =  B(Jd) where h =  u +  iv. Therefore g and h are bounded Radon 
measures and the converse statement is just as easy: if both d f  jd z  and d f  /d z  are 
bounded Radon measures, then f  belongs to BV.

C o r o l l a r y . The space B V  cannot be characterized by size properties on wavelet coefficients.

Indeed the Beurling transformation is a unitary Calderon-Zygmund operator acting 
on Z2. Therefore B maps any orthonormal wavelet basis k onto an other one w. k. 
Moreover if i/j belongs to the Schwartz class, then all its moments vanish and w also 
belongs to the Schwartz class. If the following statement was true:
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S t a t e m e n t . Whenever f>j k is an orthonormal wavelet basis where belongs to the Schwartz 
class, then B V  is characterized by size conditions on the corresponding wavelet coefficients

Then we would deduce that B V  is invariant under the action of the Beurling 
transformation. This is not the case and the above statement was wrong.

However it will be later shown (Theorem 7) that B V  is almost characterized by 
such size estimates. The Banach space of these wavelet coefficients is sitting somewhere 
between Z1 and weak-/1.

On the opposite, Holder classes as well as the two-microlocal spaces are preserved 
by the Hilbert transformation which means that Holder exponents can be computed 
through inspecting a wavelet expansion. This explains why wavelets are playing a key 
role in the so-called multifractal signal processing which relies on the computation of 
local Holder exponents [13].

This section will end with describing the two-dimensional wavelets which will be 
used next. For constructing these 2 — D  wavelets, we both need the one-dimensional 
wavelet and the corresponding scaling function ip. Then the three 2 — D  mother 
wavelets are

(a) ïpx{xx , x2) ip{xx) f{x2)i

(b) f>2{xx , x2) =  i/)(xx)ip(x2) and finally

(c) f f x 1 , x2) =  f { x x) f{x2).

The collection of these three 2 — D  wavelets will be denoted by F  and the 2 — D  
wavelet analysis is described by the following theorem:

T h e o r e m  3. For each positive exponent r, there exist three functions ipm , m =  1 , 2 , 3 ,  
with the following properties :

(11.11) each f m{xx, x2) is compactly supported and belongs to the Hôlder space Cr

(11.12) 2̂ f>nf f x x — kx, l i x2 — kf) yj  G Z,  k — (kx, £2) G Z 2 , m =  1 , 2 , 3 ,  

is an orthonormal basis for I? {if).

This theorem will be used in the next section and for simplifying the notation, 
we will write A =  (/, k, ni) and denote by f x{x) the corresponding wavelet. Then À 
belongs to A = Z  x Z 2 x { 1 ,2 ,3 } .

12. Q u a n t iz a t io n  issu es : F o u r ie r  series v s . w a v e l e t  series

Whenever a computer is used, the true coefficients arising in some expansion will 
be replaced by approximations to a given precision. What happens to the expansion 
after a quantization is performed is a problem to be addressed. Some representations 
are more sensitive than others to quantization. Wavelet expansions have the advantage
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that the effect of small changes over the coefficients will only have a local influence. 
This fact is related to the following observation. If ipx , X G A , is an orthonormal 
wavelet basis and if mx , X G A, is a multiplier sequence which is used to shrink the 
wavelet coefficients in this basis, then the corresponding multiplier operator M  defined 
by M ( f x) =  mxipx , is a Calderon-Zygmund operator.

When the trigonometric system is used, any change on any coefficient will affect 
the resulting function globally.

More precisely let us study the non-linear mapping Q{ f )  which is defined on In  
periodic functions by the following algorithm. We start with the Fourier series expansion 
of a 27r-periodic function f ( x )  and replace by 0 all the coefficients whose absolute value 
is less than e. We then obtain f  and write f  =  Q (f) .  We would like to understand 
the behavior of this operator as e tends to 0. The following theorem easily follows from 
the construction of Rudin-Shapiro polynomials.

T h e o r e m  4 .  For each exponent a  less than 1 / 2  there exists a 2iï -periodic function 
f{ x )  =  f a (x) belonging to the Hôlder space Ca such that the L°° norm o f Q J f)  —f  tends 
to infinity as e tends to 0. More precisely

( 12. 1) \\fe\L > Ce~ß
where C =  C(f) is a positive constant and ß  which is defined by

ß  =
I - 2 a  
1 + 2  oi

ls also positive.

When a  is larger than 1/2 the Fourier coefficients of our function belong to / 1 and 
I [̂ 11 < C for some constant C.

The blow-up described by Theorem 4 cannot occur with wavelet expansions. Indeed 
the Holder space Ca is characterized by size conditions on the wavelet coefficients.

1 3 . F o u r ie r  series v s . w a v e l e t  series : e x p a n s io n s  o f  B V  f u n c t io n s

For the sake of simplicity, let us first study periodic functions in BV. Let f ( x l , x2) 
be a function of two real variables which is 27r-periodie in each variable. We then 
abbreviate in saying that f ( x )  is 27r-periodic. Let us write the Fourier series of f  (x) as 
f ( x )  = ^ZkeZ2 c(kx y £2)exp(ik.x) with k = (kx , kß). Let us assume that f  {x) belongs to 
B V  on [ 0 ,27t]2. Then we already know that c{k) belongs to I2. For such functions, 
Jean Bourgain proved the following

T h e o r e m  5 . There exists a constant C such that for any 2 t t  -periodic function f ( x )  in 
BV{R2)y we have

(13.1) 2>(*>K1*I +  I)“ 1 < C\\f\\BV.

This estimate complements 5^|c(^)|2 <  oo and these two results obviously follow
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from a sharper estimate given by
oo

(13.2) X > y < C |l / Ï U
;= o

where Sj = ( E y  <\k\<2>+' k(^)|2)1/2-
This is a mixed I1 (I2) estimate on Fourier coefficients of a B V  function. It is 

optimal in the sense that there exists a function in B V  for which ^ )|r(£ )p> =  00 f°r 
any p < 2 .  An example is given by f ( x )  — \x\~l (log\x\)~2 p(x)where p(x) is any smooth 
function which vanishes when \x\ > 1/2 and is identically 1 around the origin. Then 
the Fourier coefficients c(k) of f ( x )  can be estimated by \c(k)\ ~  \k\~l (log\k\)~2 which 
obviously implies ^2\c{k)\p =  00 as announced. The sorted Fourier coefficients of this 
function behave as rTl 2̂{logn)~2. This counter-example shows that nothing better than 
/ can be expected inside the dyadic blocks of the Fourier series expansion of a funcion 
f ( x )  in BV.

Now this estimate (13.2) can be rewritten as a Besov norm estimate. Indeed let 
A .(f) denote the dyadic blocks of the Fourier series expansion of f{x) .  For defining 
Aj ( f )  we only retain the frequencies k G T. in the Fourier expansion of f where 
T. is the dyadic annulus defined as {£|27 < \k\ < 2/+1}. We then obviously have 
f ( x )  — cQ +  A .(f) and our next theorem reads:

00
(13.3) E l l AiG)ll2 < G L / ' I U -

0

This theorem will be further improved. This improved version is not using a Fourier 
series expansion any more and we can therefore give up the periodic setting and switch 
to the space BV(R2) and to a Littlewood-Paley analysis.

There are two approaches to Littlewood-Paley expansions, as it was the case for 
a wavelet analysis. We may start with a compactly supported smooth function xp 
with enough vanishing moments such that the Fourier transform ^  of ^  satisfies 

=  1 whenever |£| >  1. Next we write xpj =  22;//(27x). Finally A .(f) 
is the convolution product f  * ^  Then there exists a smooth and compactly sup
ported function ip whose Fourier transform satisfies <!>(£) +  =  1 iden
tically. We denote by S0(f) the convolution product between f  and cp and we have 
S(f )  +  Aj ( f )  =  f. But we may directly start with a sufficiently large integer
N  and a smooth compactly supported function p(x) such that f R2 p(x) dx =  1 and 
f R2 xap(x) dx =  0 for 1 < \a\ < N  Next we define ip(x) =  4p(2x) — p(x) and the 
dyadic blocks will be the convolution products Aj ( f )  = ip j* f  where -0.(x) =  4Jxp(2Jx). 
In these two approaches ip is playing the role of a wavelet and p  of the scaling func
tion. The value of the integer N  is related to the amount of smoothness one wants to 
analyze.

With these notations (13.3) can be generalized to all exponents p  in (1,2].  Indeed 
one has
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T h e o r e m  6. There exists a constant C such that for every function f  in BV(R2), and for 
every exponent p  with 1 <  p  < 2, we have

+ 00
(13.4) 5 2 n * j < f ) \ \ P < cP\\f\ u

— oo

with s = —1 T  (2 / p) and Cp < C/(p — 1).

The proof of this theorem is quite simple. Let us first observe that, up to a mul
tiplicative constant, the left hand side of (13.4) does not depend on the definition of 
the Littlewood-Paley expansions into dyadic blocks. This remark will permit to use a 
compactly supported ip in the definition of the Littlewood-Paley analysis which is used. 
Using the atomic decomposition of B V , it suffices to prove the theorem for an individ
ual atom. If L is the length of dVt, we are led to distinguish between j  < q and j  > q 
where 2~q is of the order of magnitude of L. When j  < q, we use the support compact 
of ip and can uniformy bound \Aj(f)\ by 4Jvol(Q) if the distance from x  to Q does 
not exceed C2~J and by 0 if this distance exceeds C2~J. For each such exponent j ,  the 
U -norm we need to estimate is easily bounded by C22-̂ 1-1^vol(f2) and the sum over 
j  does not exceed CpL~l voi (ff) which is less than CpL (by the isoperimetric inequality). 
When j  is larger than q, we take in account the cancellation of the analyzing wavelet 
ip and observe that A .(/) vanishes unless the distance from x  to dft  is less than 2~J. 
In the latter case \Aj(f)(x)\ < C. Since dii is rectifiable, the area of this set of point 
is less than C2~qL. Finally this yields an U  norm ||A^(/’)||^ not exceeding C(2“7Z)1̂ . 
Summing over j  < q again yields C'L.

C o r o l l a r y  1. I f f ( x )  belongs to BV(R2), and i f  ipj k(x) = 2qtp(2qx — k), j  G Z , k G Z 2, 
is an orthonormal wavelet basis o f i f  (R2) where 'ip is smooth and localized, then the corresponding 
wavelet coefficients c(j, k) —< f ,  k >  satisfy

(13-5) E { ç i « M > r }  < c / { p - m \ \ Bv> 1 < p < 2 .

C o r o l l a r y  2 .  With the same notations as above, we have

(13.6) < C / ( p - l ) \ \ f \ \ Bv

C orollary  3. With the same notations, let us assume ||jf ||Äl/ < 1. For each integer m, let 
N m be the cardinality o f the set on indices ( j , k) such that | c(j, k)\ > 2~m. Then

(13.7) N0 +  • - - +  2- mN m < C(m + 1).

It means that for most ms  we have N m < C2m since the average of 2~mN m is 0(1).
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Indeed one has N m < C2m for all m. Keeping the notation of Theorem 3, the sharp 
estimate N m < C2m will be rephrased in the following theorem (A. Cohen, Y. Meyer 
and F. Oru):

T h e o r e m  7 . Let ÿ x , A G A, be a two-dimensional orthonormal wavelet basis as described 
in Theorem 3. Then for every f  in BV(R2), the wavelet coefficients cx —< f ,  ip x >  , À G A 
belong to weak 11 (A).

This theorem was proved by A. Cohen et al. [3] in the Haar system case. The 
general case was obtained by the author and the best reference is [18].

In other words, if cx —< f  ipx >  and if the \cx \ , A £ A, are sorted out by decreasing 
size, we obtain a non-increasing sequence c* which satifies c* < Cj n for 1 < n.

One cannot replace the vector space weak-/1 (A) by / X(A) in Theorem 7. Indeed 
let f ( x )  be the indicator function of any smooth domain ft and let L be the length 
of the boundary of SI. Then when 23 L >  1, the cardinality of the set of A such that

<  \cx \ < 2-;+1 is precisely 2î L. This does not mean that Theorem 7 is optimal. 
Indeed ^ 7  is a Banach space which is the dual X * of a separable Banach space X  
while weak-/1 does not have this property. Therefore B V  and weak-/1 cannot be 
isomorphic. A second remark concerns (13.5). This statement is not implied by the 
weak-/1 property. A last observation is the obvious remark that functions in B V  cannot 
be characterized by size estimates on wavelet coefficients [1]. But Theorem 7 and (13.5) 
show that B V  is almost characterized by such estimates. The vector space Y  of wavelet 
coefficients of B V  functions is sitting somewhere between Z1 and weak-/1. We can now 
return to the problem raised in Section 10. Let 7 be an exponent in (0, 1). We want 
to characterize the space of all functions f ( x )  in L2(R2) such that

(13.8) lu(A) =  in f{J(u) =  \\u\\BV +  A||p||2; /  =  u -f v) — 0(A7) , A —> 00.

We then obtain

T h e o r e m  8 . We have a; (A) =  0(A7) when A tends to infinity i f  and only i f  the sorted 
wavelet coefficients o f f ( x )  satisfy c* =  0(n~a) where a  — \ — y /2.

14. I m p r o v e d  G a g l ia r d o - N ir e n b e r g  in e q u a l it ie s

We now want to relate Theorem 7 with some improved Gagliardo-Nirenberg in
equalities. Let us start with the Sobolev embedding of B V  into Z2(Æ2).

The estimate

(14.1) | | / | |2 < C\\f\\BV.

is obviously consistent with translations and dilations. Indeed, for any positive a and 
f a(x) = af(ax), we will have \\fa\\2 = | | / | |2 and similarly \\fa\\BV = \[f\\BV- But (14.1) is 
not consistent with modulations: if denotes the pointwise multiplication operator 
with exp(iujx), then Mu acts isometrically on L2 while \\Muf \ \ BV blows up as |cj| when 
|ca[ tends to infinity.
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For addressing this invariance through modulations, let us introduce an adapted 
Besov norm.

D e f in it io n  2. Let B be the Banach space of all tempered distributions f ( x )  for which 
there exists a constant C such that for g{x)= exp(—|x|2) and ga b =  ag(a(x — b)), the 
following condition is satisfied: there exists a constant C such that for any a >  0 , b G R2, 
we have

(14.2) I <f>ga>b>  I <  C -

The infimum of these constants C is the norm of f  in B and is denoted by \\f\\ .

It is easily proved that this Banach space coincides with the space of second deriva
tives of functions in the Zygmund class. Therefore B is the homogeneous Besov space 
B ^ °° regularity index -1.

We then have

T h e o r e m  9 . There exists a constant C such that for any f  in BV(R2) we have

(14.3) ll/ïl2 < C[\\f\\Bv \ m 112

and \\f\\e is the weakest norm obeying the same scaling laws as the Û  or B V  norm for which
(14.3) is valid.

To better understand this theorem, let us stress that we always have \\f\\e < WfÏÏBV 
and the ratio | | / | |e/ | | / | | 57 between these norms is denoted by ß  and is expected to be 
small in general. Then (14.3) reads

(14.4) \\f\\2 < C ^ 2\\f\\BV

which yields a sharp estimate of the ratio between the L2 norm and the B V  norm of f .  
Moreover ß 1̂ 2 in (14.4) is sharp as the example of f(x)=exp(iujx)w(x) shows. Indeed 
if \uj\ tends to infinity and w(x) belongs to the Schwartz class, then \[f\\2 is constant, 
| | / | |e ~  M ^ I I / I U  and finally \ f \ \BV — MIMli-  ln this example ß  is of the order of 
magnitude of \oj\~2 which corresponds to ß 1̂ 2 ~  M _1.

The proof of (14.3) is straightforward. One uses the following trivial estimate on 
sequences

oo
(14.5) £ W 2 < 2 I M J K I L -

n= 1

Then one applies Theorem 7 to an orthonormal wavelet basis of class C2. If c* 
denotes the non increasing rearrangement of the wavelet coefficients \c(X) \ , À G A, then 
Halloo ls precisely the norm of c(A) in the space weak-/1.

Let us observe that (14.3) is an interesting improvement on the celebrated Gagliardo- 
Nirenberg estimates. These estimates read in the two-dimensional case

(14.6) Iizyyii^ < C (||zyv iir)-(ii/-||¥)1—

where 1 <  p,  q , r <  oc , j / m  < a < 1 and \ / p - j / 2  =  c r ( l / r -  m /2) +  (1 -  cr)/q.
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The notation \ \ iy f\\p means sup{\\daf \ \p; \a\ — j}.  For comparing our new estimate 
to the Gagliardo-Nirenberg estimate (14.6), we will assume m — 2 , j  — 1, p = 2 and 
r = 1. This either implies s = 1 or q =  oo. In the first case, (14.6) easily follows from 
the embedding of B V  into Û  while in the second one (14.3) is an improvement on 
the Gagliardo-Nirenberg estimate since the L°° norm is replaced by a weaker one. 

Theorem 9 generalizes to any dimension n >  2. It then reads

(14.7) I m u - , ,  < a i[ / 'ii^ )(1' 1/B)( i ^ U ,/K
where \ f \ \a is now defined as the optimal constant C for which one has | < f  ga b>\ < C 
with ga b =  ag(a(x — b) ) , a >  0 , b G Rn, and g{x) — exp(—\x\2). In other words \[f\\a 
is the norm of f  in the homogeneous Besov space

Returning to I? norms, Albert Cohen, Wolfgang Dahmen, Ingrid Daubechies and 
Ron DeVore proved the following theorem (oral communication, still unpublished):

T h e o r e m  10. In any dimension n > 1, let us assume that a function f  both belongs to 
B V  and to the homogeneous space B f  ,0° . Then we have

(14.8) \\f\\2 < C(|[/-||bk|^ | |£)1/2

where \\f\\e is norm o f f  in the Besov space B f  00.

The Besov norm of f  can be defined as the optimal constant C  for which one has 
I <  f> ga b ^  I — Co1~n, a >  0 , b G Rn. Let us observe that B V  is contained in i f  if 
and only if n =  2. In other words when n =  1 or n >  2, the assumption f  G B ^  ’°° 
complements f  G B V  and both are needed to get an i f  estimate.

The proof of this theorem requires new estimates on wavelet coefficients of B V  
functions which are sharpening Theorem 7. Indeed the above mentioned authors proved 
the following:

T h e o r e m  11. In any dimension n>  1, let us assume 7 <  n —1 where 7 is a real exponent. 
Then for f  G BV(Rn) a n d \  > 0, one has

(14!9) 2~h  ^  C & H
{\c(j,k)\>\2~h}

where c(j, k) — f Rnf(x )2 Jip(2Jx — k) dx.

It is easily seen that this estimate is false when 7 — n — 1 and it is not difficult to 
construct sequences c(J, k) belonging to weak-/1 for which (14.9) is not fulfilled.

15. W a v e l e t  c o e f f ic ie n t s  o f  in t e g r a b l e  f u n c t i o n s

For a long time people believed in the following paradigm: if E  is any functional 
Banach space for which the existence of an unconditional basis can be proved, then or
thogonal wavelet bases provide effective unconditional bases. Then the fact that a given 
function belongs to E  can be checked on size properties of its wavelet coefficients.
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Moreover a byproduct of this paradigm was that wavelet analysis was irrelevant for Ba
nach spaces which do not possess unconditional bases. This belief was grounded by the 
history of the subject. Indeed Bernard Maurey proved the existence of an unconditional 
basis for the Hardy space H l (R) (in its real variable realisation) by abstract methods. 
Then Lennart Carleson discovered that an ad hoc wavelet like basis provided such an 
unconditional basis. A more systematic treatment was achieved by J.O. Strömberg who 
constructed the first orthonormal basis where the «mother wavelet» ïb was smooth (mT m v
continuous derivatives) with an exponential decay at infinity. In the same paper [12] 
Strömberg proved that these bases were unconditional bases for H 1(R). Strömberg con
struction extended to H l (Rn) and Strömberg discovered the rôle played by the scaling 
function (p. As it was already stressed the Banach space B V  does not possess an uncon
ditional basis and it was hard to believe that important results about wavelet coefficients 
of B V  functions could ever be obtained. One can argue that B V  has some intriguing 
similarities with the Hardy space H X{R^). An even more surprising fact was discovered 
by Albert Cohen and Ronald DeVore. They proved that wavelet coefficients of l ) (R n) 
functions have some interesting properties. The normalization which will be used is 
the following. We write ^ x for ip(2J x — k) and the wavelet coefficients of f  are now 
f(A) = <  f ,  îpx >.  They are indexed by A =  Z  x Z n x F  where F  is a finite set with 
cardinality 2” — 1. Next we denote by Cf the corresponding dyadic cube defined by 
{x\ 2Îx— k E [0 ,1 )”}. The theorem on wavelet coefficients of l ) (R n) functions says the 
following:

T h e o r e m  1 2 . For any real exponent y  larger than 1, there exists a constant C n such that 
for f  in Ü  (Rn) and for r  >  0, one has

(15.1) Y .  I 0 J 7 < C & .
{k(A)|>r|Qx|'Y}

In other words the wavelet coefficients c(A), A E A , belong to a weighted weak- 
l l space where the weighting factor is | Q J 7. Theorem 12 complements Theorem 11. 
Indeed Theorem 12 can be applied to the gradient of a B V  function and the nor
malizations are adjusted in such a way that Theorem 12 corresponds to 7 >  n in 
Theorem 11.
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