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A lain C onnes

A LECTURE ON NONCOMMUTATIVE GEOMETRY

A bstract. —  The origin o f Noncommutative Geometry is twofold. On the one hand there is a wealth 
of examples o f spaces whose coordinate algebra is no longer commutative but which have obvious geometric 
meaning. The first examples came from phase space in quantum mechanics but there are many others, 
such as the leaf spaces o f foliations, duals o f nonabelian discrete groups, the space o f Penrose tilings, the 
Noncommutative torus which plays a role in M-theory compactification and finally the Adele class space 
which is a natural geometric space carrying an action o f the analogue o f the Frobenius for global fields 
o f zero characteristic. On the other hand the stretching o f geometric thinking imposed by passing to 
Noncommutative spaces forces one to rethink about most of our familiar notions. The difficulty is not to 
add arbitrarily the adjective quantum behind our familiar geometric language but to develop far reaching 
extensions o f classical concepts. Several o f these new developments are described below with emphasis on 
the surprises from the noncommutative world.

Key words: Noncommutative Geometry; Operator algebras; Index theory.

Let me start by comparing two simple theorems. The first one, due to Frank 
Morley, deals with planar geometry and is one of the few results about the geometry 
of triangles that was apparently unknown to the Greek mathematicians. You take an 
arbitrary triangle ABC and you trisect each angle, then you consider the intersection of 
consecutive trisectors, and obtain another triangle aß^f (fig. 1). Now Morley’s theorem, 
which he found around 1899, says the following,

T heorem . Whichever triangle ABC you start with, the triangle aß^j is always equilateral.

B

The second theorem is purely algebraic. You start with an arbitrary field k and 
consider three elements / ,  g , h of the affine group G of k\ the affine group is just the 
group of transformations of the line of the form x  —> ax +  b\ we can view it as the
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group of 2 x 2 matrices g — [q f] where a £ k, a f  0, b £ £. This group looks very 
trivial because it is solvable. For g £ G we let,

(1) (%) = a e k* .

By construction 6 is a morphism from G to the multiplicative group k* of non zero 
elements of k, and the subgroup T  = KerJ is the group of translations, i.e. the additive 
group of k.

Each g  £ G defines a transformation,

(2) g(x) = ax -F b V x e T

and if a f  1 it admits one and only one fixed point,

(3) flx(£) =  T ^ -

Let us state the following simple fact,

T heorem . Let f ,  g, h £ G be such that fg , gh, h f  and fgh are not translations and let 
j  = S (fgh). The following two conditions are equivalent

a) f 3g3h3 = \.

b) f  =  1 and a  -f j ß  +  j 2 7 =  0 where a  =  fix (fg), ß  =  fix (gh), 7 =  fix (hf).

Now let us compare these two theorems. The first is very appealing geometrically 
and involves the obvious perception of geometry from the visual areas of the brain. But 
somehow if you try to prove it and take it the wrong way you might have a hard time. 
The second is algebraic and as such it involves the language. It can be checked by a 
high school student, it is a completely straightforward computation: you just compute 
the a part and the b part of the 2 x 2  matrix and you get the result. Now, what is true 
is that this second statement immediately implies the first as follows: you let the field 
k be the field of complex numbers and from the triangle you get three elements of the 
affine group which satisfy the equation f 3g3h3 =  1: what are they? just take for f  the 
rotation centered at A  and whose angle is twice the trisected angle a and similarly for 
g and b, now f 3 is a product of two symmetries along the sides of the triangle, and 
f 3 g3 h3 is obtained by applying twice the symmetry around each side of the triangle so 
of course you get f ògò h3 = 1. Moreover for the same reason a = Bx(Jg), ß  = fix(gh), 
7 =  fix (hf) are the intersections of trisectors. Thus you get a  +  j ß  +  j 2 7 =  0 , but 
this is a well known condition which used to be taught in high school and characterizes 
equilateral triangles in euclidean geometry, when you consider a, ß  and 7 as complex 
numbers.

This is an example of the type of duality which I want to use all the time between on 
the one hand the visual perception (where the geometrical facts can be sort of obvious) 
and on the other hand the algebraic understanding. What I mean is that, provided you 
can write things in algebraic terms, then somehow you enhance their power and you 
make them applicable in totally different circumstances. For instance the above theorem 
holds for a finite field, it holds for instance for the field F4 which has cubic roots of
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unity and so on. So somehow, passing from the geometrical intuition to the algebraic 
formulation allows to increase the power of the original obvious fact and it’s a little bit 
like the role of language with respect to perception, it allows to go back and forth and 
to make progress.

I chose my first example in order to say something about euclidean geometry: let 
us then consider non euclidean geometry. You know probably that a model of non 
euclidean (planar) geometry (perhaps the simplest model) in which it is completely 
obvious that through a point outside a line pass several parallel lines is the Klein model.

The points in this model of geometry form the inside of an ordinary ellipse (fig. 2), 
while the lines of the geometry are simply the intersections of the ordinary straight lines 
with the inside of the ellipse. O f course then you have to give, as in Euclid’s axioms, 
the notions of congruence of segments and of angles. So in other words you have to 
provide a measurement of distances and a measurement of angles like the angle (LOL’) 
(fig. 2). In the model the distance between two points A,B, is given by the logarithm 
of the cross ratio of the four points A, B, a, b where a, b are the points at infinity, i.e. 
on the ellipse, on the line A,B. Similarly the angle (LOL’) is given by the imaginary 
part of log(ZZ/; / / ')  where / and I' are the tangents to the ellipse from O (they are 
imaginary).

Now the discovery of non-euclidean geometry was first motivated by the perplexing 
rolb of Euclid’s axiom of unique parallel, and it was at first considered as a rather esoteric 
type of construction, yielding to a counterexample. But it quickly became an object of 
great mathematical power and served as a basic example in the further development of 
geometry. With a slight oversimplification, the two directions that geometry took from 
this discovery can be summarized like this.

The first idea is that what is behind the power and the beauty of this example is its 
homogeneity, namely its large symmetry group, which is here the group of projective 
transformations preserving the ellipse. So of course this led to the development of the 
theory of Lie groups, to the Klein program. That theory is tractable because one is 
dealing with finite dimensional Lie algebras, which can be understood and classified in 
simple terms.

But another very powerful view of geometry came from the work of Gauss and 
Riemann. They formulated the idea of the intrinsic geometry of a curved space inde-
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pendently of its embedding in Euclidean space. This allowed to understand that spaces 
with nonconstant curvature, in which rigid motion is no longer possible, are just as 
geometric as the more symmetric ones. The general idea of manifold was introduced 
by Riemann in his well known memoir (cf. [28]) on the hypothesis of geometry. He 
explains there how to label (locally) the points of a manifold M  by finitely many real 
numbers . One proceeds by induction on the dimension n of the manifold and 
reduces from n to n — 1 using a real valued function /  on M  and the level hyper
surfaces f ( x )  = a of / .  The next key notion is that of the line element i.e. the unit 
of length which, provided one can carry it around, allows to measure distances in the 
small. Thanks to the existence of the infinitesimal calculus, this led him first of all to 
the simplest formula for the line element ds in local terms

(4) ds2 =  g ^ tk fd x 1'.

But the most important point is that this new framework was not just an arbitrary 
generalization of geometry, inasmuch as most of the concepts which were present either 
in euclidean or non euclidean geometry continued to make sense, while it considerably 
increased the number of available interesting examples. In particular the idea of straight 
lines does make sense and is governed, thanks to the infinitesimal calculus, by the 
equation of geodesics,

(5)
d 2x* 
dt2

1 \ dxu dx?
2  &  V V 2 1 ' ,p  Socp ,b> g u p ,a )

At first if you step back and consider these two generalizations of geometry, the 
homogeneous one and the Riemannian one you might be more inclined to prefer the 
beauty of the homogeneous one to the generality of the other.

In fact, and as long as we consider geometry as intimately related to our model 
of space, Einstein’s general relativity gave a very clear victory to Riemann’s point of 
view. The simplest way to see the superiority of that point of view is to understand the 
following simple fact: you first need to stretch a little bit your imagination by accepting 
that the g^u ’s do not necessarily correspond to a positive quadratic form, you should 
allow for instance the metric dx2 +  dy2 +  dz — dt2 defining Minkowski’s space.

The point then is that if one just alters a little bit the metric of Minkowski’s space 
by replacing the coefficient =  —1 of dt2 by

goo — -(1 +  2 V (x ,y ,  z))

and leaving the other components unchanged (so gx x = g21 = g35 — 1 and the other 
components are zero) then when you write down the equation of geodesics you find 
Newton’s law for the motion of a body in the gravitational field which is defined by 
the potential function V  (cf. [29] for the more precise formulation).

This makes it very clear that one would loose a lot by being very conservative 
and only caring about homogeneous geometries. In these geometries where the g  
are variable, motion of a rigid body is no longer possible, but the variability which 
is around is in fact exactly what is needed to be able to model geometrically, by the
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straight lines of a geometrical substratum, crucial physical laws such as motion in a 
Newtonian potential.

That this geometrical substratum is independent of which type of particle, which 
type of body is moving, is the content of the equivalence principle i.e. the equality 
between inertial mass and gravitational mass.

O f course, all these things are fairly standard. Now let me turn to the origin of 
noncommutative geometry. It can be traced back essentially not to the beginning of 
quantum mechanics with Planck, but to the understanding of the conceptual meaning 
of the basic laws of spectroscopy, in particular by Heisenberg.

The very bare fact which came directly from experimental findings in spectroscopy 
and was unveiled by Heisenberg (and then understood at a more mathematical level 
by Born, Jordan, Dirac and the physicists of the 1920’s) is that whereas when you 
are dealing with a manifold you can parametrize (locally) its points x  by real numbers 
xl , x2 y . . .  so that you have n real numbers that specify completely the situation of the 
system, when you turn to the phase space of a quantum mechanical system, even of the 
simplest kind, the coordinates, namely these real numbers xi , x2 , . . .  and so on, that 
you would like to use to parametrize points, actually do not commute.

So in fact what happens is that from the simplest examples of quantum mechanics 
one finds that the familiar duality of algebraic geometry between a space and its algebra 
of coordinates (i.e. the algebra of functions on that space) is really too restrictive even 
to model the phase space of very simple physical systems. What we are enticed to do, 
then, is to stretch this duality so that the algebra of coordinates on a space, this algebra 
of variable numbers x1 , x2 , . . .  is no longer required to be commutative.

What I shall now do is to give you examples and a general principle which show 
that this phenomenon is by no means limited to quantum mechanics. It is in fact 
a fairly general phenomenon and the general principle which is behind it is roughly 
speaking the following:

«Noncommutative spaces are naturally generated by the operation of quotient».

Many of the spaces, many of the sets that we are used to consider are not really 
defined by listing their points but they are defined by identifications, their elements 
are given as equivalence classes; I mean you start with a set that is much larger than 
the one you want to consider, and in fact you cut this set into equivalence classes, you 
identify the points which belong to the same class.

Now there are two ways of proceeding at the algebraic level in order to identify 
two points a and b in a given space M . There is a first way to proceed which is to 
take only those functions /  on M  which take the same value at the points a and b> 
namely that satisfy f(a )  = f(b ) .  Thus the usual algebra of functions associated to the 
quotient is

(6) ^  =

There is however another way of describing, in an algebraic manner, the above 
quotient operation. It consists, instead of taking the subalgebra given by (6), to adjoin
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to the algebra of functions on {a y b} the identification of a with b. The obtained 
algebra is the algebra of two by two matrices

This second way of taking the quotient can be described as follows: do not impose 
on functions to have the same value at a and b, but allow the two points a and b to 
speak to each other. In order to do that, just add the «off diagonal» matrix elements f ab 
and f ba. Now, the effect of these off-diagonal matrix elements will be to coalesce these 
two points into one point in the spectrum of the algebra, namely in the space of its 
irreducible representations. Indeed the algebra is that of two by two matrices and the 
irreducible representation corresponding to a (associated to the pure state a) has now 
become equivalent to the representation coming from b.

Now in this very simple example of two points, the two different algebras that 
one obtains are still equivalent. The equivalence between A  and B is called Morita 
equivalence [54] and means that the corresponding categories of right modules are 
equivalent. There is of course an obvious difference between A  and B namely B is no 
longer commutative.

So let me now give you a next simple example, extremely simple too, in which 
the two ways of doing things do not give you the same answer, even up to Morita 
equivalence. This example is the following: geometrically you just take two intervals, 
[0, 1], and you just want to identify the insides of these two intervals but you do not 
want to identify the end points (fig. 3).

I

Fig. 3.

Now, let us do this in the first way as above. Thus we take C°° functions on 
M  =  [0, 1] x {0, 1} and we only consider functions which have equal values on the 
points (x, 0) and (x, 1) for x e ] 0 ,  1[. Since the functions are continuous, and are 
equal inside the intervals they will also be equal at the end points. Thus what we get 
is simply the algebra A  = C°°([0, 1]), whose spectrum is the interval [0 ,1].

Now, however, let us take the quotient using the second way, what do we get? 
Well, we get C°° maps from the interval [0,1] to 2 x 2  matrices , but we don’t get 
all C°° such maps, we only get C°° maps which have diagonal matrices as boundary 
values. So the value of the matrix at 0 is a diagonal matrix and the value of the matrix 
at 1 is a diagonal matrix. Now, if you know a little bit of Fourier analysis you will find 
that this second way gives you an algebra B which is quite interesting, it is the group 
ring of the dihedral group, namely of the free product of two groups with 2 elements,
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which is also the semi-direct product of Z by Zv  and this algebra is quite different 
from the first one, and certainly not Morita equivalent to C°°([0, 1]).

In general, when we consider more complicated examples of quotient spaces it is no 
longer true that the two algebras A  and B are Morita equivalent. The first operation 
(6) is of a cohomological flavor while the second (7) keeps a closer contact with the 
quotient space. The general theory is thus the extension of the familiar duality of 
algebraic geometry to

(8) Quotient spaces Noncommutative algebra.

It rests mainly on the richness of the examples and on the extension of geometrical 
concepts to the noncommutative case.

Let us thus proceed to a much more difficult example where obviously the first 
manner of taking the quotient doesn’t work but the second does. This example is the 
following: consider the 2-torus

(9) M  = R2/Z 2 .

The space X  which we contemplate is the space of solutions of the differential equation,

(10) dx = 6dy x , j / e M / Z

where 0 E]0, 1[ is a fixed irrational number (fig. 4).
0

Fig. 4.

Thus the space we are interested in here is just the space of leaves of the foliation 
defined by the differential equation. We can label such a leaf by a point of the 
transversal given by y  =  0 which is a circle S 1 =  R /Z , but clearly two points of the 
transversal which differ by an integer multiple of 0 give rise to the same leaf. Thus

(11) . X = S XI8Z

i.e. X  is the quotient of S1 by the equivalence relation which identifies any two points 
on the orbits of the irrational rotation

(12) Rqx  =  x  +  6 modi .

When we deal with S1 as a space in the various categories (smooth, topological, 
measurable) it is perfectly described by the corresponding algebra of functions,

(13)
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When one applies the operation (6) to pass to the quotient, one finds, irrespective 
of which category one works with, the trivial answer

(14) A  = C .

The operation (7) however gives very interesting algebras, by no means Morita 
equivalent to C. In the above situation of a quotient by a group action the operation 
(7) is the construction of the crossed product familiar to algebraist from the theory of 
central simple algebras.

An element of B is given by a power series

(15) b = bn U n

where each bn is an element of the algebra (13), while the multiplication rule is given by

(16) UhU~x =  ho R~l .

Now the algebra (13) is generated by the function 7  on 5 l ,

(17) 17(a) =  exp(27via) a  e S l

and it follows that B admits the generating system (U, V) with presentation given by 
the relation

(18) UVU~l = \ - l V  A =  exp27xiO.

Thus, if for instance we work in the smooth category a generic element b of B is 
given by a power series

(19) b = ^ b nmUnV m , b e S (Z 2)
Z2

where S(Z 2) is the Schwartz space of sequences of rapid decay on Z2.
This algebra is by no means Morita equivalent to C and has a very rich and inter

esting algebraic structure. It is (canonically up to Morita equivalence) associated to the 
foliatioh (10) and the interplay between the geometry of the foliation and the algebraic 
structure of B begins by noticing that to a closed transversal of the foliation corresponds 
canonically a finite projective module over B.

From the transversal x — 0, one obtains the following right module over B. The 
underlying linear space is the usual Schwartz space,

(20) S(R) =  , Ç(s) e C  V s e  R}

of smooth functions on the real line all of whose derivatives are of rapid decay.
The right module structure is given by the action of the generators U, V

(21) (£U)(s) =  a s  + 0) , (£V)(s) = e2™Ç(s) V s e  K .

One of course checks the relation (18), and it is a beautiful fact that as a right 
module over B the space <S(M) is finitely generated and projective {Le. complements to a
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free module). It follows that it has the correct algebraic atributes to deserve the name 
of «noncommutative vector bundle» according to the dictionary,

Space Algebra

Vector bundle Finite projective module.

The concrete description of the general finite projective modules over A e is obtained 
by combining the results of [48, 73, 74]. They are classified up to isomorphism by a 
pair of integers (p, q) such that p + q6 > 0 and the corresponding modules H dp q are 
obtained by the above construction from the transversals given by closed geodesics of 
the torus M .

The algebraic counterpart of a vector bundle is its space of smooth sections C°°(X,E) 
and one can in particular compute its dimension by computing the trace of the identity 
endomorphism of E. If one applies this method in the above noncommutative example, 
one finds

(22) dim B(S) = 0.

The appearance of non integral dimension is very exciting and displays a basic 
feature of von Neumann algebras of type II. The dimension of a vector bundle is the 
only invariant that remains when one looks from the measure theoretic point of view 
{Le. when one takes the third algebra in (13)). The von Neumann algebra which 
describes the quotient space X  from the measure theoretic point of view is the crossed 
product,

(23) R = La°(S1) x KeZ

and is the well known hyperfinite factor of type II r  In particular the classification of 
finite projective modules E over R is given by a positive real number, the Murray and 
von Neumann dimension,

(24) dim^Of) G R + .

The next surprise is that even though the dimension of the above module is irrational, 
when we compute the analogue of the first Chern class, i.e. of the integral of the 
curvature of the vector bundle, we obtain an integer. Indeed the two commuting vector 
fields which span the tangent space for an ordinary (commutative) 2-torus correspond 
algebraically to two commuting derivations of the algebra of smooth functions. These 
derivations continue to make sense when the generators U  and V  of C°°(T2) no longer 
commute but satisfy (18) so that they generate C°°(T^). They are given by the same 
formulas as in the commutative case,

(25) 5 ,= 2 i^ iU —  , S2 = 2 n i v X

so that U n V m) =  27TÌY2 nbnmUnV m and similarly for S2. One still has of
course
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and the Sj are still derivations of the algebra B =  C°°(T2),

(27) 5/55') =  6/5)5 ' +  45.(4')

The analogues of the notions of connection and curvature of vector bundles are 
straightforward to obtain since a connection is just given by the associated co variant 
differentiation V on the space of smooth sections. Thus here it is given by a pair of 
linear operators,

(28) V; : <S(R) -► <S(R) 

such that

(29) V /£5) =  (V /)5  +  £5/5) V£ e <S , b e B .

One checks that, as in the usual case, the trace of the curvature Q =  V jV 2 — V2Vj, 
is independent of the choice of the connection. Now the remarkable fact here is that 
(up to the correct powers of 2iri) the integral curvature of S  is an integer. In fact for 
the following choice of connection the curvature Cl is constant, equal to -  so that the 
irrational number 9 disappears in the integral curvature, 6 x -

(30) (V10(s) =  - — ^ )  (V20(s) =  .

With this integrality, one could get the wrong impression that the algebra B = 
=  C°°(T^) looks very similar to the algebra C°°(T2) of smooth functions on the 2- 
torus. A striking difference is obtained by looking at the range of Morse functions. 
The range of a Morse function on T2 is of course a connected interval. For the above 
noncommutative torus T2 the range of a Morse function is the spectrum of a real valued 
function such as

(31) h=u+u* + fjL(v+\r)
and it can be a Cantor set, Le. have infinitely many disconnected pieces. This shows 
that the one dimensional shadows of our space T2 are truly different from what they are 
in the commutative case. The above noncommutative torus T2 is the simplest example 
of noncommutative manifold, it arises naturally not only from foliations but also from 
the Brillouin zone in the Quantum Hall effect as understood by J. Bellissard, and in M- 
theory as we shall see next. Indeed both the noncommutative tori and the components 
Vy of the Yang-Mills connections occur naturally in the classification of the BPS states 
in M-theory [61]. In the matrix formulation of M-theory the basic equations to obtain 
periodicity of two of the basic coordinates Xi turn out to be the following

(32) U f i U r 1 = X j + aS?i , i = \ , 2

where the Ui are unitary gauge transformations.
The multiplicative commutator Ux U2 Ux 1 U~ l is then central and in the irreducible 

case its scalar value À =  explniO  brings in the algebra of coordinates on the noncom
mutative torus. The X. are then the components of the Yang-Mills connections. It is 
quite remarkable that the same picture emerged from the other information one has
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about M-theory concerning its relation with 11 dimensional supergravity and that string 
theory dualities could be interpreted using Morita equivalence. The latter [54] relates 
the values of 9 on an orbit of SL(2 , Z) and this type of relation, which is obvious 
from the foliation point of view, would be invisible in a purely deformation theoretic 
perturbative expansion like the one given by the Moyal product.

We shall come back later to the natural moduli space for the noncommutative tori 
and to the metric aspect when we have the correct general tools. But we first need to 
dispell the impression that the noncommutative torus, because of its ubiquity, is the 
only example of noncommutative space.

A very large class of examples is provided first of all by the duals of discrete groups: 
I showed you already the dual of the dihedral group which was truly very simple, but 
as soon as you go to more complicated groups you find that duals of discrete groups 
are exactly like leaf spaces of foliations. It is important to understand at least on one 
example why the dual of a discrete non abelian group is in essence a quotient space, like 
the one we analysed above for foliations. Thus, let T be the solvable group T =  Z2x a Z 
obtained as the semi-direct product of the additive group Z2 by the action of Z given 
by the matrix

(33) T  =
1 1 
1 2

G SL{2, Z ) .

By Mackey’s theory of induced representations one gets that each element x  of the 
2-torus Z2 which is the Pontrjagin dual of the group Z2, determines by induction an 
irreducible representation of T,

(34) irx G Irrep(r).

Moreover the two representations nx and iry associated to x, y  G Z2, are equivalent
iff x and y  are on the same orbit of the (transposed) transformation T  of Z2. One does 
not get all irreducible representations of T by this procedure but the quotient space

(35) X  — Z2/  ~  , x  ~  y  iff y  =  T nx  for some n

does correspond in the above sense to the group ring A  — CT of T.
Here is a more complete list of basic examples,

Space of leaves of foliations
Space of irreducible representations of discrete groups 
Space of Penrose tilings of the plane 
Brillouin zone in the quantum Hall effect 
Phase space in quantum mechanics 
Space time

Then there is of course deformation theory and in particular the deformation of 
phase space or of Poisson manifolds which is another rich source of examples.

But let me still mention another space which I might have little time to talk about. 
It is the space of Adele classes, which is a noncommutative space whose understanding
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is intimately related to the location of the zeros of Hecke L-functions in the number 
field case.

Thus you can see that there are plenty of examples of noncommutative spaces that 
beg our understanding but which are very difficult to comprehend.

The reason why I started working in noncommutative geometry is that I knew that 
even at the level of measure theory, already there, at this very coarse level, things were 
becoming highly non trivial in the general noncommutative case. When you look at 
an ordinary space and you do measure theory, you use the Lebesgue theory which is 
a beautiful theory, but all spaces are the same, there is nothing really happening in 
ordinary measure theory. This is not at all the case in noncommutative measure theory. 
What happens there is very surprising. It is an absolutely fascinating fact that when 
you take a non commutative algebra M  from the measure theory point of view, such 
an algebra evolves with time!

What I mean is that it admits a god-given time evolution given by a canonical group 
homomorphism [1],

(36) Ö : R -► Out (AO -  Aut(M )/Int(M )

from the additive group M to the center of the group of automorphism classes of M  
modulo inner automorphisms.

This homomorphism is provided by the uniqueness of the, a priori state dependent, 
modular automorphism group of a state. Together with the earlier work of Powers, 
Araki-Woods and Krieger it was the beginning of a long story which eventually led to 
the complete classification [1-9] of approximately finite dimensional factors (also called 
hyperfinite).

They are classified by their module,

(37) Mod(M) c  R ;  ,

which is a virtual closed subgroup of in the sense of G. Mackey, i.e. an ergodic 
action of .

I realized many years afterwards what was the meaning of this theory.
In fact one can interpret this classification as being the correct local class field theory 

for Archimedian local fields. Local class field theory is interesting and non trivial for 
local fields which are non archimedean, like y>-adic numbers and so on, because such 
fields K  are very far from being algebraically closed. One lets be the maximal
abelian extension of K  and WK be the subgroup of the Galois group Gal(Kb : K) 
whose elements induce on the maximal unramified extension Kun C K^h an integral 
power of the Frobenius automorphism. One endows WK with the locally compact 
topology dictated by the exact sequence of groups

(38) 1 - ,  Gal(K h : K J  -  WK -  Mod(K) -  1 ,

and the main result of local class field theory asserts the existence of a canonical iso-
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morphism

(39) Wk ^ K *

compatible with the module. Thus in that case one has an interesting theory, given by 
the above correspondence between a Galois group and the multiplicative group of the 
field.

But there is nothing like that when you look at class field over complex numbers, 
because the field of complex numbers is algebraically closed, so there is apparently noth
ing going on. Now it turns out that the theory of factors gives the correct replacement 
for the missing Brauer theory at archimedian places. This can be seen as follows. To 
say that a field is algebraically closed can be formulated in terms of representation the
ory. It is equivalent to say that when we look at representations of semisimple objects 
(groups, algebras...) over this field any such representation can be decomposed in direct 
sums of multiples of representations whose commutant is the scalars. O f course this 
does hold when we take finite dimensional representations over C. But as soon as we 
take infinite dimensional representations a new phenomenon occurs and it is in perfect 
analogy with the unramified extensions of p -adic fields. Non trivial factors occur, they 
are commutants of representations in Hilbert space and though they have trivial center, 
they are not Mori ta equivalent to C. As we saw these factors have an invariant, which 
is called their module, very analogous to the module for local fields; this module is not 
really a subgroup of R^_, it’s a virtual subgroup of M*+ in the sense that it is a flow. 
And for factors which are approximately finite dimensional this flow turns out to give 
exactly a complete invariant of factors and all flows occur. This analogy goes quite far 
and yields a spectral interpretation of the zeros of L-functions in number theory. HI 
just refer to [10].

So, we see that noncommutative measure theory is already highly non trivial, and 
thus we have all reasons to believe that if one goes further in the natural hierarchy of 
features of a space, one will discover really interesting new phenomenas.

Measure theory is indeed a very coarse way of looking at a space, and a finer and 
finer picture is obtained by going up in the following hierarchy of points of view:

Riemannian geometry 
Differential geometry 
Topology 
Measure theory

The development of the topological ideas was prompted by the work of Israel 
Gel’fand, whose C*-algebras give the required framework for noncommutative topology. 
The two main driving forces were the Novikov conjecture on homotopy invariance of 
higher signatures of ordinary manifolds as well as the Atiyah-Singer Index theorem. It 
has led, through the work of Atiyah, Singer, Brown, Douglas, Fillmore, Miscenko and 
Kasparov [11-15] to the recognition that not only the Atiyah-Hirzebruch K-theory but 
more importantly the dual K-homology admit Hilbert space techniques and functional 
analysis as their natural framework. The cycles in the K-homology group K fX )  of a
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compact space X  are indeed given by Fredholm representations of the C*-algebra A  of 
continuous functions on X. The central tool is the Kasparov bivariant K-theory. A 
basic example of C*-algebra to which the theory applies is the group ring of a dis
crete group and restricting oneself to commutative algebras is an obviously undesirable 
assumption.

For a C*-algebra A, let Kq(A), Kx(A) be its K  theory groups. Thus K î^A) is the 
algebraic theory of the ring A  and KX{A) is the algebraic theory of the ring
A<S> C0(R) =  C0(R, A). If A —► B is a morphism of C*-algebras, then there are induced 
homomorphisms of abelian groups X{A) —> K^B). Bott periodicity provides a six term 
K  theory exact sequence for each exact sequence 0 —► J  —> A B  —> 0 of C*-algebras 
and excision shows that the K  groups involved in the exact sequence only depend on 
the respective C*-algebras. As an exercise to appreciate the power of this abstract tool 
one should for instance use the six term K  theory exact sequence to give a short proof 
of the Jordan curve theorem.

Discrete groups, Lie groups, group actions and foliations give rise through their 
convolution algebra to a canonical C*-algebra, and hence to K  theory groups. The 
analytical meaning of these K  theory groups is clear as a receptacle for indices of elliptic 
operators. However, these groups are difficult to compute. For instance, in the case of 
semi-simple Lie groups the free abelian group with one generator for each irreducible 
discrete series representation is contained in C* G where C* G is the reduced C*- 
algebra of G. Thus an explicit determination of the ^  theory in this case in particular 
involves an enumeration of the discrete series.

We introduced with P. Baum [16] a geometrically defined K  theory which specializes 
to discrete groups, Lie groups, group actions, and foliations. Its main features are 
its computability and the simplicity of its definition. In the case of semi-simple Lie 
groups it elucidates the role of the homogeneous space G jK  (K  the maximal compact 
subgroup of G) in the Atiyah-Schmid geometric construction of the discrete series 
[17]. Using elliptic operators, we constructed a natural map /i from our geometrically 
defined K  theory groups to the above analytic {i.e. C*-algebra) K  theory groups. Much 
progress has been made in the past years to determine the range of validity of the 
isomorphism between the geometrically defined K  theory groups and the above analytic 
{i.e. C*-algebra) K  theory groups. We refer to the three Bourbaki seminars [18-20] for 
an update on this topic and for a precise account of the various contributions. Among 
the most important contributions are those of Kasparov and Higson who showed that 
the conjectured isomorphism holds for amenable groups. It also holds for real semi
simple Lie groups thanks in particular to the work of A. Wassermann. Moreover the 
recent work of V. Lafforgue crossed the barrier of property T, showing that it holds 
for cocompact subgroups of rank one Lie groups and also of SL{3 , R) or of p-adic Lie 
groups. He also gave the first general conceptual proof of the isomorphism for real 
or p-adic semi-simple Lie groups. The proof of the isomorphism is certainly accessible 
for all connected locally compact groups. The proof by G. Yu of the analogue (due 
to J. Roe) of the conjecture in the context of coarse geometry for metric spaces which 
are uniformly embeddable in Hilbert space, and the work of G. Skandalis J. L. Tu,
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J. Roe and N. Higson on the groupoid case got very striking consequences such as the 
injectivity of the map /z for exact C*(T) due to Kaminker, Guentner and Ozawa, but 
recent progress due to Gromov, Higson, Lafforgue and Skandalis gives counterexamples 
to the general conjecture for locally compact groupoids for the simple reason that the 
functor G —► K{)(C*(G)) is not half exact, unlike the functor given by the geometric 
group. This makes the general problem of computing K{C*(G)) really interesting. It 
shows that besides determining the large class of locally compact groups for which the 
original conjecture is valid, one should understand how to take homological algebra 
into account to deal with the correct general formulation. It also raises many integrality 
questions in cyclic cohomology of both discrete groups and foliations since a number of 
natural cyclic cocycles take integral values on the range of the map /i from the geometric 
group to the analytic group [27].

The development of differential geometric ideas, including de Rham homology, con
nections and curvature of vector bundles, etc. . . .  took place during the eighties thanks 
to cyclic cohomology which came from two different horizons [21-25]. This led for in
stance to the proof of the Novikov conjecture for hyperbolic groups [26], but got many 
other applications. Basically, by extending the Chern-Weil characteristic classes to the 
general framework it allows for many concrete computations of differential geometric 
nature on noncommutative spaces. It also showed the depth of the relation between 
the above classification of factors and the geometry of foliations. For instance, using 
cyclic cohomology together with the following simple fact,

«A connected group can only act trivially on a homotopy 
invariant cohomology theory»,

one proves (cf. [27]) that for any codimension one foliation F  of a compact manifold 
V  with non vanishing Godbillon-Vey class one has,

(41) Mod(Af) has finite covolume in R̂ _ ,

where M  — L°° ( V, F) and a virtual subgroup of finite covolume is a flow with a finite 
invariant measure.

In order to understand what cyclic cohomology is about, it is worthwile to prove, 
as an exercise, the following simple fact:

«Let A  be an algebra and ip a trilinear form on A  such that 1) (f(aQ, ax , ^2) =  
=  <p(ax y a2 y a0) 'ia. G A. 2) ip(a0ax, a2 , a3) — (p(a0 , axa2 , a3) +  (p(aQ , ax, a2a3) — 
—p{a2aQ y ax , a2) = 0 G A. Then the scalar <pn(Ey E y E) is invariant under homo
topy for projectors (idempotents) E  G M n{A)»

(here <p has been uniquely extended to M n(A) using the trace on M n(C), i.e.
=  p  0  Trace).
This fact is not difficult to prove, the point is that a deformation of idempotents is 

always isospectral,

(42) E  =  [X, E] for some X G M n(A) .



46 A. CONNES

When we take A  = C°° (M) for a manifold M  and let

(43) p ( f , f l , f )  = ( C , f d f A d f 2) V f e A

where C is a 2-dimensional closed de Rham current, the invariant given by the lemma 
is equal to (up to normalisation)

(44) (C ,cx(E))

where cx is the first ehern class of the vector bundle E  on M  whose fiber at x G Af 
is the range of E(x) G M n(C). In this example we see that for any permutation of 
{0, 1 ,2}  one has:

(45) p ( f ° {<Si , r w  , / ct(2)) =  e(a)<p(f° , f l , f 2)

where e(cr) is the signature of the permutation. However when we extend <p to M n(A) 
as p n =  v? <S> Tr,

(46) p n(f°  ® M° , /  ® p ' ,  f 2 0  M2) = ‘p ( f , f 1, f 2)T t(p°ß lfi2)

the property (45) only survives for cyclic permutations. This is at the origin of the 
name, cyclic cohomology, given to the corresponding cohomology theory.

In the example of the noncommutative torus, the cyclic cocycle that was giving an 
integral invariant is

(47) p{b° , bl , b2) = T{b°{8,{bx)62{b2) -  Ä2(*‘)$,(**)))

where r  is the unique trace,

(48) r{b) = b00 for b =  Y ,  Km U" W m •

The pairing given by the lemma then gives the Hall conductivity when applied to 
a spectral projection of the Hamiltonian (see [38] for an account of the work of J. 
Bellissard).

We then obtain in general the beginning of a dictionary relating usual geometrical 
notions to their algebraic counterpart in such a way that the latter is meaningful in the 
general noncommutative situation.

Space Algebra

Vector bundle 

Differential form 

DeRham current

Finite projective module 

(Class of) Hochschild cycle 

(Class of) Hochschild cocycle

DeRham homology Cyclic cohomology

Chern Weil theory Pairing (K (A ) ,  HC(A))

O f course writing down such a dictionary that translates standard notions of ge
ometry in terms which do not involve commutativity, only gives a very naive idea of
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noncommutative geometry, because we already saw with measure theory that what is 
interesting is not only to translate, but to see completely new phenomenas.

For instance, unlike the de Rham cohomology, its noncommutative replacement 
which is cyclic cohomology is not graded but filtered. Also it inherits from the Chern 
character map a natural integral lattice. We shall see now that these two features play a 
basic role in the description of the natural moduli space (or more precisely, its covering 
Teichmüller space, together with a natural action of SL{2, Z) on this space) for the 
noncommutative tori T2. The discussion parallels the description of the moduli space 
of elliptic curves but we shall find that our moduli space is the boundary of the latter 
space.

We first observe that as the parameter 6 G R /Z  varies from 0 to 1 and if we follow 
up the finite projective modules H dp q we get a monodromy, using the isomorphism 
Tg ~  T2+1. The computation shows that this monodromy is given by the transformation 
[o l ] x  ^  x  + y> y  ^  y  m  terms of the (x, y) coordinates in the K  group Kq. This 
shows that in order to follow the ^-dependence of the K  group, we should consider 
the algebra A  together with a choice of isomorphism,

(49) Kq{Al) ~  Z2 , p (trivial module) =  (1 ,0) .

Exactly as the Jacobian of an elliptic curve appears as a quotient of the (1,0) part of 
the cohomology by the lattice of integral classes, we can associate canonically to A  the 
following data:

1) The ordinary two dimensional torus T =  HCtyen{A)/ K^{A) quotient of the cyclic 
homology of A  by the image of K  theory under the Chern character map.

2) The foliation F  (of the above torus) given by the natural filtration of cyclic 
homology (dual to the filtration of / /C even).

3) The transversal T  to the foliation given by the geodesic joining 0 to the class 
[1] G Kq of the trivial bundle.

It turns out that the algebra associated (as in (7)) to the foliation F, and the 
transversal T  is isomorphic to A, and that a purely geometric construction associates 
to every element a  G Kq its canonical representative from the transversal given by the 
geodesic joining 0 to a. (Elements of the algebra associated to the transversal T  are 
just matrices a (i,j)  where the indices ( i , j )  are arbitrary pairs of elements i , j  of T  
which belong to the same leaf. The algebraic rules are the same as for ordinary matrices. 
Elements of the module associated to another transversal T' are rectangular matrices, 
and the dimension of the module is the transverse measure of T'.)

This gives the correct description of the modules W q. The above is in perfect 
analogy with the isomorphism of an elliptic curve with its Jacobian. The striking 
difference is that we use the even cohomology and K  group instead of the odd ones.

It shows that, using the isomorphism p, the whole situation is described by a foliation 
dx =  Ody of R2 where the exact value of 0 (not only modulo 1) does matter now. 
Now the space of translation invariant foliations of R2 is the boundary N  of the space 
M  of translation invariant conformal structures on R2, and with Z2 C R2 a fixed lattice,
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they both inherit an action of SL(2 , Z). We now describe this action precisely in terms 
of the pair (A , p). Let g  =  ^  G SL( 2 , Z). Let £ =  Hp q where (p , q) = ± (d , —c), 
we define a new algebra A ' as the commutant of A  in E, i.e. as

(50) A ' = EndA(E) .

It turns out (this follows from Morita equivalence) that there is a canonical map 
p  from Kq{A!) to Kq(A) (obtained as a tensor product over A') and the isomorphism 
p : Kq(A') ~  Z2 is obtained by

(51) p = g o p o p .

This gives an action of SL{2 , Z) on pairs ( A , p) with irrational 0 (the new value of 
6 is (a0 +  b)/(cQ -f d ) and for rational values one has to add a point at oc).

Finally note that the above action of SL(2, Z) on the parameter 6 lies beyond the 
purely formal realm of deformation theory in which 0 is treated as a formal defor
mation parameter. This is a key point in which noncommutative geometry should be 
distinguished from formal attempts to deform standard geometry.

This is all I want to say about the soft part of differential geometry, namely the part 
which deals with external vector bundles and with Chern-Weil theory an so on and so 
forth. O f course this doesn’t touch in any way the real problem which is to find the 
framework for geometry itself.

The central notion of noncommutative geometry comes from the identification of 
the noncommutative analogue of the two basic concepts in Riemann’s formulation of 
Geometry, namely those of manifold and of infinitesimal line element. Both of these 
noncommutative analogues are of spectral nature and combine to give rise to the notion 
of spectral triple and spectral manifold, which will be described below. We shall first 
describe an operator theoretic framework for the calculus of infinitesimals which will 
provide a natural home for the line element ds.

I first have to make a little excursion, and I want it as naive as possible. I want 
to turn back to an extremely naive question about what is an infinitesimal. Let me 
first explain one answer that was proposed for this intuitive idea of infinitesimal and 
let me explain why this answer is not satisfactory and then give another answer which 
hopefully is satisfactory. So, I remember quite a long time ago to have seen an answer 
which was proposed by non standard analysis. The book I was reading was starting 
from the following problem:

You play a game of throwing darts at some target called Q (fig. 5) and the question 
which is asked is the following: what is the probability dp(x) that actually when you 
send the dart you land exactly at a given point x  G O? Then the following argument 
was given: certainly this probability dp{x) is smaller than 1/2 because you can cut the 
target into two equal halves, only one of which contains x. For the same reason dp{x) 
is smaller than 1/4, and so on and so forth. So what you find out is that dp{x) is 
smaller than any positive real number e. On the other hand, if you give the answer 
that dp{x) is 0, this is not really satisfactory, because whenever you send the dart you 
will land somewhere. So now, if you ask a mathematician about this naive question,
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Fig. 5. -  This drawing is borrowed from the lecture by David Mumford in the same volume.

he might very well answer: well, dp(x) is a 2-form, or it’s a measure, or something 
like that. But then you can try to ask him more precise questions, for instance «what 
is the exponential of — ̂ ) » -  And then it will be hard for him to give a satisfactory 
answer, because you know that the Taylor expansion of this function is just flat. Now 
this book claimed to give an answer, and it was what is called a non standard number. 
So I worked on this theory for some time, learning some logics, until eventually I 
realized there was a very bad obstruction preventing one to get concrete answers. It 
is the following: it’s a little lemma that one can easily prove, that if you are given a 
noil standard number you can canonically produce a subset of the interval which is 
not Lebesgue measurable. Now we know from logic (from results of Paul Cohen and 
Solovay) that it will forever be impossible to produce explicitely a subset of the real 
numbers, of the interval [0, 1], say, that is not Lebesgue measurable. So, what this 
says is that for instance in this example, nobody will actually be able to name a non 
standard number. A nonstandard number is some sort of chimera which is impossible 
to grasp and certainly not a concrete object. In fact when you look at nonstandard 
analysis you find out that except for the use of the ultraproducts, which is very nice, 
it just shifts the order in logic by one step; it’s not doing much more. Now, what I 
want to explain is that to this very naive question there is a very beautiful and simple 
answer which is provided by quantum mechanics. This answer will be obtained just 
by going through the usual dictionary of quantum mechanics, but looking at it more 
closely. So, let us thus look at the first two lines of the following dictionary which
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translates classical notions into the language of operators in the Hilbert space H: 

Complex variable Operator in H

Real variable Selfadjoint operator

Infinitesimal Compact operator

Infinitesimal of order a

Integral of an infinitesimal 

of order 1

Compact operator with characteristic values 
(in satisfying (in = 0(n~a) , n —* oo

-J- T  = Coefficient of logarithmic 

divergence in the trace of T .

We find that a variable (variable in the intuitive sense) should be thought of as an 
operator in Hilbert space. Thus the set of values of the variable is the spectrum of the 
operator, and the number of times a value is reached is the spectral multiplicity and 
so on and so forth. A real variable should be thought of as a self-adjoint operator. 
Thus for instance a self-adjoint operator has only real spectrum and we can act on it by 
any measurable function. Now you can act on complex variables only by holomorphic 
functions, of course, and this is similar, this is exactly what happens for operators. Well, 
we have known that for years and these two lines are completely standard. Now there 
is a third line which I want to look at, which is that there is in this dictionary a perfect 
place for what is an infinitesimal, namely for something which is smaller than e for any 
e, without being zero. O f course if you require that the operator norm is smaller than e 
for any e, you’ll get nowhere. But one can be more subtle and ask that for any e positive 
you can condition the operator by a finite number of linear conditions, so that you drop 
its norm to less than e. This is a well known characterization of the compact operators 
in Hilbert space and they are the obvious candidates for infinitesimals. The basic rules 
of infinitesimals are easy to check, for instance if you add two compact operators, it 
is still compact, if you multiply by something bounded it is still compact, and so on, 
it’s an ideal. Now, there is also an obvious notion of order for our infinitesimals. The 
size of the infinitesimal T  £ 1C is governed by the order of decay of the sequence of 
characteristic values fin — /in(T) as n —> oo. In particular, for all real positive a  the 
following condition defines infinitesimals of order a:

(52) ^ n(T) = 0(n~a) when n —► oo

(i.e. there exists C >  0 such that lin{T) < CrTOL V n > 1). Infinitesimals of order a  
also form a two-sided ideal and moreover,

(53) Tj of order a  ■ => Tx T2 of order a 1 +  a 2 .

Now let me stop at this point and say one thing. Since the size of an infinitesimal 
is measured by the sequence jin —► 0 it might seem that one does not need the operator 
formalism at all, and that it would be enough to replace the ideal 1C in £(7Y) by the ideal
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c0(N) of sequences converging to zero in the algebra £°°(N) of bounded sequences. A 
variable would just be a bounded sequence, and an infinitesimal a sequence /j,n, n n 0. 
However, this commutative version does not allow for the existence of variables with 
range a continuum since all elements of £°°(N) have a point spectrum and a discrete 
spectral measure. Thus, this is obviously wrong, because then you exclude variables 
which have continuous spectrum, you exclude variable which have Lebesgue spectrum. 
And it turns out that it is only because of non commutativity that you can have 
coexistence of infinitesimals with variables which have continuous spectrum. So this 
is exactly the place where this non commutativity comes as a great help. As we shall 
see shortly, it is precisely this lack of commutativity between the line element and the 
coordinates on a space that will provide the measurement of distances.

Now, the differential I won’t talk about, but another key new ingredient in this 
dictionary is the integral f  which is slightly tricky to define. It is obtained by the 
following analysis, mainly due to Dixmier [30], of the logarithmic divergence of the 
partial traces

N —l

(54) T ra c e u r )  =  ] £  M„( U  , T >  0 .
0

(In fact, it is useful to define TraceA(T) for any positive real A >  0 by piecewise affine 
interpolation for noninteger A).

Define for all order 1 operators T  > 0

(55)
_  1 f A T r a c e y )  djx

Eg A Je log/* n

which is the Cesato mean of the function ra^ j p  over the scaling group R^_. 
For T  > 0, an infinitesimal of order 1, one has

(56) TraceA(T) < C log A

so that t a ( T) is bounded. The essential property is the following asymptotic additivity 
of the coefficient ta (T) of the logarithmic divergence (56):

(57) IrA(r ,  +  T2) -  t a (71) -  t a ( 72)| < 3C 

for T. > 0.
J ~

An easy consequence of (57) is that any limit point r  of the nonlinear functionals 
r A for A —> oo defines a positive and linear trace on the two-sided ideal of infinitesimals 
of order 1.

In practice the choice of the limit point r  is irrelevant because in all important 
examples T  is a measurable operator, i.e.\

($8) ta (T) converges when A —» oo .
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Thus the value r{T)  is independent of the choice of the limit point r  and is denoted

(59) f  T .

The first interesting example is provided by pseudodifferential operators T  on a 
differentiable manifold M . When T  is of order 1 in the above sense, it is measurable 
and f  T  is the non-commutative residue of T  [31]. It has a local expression in terms of 
the distribution kernel k(x, y), x j G  M . For T  of order 1 the kernel k(x ,y )  diverges 
logarithmically near the diagonal,

(60) k{x,y) =  — a(x) log \x — y\ +  0(1) (for y —> x)

where a(x) is a 1-density independent of the choice of Riemannian distance \x — y\. 
Then one has (up to normalization),

(61) - f T = [  *(*)•
J JM

The right hand side of this formula makes sense for all pseudodifferential operators 
(cf. [31]) since one can easily see that the kernel of such an operator is asymptotically 
of the form

(62) k(x, y) =  ak(x, x — y) — a(x) log \x — y\ +  0(1)

where ak(x, £) is homogeneous of degree — k in £, and the 1-density a(x) is defined 
intrinsically since the logarithm does not mix with rational terms under a change of 
local coordinates.

The same principle of extension of f  to infinitesimals of order <  1 works for 
hypoelliptic operators and more generally for spectral triples whose dimension spectrum 
is simple, as we shall see below.

This framework gives a natural home for the analogue of the infinitesimal line 
element ds of Riemannian geometry, but we need first to exhibit its compatibility with 
the notion of manifold. So far we just described the framework to think about these 
problems. For instance when we go back to our initial naive question about the target 
and the darts, we find that quantum mechanics gives us an obvious infinitesimal which 
answers the question: it is the inverse of the Dirichlet Laplacian for the domain fÌ. 
Thus there is now a clear meaning for the exponential of ^j-, that’s the well known 
heat kernel which is an infinitesimal of arbitrarily large order as we expected from the 
Taylor expansion.

Frpm the H. Weyl theorem on the asymptotic behavior of eigenvalues of A it follows 
that dp is of order 1, and that given a function f  on Vt the product f  dp is measurable, 
while

(63) f  dp = J  f ( x l , x2) dxx A dx2

gives the ordinary integral of f  with respect to the measure given by the area of the 
target:
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With this tool, with this understanding of the analogue of the infinitesimal calculus, 
we are now ready to talk about the line element ds but we still need first to answer the 
question: what is a manifold?

In ordinary geometry of course you can give a manifold by a cooking recipe, by 
charts and local diffeomorphisms, and one could be tempted to propose an analoguous 
cooking recipe in the noncommutative case. This is pretty much what is achieved by 
the general construction of the algebras of foliations and it is a good test of any general 
idea that it should at least cover that large class of examples.

But at a more conceptual level, it was recognized long ago by geometers that the 
main quality of the homotopy type of an oriented manifold, is to satisfy Poincaré duality 
not only in ordinary homology but also in K-homology. Poincaré duality in ordinary 
homology is not sufficient to describe homotopy type of manifolds [32] but D. Sullivan 
[33] showed (in the simply connected PL case of dimension > 5 ignoring 2-torsion) 
that it is sufficient to replace ordinary homology by iTO-homology.

The characteristic property of differentiable manifolds which is carried over to the 
noncommutative case is Poincaré duality in K-homology [53].

Moreover, as we saw above, K-homology admits a fairly simple definition in terms 
of Hilbert space and Fredholm representations of algebras.

In the general framework of Noncommutative Geometry the confluence of the 
Hilbert space incarnation of the two notions of metric and fundamental class for a 
manifold led very naturally to define a geometric space as given by a spectral triple:

(64) (A , H , D)

where A  is an involutive algebra of operators in a Hilbert space 7i and D  is a selfadjoint 
operator on 7i. The involutive algebra A  corresponds to a given space M  like in the 
classical duality «Space Algebra» in algebraic geometry. The infinitesimal line element

as the inverse of the Dirac opera- 
as a propagator, so that the above 
using the notations of physicists for

The significance of D  is twofold. On the one hand it defines the metric by the above 
equation, on the other hand its homotopy class represents the K-homology fundamental 
class of the space under consideration. The exact measurement of distances is performed 
as follows, instead of measuring distances between points using the standard formula

d{xy y) — Inf{Length 7 I7 is a path between x  and y}

in Riemannian geometry is given by the equality

(65) d s = \ / D ,

which expresses the infinitesimal line element ds 
tor D , hence under suitable boundary conditions 
equation can be suggestively symbolised as follows, 
propagators in Feynman graphs,

ds= *---- x

(67)
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where

(68) Length 7 =  / ds ,
J

we measure distances between states <£>, ijj on Ä  by a dual formula. This dual formula 
involves sup instead of i nf  and does not use paths in the space

(69) d{(p, f )  =  Sup{\(f(a) -  ^{d)\ ; æ G 4̂ , ||[Z), a]\\ < 1} .

A state, is a normalized positive linear form on A  such that (p( 1) =  1,

(70) (f : Ä  C , <p(a*a) > 0 , V a e  Ä  , <p( 1) =  1.

In the commutative case the points of the space coincide with the characters of the 
algebra or equivalently with its pure states {i.e. the extreme points of the convex 
compact set of states). As it should, this formula gives the geodesic distance in the 
Riemannian case. The spectral triple ( A > H , D) associated to a compact Riemannian 
manifold Af, A"-oriented by a spin structure, is given by the representation

(71) ( fO(x)  = f i x )  a x )  V X G M  , f e A  , t e n

of the algebra A  of functions on M  in the Hilbert space

(72) H  =  L2(M, S)

of square integrable sections of the spinor bundle. The operator D  is the Dirac operator 
(cf. [34]). The commutator [D, f ] ,  for f  e A  =  C°°(M) is the Clifford multiplication 
by the gradient V /  and its operator norm is:

(73) \\[D>f]\\ = SupxeM ||V /(*)|| =  Lipschitz norm / .

Let x , y  G M  and (p, ^  be the corresponding characters: <p(f) =f ( x ) ,  îp(f) =f ( y )  for 
all f  G A. Then formula (69) gives the same result as formula (67), i.e. it gives the 
geodesic distance between x  and y.

Unlike the formula (67) the dual formula (69) makes sense in general, namely, for 
example for discrete spaces and even for totally disconnected spaces.

The second role of the operator D  is to define the fundamental class of the space 
X  in K-homology, according to the following table,

Space X  Algebra A

K f X )  Stable homotopy class of the spectral 
triple ( A , H ,  D)

Kq(X) Stable homotopy class of Z /2  graded 
spectral triple

{i.e. for Kq we suppose that H  is Z/2-graded by 7, where 7 =  7*, 72 =  1 and 
'ya =  ay V a e A, 7 D = —Df) .

We can make a few test of this general framework for noncommutative geome
try. Thus we can check for instance that we easily recover the volume form of the
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Riemannian metric by the equality

(74) { f \ d s \ "  = [  f y / g  d nx
J JMn

but the first interesting point is that besides this coherence with the usual computations 
there are new simple questions we can ask now such as «what is the two-dimensional 
measure of a four manifold» in other words «what is its area?». Thus one should 
compute

(75) J  ds2 .

It is obvious from invariant theory that this should be proportional to the Hilbert- 
Einstein action but doing the direct computation is a worthwile exercise (cf. [51, 52]), 
the exact result being

where as above dv =  yfg dAx  is the volume form, ds =  D~l the length element, i.e. 
the inverse of the Dirac operator and r is the scalar curvature.

There is an equally simple formula for the Yang-Mills action in general. The ana
logue of the Yang-Mills action functional and the classification of Yang-Mills connec
tions on the noncommutative tori were developped in [60], with the primary goal of 
finding a «manifold shadow» for these noncommutative spaces. These moduli spaces 
turned out indeed to fit this purpose perfectly, allowing for instance to find the usual 
Riemannian space of gauge equivalence classes of Yang-Mills connections as an invariant 
of the noncommutative metric. We refer to [38] for the construction of the metrics on 
noncommutative tori from the conceptual point of view and to [50] for the check that 
all natural axioms of NCG are fulfilled in that case.

Now this is rather simple still. The power of the general theory comes from deeper 
general theorems such as the local computation of the analogue of Pontrjagin classes:
i.e. of the components of the cyclic cocycle which is the Chern character of the K- 
homology class of D  and which make sense in general. This result allows, using the 
infinitesimal calculus, to go from local to global in the general framework of spectral 
triples (A yTL, D).

The Fredholm index of the operator D  determines (we only look at the odd case for 
sirriplicity but there are similar formulas in the even case) an additive map KX(A) — 
given by the equality

(77) <*>([«]) =  Index(PuP) , u G GLX(A)

where P is the projector P = Eti:, F  =  Sign (D).
It is an easy fact that this map is computed by the pairing of KX(A) with the 

following cyclic cocycle

(78) r(a° . . . .  , an) = Trace (a°[F, a1] . . .  [F, an}) V d  g A
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where F  =  Sign D  and we assume that the dimension p  of our space is finite, which 
means that (D  +  i)~l is of order l /p,  also n > p  is an odd integer. There are similar 
formulas involving the grading 7 in the even case, and it is quite satisfactory [35, 
36] that both cyclic cohomology and the Chern character formula adapt to the infinite 
dimensional case in which the only hypothesis is that exp(—D2) is a trace class operator.

The cocycle r  is however nonlocal in general because the formula (78) involves the 
ordinary trace instead of the local trace f  and it is crucial to obtain a local form of the 
above cocycle.

This problem is solved by a general theorem [37] which we now describe. We make 
the following regularity hypothesis on (A > 7i, D)

(79) a and [D , a\ G fi Dom ôk , V a G A

where ö is the derivation ö(T)  =  [|Z)|, T] for any operator T.
We let B denote the algebra generated by Sk(a), Sk([D, a]). The usual notion of 

dimension of a space is replaced by the dimension spectrum which is a subset of C. The 
precise definition of the dimension spectrum is the subset S  c C  of singularities of the 
analytic functions

(80) Ci,(z ) =  Trace(b\D\~z) Re z >  p  , b e B .

The dimension spectrum of an ordinary manifold M  is the set { 0 ,1 , . . .  , «}, n — 
— dim M;  it is simple. Multiplicities appear for singular manifolds. Cantor sets provide 
examples of complex points £ ^ R in the dimension spectrum.

We assume that E is discrete and simple, Le. that Q  can be extended to C /E  with 
simple poles in E.

We refer to [37] for the case of a spectrum with multiplicities. Let ( A , H , D) be 
a spectral triple satisfying the hypothesis (79) and (80). The local index theorem is the 
following [37]:

1. The equality

f p  =  Resz=0 Trace (P\D\~Z)

defines a trace on the algebra generated by A , [D, A] and \D\Z, where z  G C.
2. There is only a finite number of non-zero terms in the following formula which 

defines the odd components (</?Jw=1 3 of a cocycle in the bicomplex (b, B) o f A,

y n{a°. . . .  , a n) = J 2  cn A  a^ D > alf l) *ni(kn) \D \-n~W  V A i
k J

where the following notations are used: =  V k(T)  and V(T) =  D2 T  — TD2, k
is a multi-index, \k\ = k-̂  + . . .  kn,

( - i f  ' / 2 i{kl \ . .. k j y 1 {{kx + \ ) . . . { k l + k2 + .. .  + kn + n))-1 r ( i* i  + 1 ) .



A LECTURE ON NONCOMMUTATIVE GEOMETRY 57

3. The pairing of the cyclic cohomology class (y? ) G HC*(A) with KX{A) gives the
Fredholm index of D  with coefficients in ^(*4).

In general of course the explicit computation of this cocycle is extremely difficult to 
perform: but what is however very important is that all the terms of this formula are 
local, because the integral f  is coming from the logarithmic divergency, and whenever 
you compute, it always gives local contributions. The first test is the computation of 
these Pontrjagin classes in the case of foliations which as explained in [37] do fit with 
our general framework. It turned out that the computation was quite complicated even 
in the case of codimension 1 foliations: there were innumerable terms to be computed; 
this could be done by hand, like 3 weeks of hard work, but of course it was hopeless 
to try to proceed by brute force for the general case. Now the answer was found for 
the general case [39], but quite surprisingly it generated a Hopf algebra which only 
depends on the codimension of the foliation and which organizes the computation. It 
also dictated the correct generalization of cyclic cohomology for Hopf algebras [41]. 
Now one of the most interesting recent progress is that this Hopf algebra turns out 
to be tightly related with another Hopf algebra, discovered by Dirk Kreimer, which 
organizes the computation of renormalization in quantum field theory.

Dirk Kreimer showed [42-45] that for any quantum field theory, the combinatorics 
of Feynman graphs is governed by a Hopf algebra 7~i whose antipode involves the same 
algebraic operations as in the Bogoliubov-Parasiuk-Hepp recursion and the Zimmermann 
forest formula.

His Hopf algebra is commutative as an algebra and we showed in [46] that it is the 
dual Hopf algebra of the envelopping algebra of a Lie algebra G_ whose basis is labelled 
by the one particle irreducible Feynman graphs. The Lie bracket of two such graphs is 
computed from insertions of one graph in the other and vice versa. The corresponding 
Lie group G is the group of characters of TL.

We also showed that, using dimensional regularization, the bare (unrenormalized) 
theory gives rise to a loop

(81) 70s) G G , z  e C

where C is a small circle of complex dimensions around the integer dimension D  of 
space-time. Our main result [47, 48] which relies on all the previous work of Dirk is 
that the renormalized theory is just the evaluation at £ =  D  of the holomorphic part 
7+ of the Birkhoff decomposition of 7.

The Birkhoff decomposition is the factorization

(82) 7 (2) =  7 7+U) z e  C

where we let C C / j (C) be a smooth simple curve, C  the component of the comple
ment of C containing 00 ^  C and C+ the other component. Both 7 and are loops 
with values in G,

7 (s) g G V 2 G C
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and 7± are boundary values of holomorphic maps (still denoted by the same symbol)

(83) 7± : C ± - > G .

The normalization condition 7_(oo) =  1 ensures that, if it exists, the decomposition 
(82) is unique (under suitable regularity conditions).

When G is a simply connected nilpotent complex Lie group the existence (and 
uniqueness) of the Birkhoff decomposition (82) is valid for any 7. When the loop 
7 : C —> G extends to a holomorphic loop: C+ G, the Birkhoff decomposition is 
given by 7+ =  7, 7_ =  1. In general, for z  £ C+ the evaluation,

(84) 7 -+ 7+(*) € G

is a natural principle to extract a finite value from the singular expression 7 (z). This 
extraction of finite values coincides with the removal of the pole part when G is the 
additive group C of complex numbers and the loop 7 is meromorphic inside C+ with 
£ as its only singularity.

As I mentioned earlier our main result is that the renormalized theory is just the 
evaluation at z  =  D  of the holomorphic part 7+ of the Birkhoff decomposition of the 
loop given by the unrenormalized theory 7.

We showed that the group G is a semi-direct product of an easily understood abelian 
group by a highly non-trivial group closely tied up with groups of diffeomorphisms. 
In fact the relation that we uncovered in [49] between the Hopf algebra of Feynman 
graphs and the Hopf algebra of coordinates on the group of formal diffeomorphisms 
of the dimensionless coupling constants of the theory allows to formulate the following 
corollary which for simplicity deals with the case of a single dimensionless coupling 
constant.

Let the unrenormalized effective coupling constant g^fe) he viewed as a formal power series 
in g and let g ^ s )  — (s) (^ff (e))-1 be its (oppositej Birkhoff decomposition in the group
o f formal diffeomorphisms. Then the loop geff (e) is the bare coupling constant and (0) is 
the renormalized effective coupling

Finally there is yet another very important test of our general framework of geometry 
which is its compatibility with what we know of space-time. What we have done so 
far is to stretch the usual framework of ordinary geometry beyond its commutative 
restrictions (set theoretic restrictions) and of course now it’s not perhaps a bad idea to 
test it with what we know about physics and to try to find a better model of space-time 
within this new framework. The best way is to start with the hard core information 
one has from physics and that can be summarized by a Lagrangian. This Lagrangian is 
the Einstein Lagrangian plus the standard model Lagrangian. I am not going to write 
it down, it’s a very complicated expression since just the standard model Lagrangian 
comprises five types of terms. But one can start understanding something by looking 
at the symmetry group of this Lagrangian. Now, if it were just the Einstein theory, 
the symmetry group of the Lagrangian would just be, by the equivalence principle,
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the diffeomorphism group of the space-time manifold. But because of the standard 
model piece the symmetry group of this Lagrangian is not just the diffeomorphism 
group, because the gauge theory has another huge symmetry group which is the group 
of maps from the manifold to the small gauge group, namely Ux x SU2 x su} as 
far as we know. Thus, the symmetry group G of the full Lagrangian is neither the 
diffeomorphism group nor the group of gauge transformations of second kind nor their 
product, but it is their semi-direct product. It is exactly like what happens with the 
Poincaré group where you have translations and Lorentz transformations, so it is the 
semi-direct product of these two subgroups. Now we can ask a very simple question: 
would there be some space X  so that this group G would be equal to Diff(X)? If such 
a space would exist, then we would have some chance to actually geometrize completely 
the theory, namely to be able to say that it’s pure gravity on the space X . Now, if 
you look for the space X  among ordinary manifolds, you have no chance since by a 
result of John Mather the diffeomorphism group of a (connected) manifold is a simple 
group. A simple group cannot have a nontrivial normal subgroup, so you cannot have 
this structure of semi-direct product.

However, we can use our dictionary, and in this dictionary if we browse through it, 
we find that what corresponds to diffeomorphisms for a non commutative space is just 
the group Aut+(.4) of automorphisms of the algebra of coordinates A , which preserve 
the fundamental class in K-homology, i.e. the automorphisms a  of the involutive 
algebra A, which are implemented by a unitary operator U  in H  commuting with the 
real structure J  [53]

a(x) — U x U~l V x E A  .

Now there is a beautiful fact which is that when an algebra is not commutative, then 
among its automorphisms there are very trivial ones, there are automorphisms which 
are there for free, I mean the inner ones, which associate to an element x of the algebra 
the element uxu~l . O f course uxu~l is not, in general equal to x because the algebra 
is not commutative, and these automorphisms form a normal subgroup of the group of 
automorphisms. Thus you see that the group Aut+(*4) has the same type of structure, 
namely it has a normal subgroup of internal automorphisms and it has a quotient. Now 
it turns out that there is one very natural non commutative algebra A  whose group 
of internal automorphisms corresponds to the group of gauge transformations and the 
quotient Aut+ {A)/ Int(*4) corresponds exactly to diffeomorphisms. It is amusing that 
the physics vocabulary is actually the same as the mathematical vocabulary. Namely in 
physics you talk about internal symmetries and in mathematics you talk about inner 
automorphisms, you could call them internal automorphisms. Now the corresponding 
space is a product M  x F  of an ordinary manifold M  by a finite noncommutative 
space F , The corresponding algebra A F is the direct sum of the algebras C, H (the 
quaternions), and M3(C) of 3 x 3 complex matrices.

The algebra A F corresponds to a finite space where the standard model fermions and 
the Yukawa parameters (masses of fermions and mixing matrix of Kobayashi Maskawa) 
determine the spectral geometry in the following manner. The Hilbert space is finite-
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dimensional and admits the set of elementary fermions as a basis. For example for the 
first generation of quarks, this set is

( 8 5 )  y Hg > ^  ) ^R y ^  ^  R * ^L, * ^ R  *

The algebra A F admits a natural representation in 7i F (see [53]) and the Yukawa 
coupling matrix Y  determines the operator D.

The detailed structure of Y  (and in particular the fact that color is not broken) 
allows to check the axioms of noncommutative geometry.

The next step consists in the computation of internal deformations of the product 
geometry M  x F  where M  is a 4-dimensional Riemannian spin manifold. The com
putation gives the standard model gauge bosons 7 , W ± , Z , the eight gluons and the 
Higgs fields ip with accurate quantum numbers.

Let us explain how internal deformations of the geometry arise in the general non- 
commutative case. Parallel to the normal subgroup Int A  C Aut+ A  of inner automor
phisms of A,

(86) a( f )  = ufu V f  g A

where u is a unitary element of A  (i.e. uu = u* u = 1), there exists a natural foliation 
of the space of spectral geometries on A  by equivalence classes of inner deformations 
of a given geometry. To understand how they arise we need to understand how to 
transfer a given spectral geometry to a Morita equivalent algebra. Given a spectral triple 
(A>H y D) and the Morita equivalence [54] between A  and an algebra B where

(87) B =  End^(£)

where 8 is a finite, projective, hermitian right ^.-module, one gets a spectral triple on 
B by the choice of a hermitian connection on 8. Such a connection V is a linear map 
V : 8 —> 8 satisfying the rules [38]

(88) V(£a) = (V 0 a  + t ® d a  V £ G 8 , a £ A

(89) (£, V77) -  (V£, rj) = d£ , r j )  V £,  rj e 8

where da — [D, a] and where C C(H) is the ^4-bimodule of operators of the form

(90) A = Y a i[ D, b i] , ai>bi e A .

Any algebra A  is Morita equivalent to itself (with 8 =  A) and when one applies the 
above construction in the above context one gets the inner deformations of the spectral 
geometry.

Such a deformation is obtained by the following formula (with suitable signs de
pending on the dimension mod 8) without modifying neither the representation of A  
in H  nor the anti-linear isometry /

D D  +  A +  JA J-1(91)
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where A  =  A* is an arbitrary selfadjoint operator of the form (90). The action of the 
group Int(*4) on the spectral geometries is simply the following gauge transformation 
of A

(92) 7 u(A) = u[D, u*] T  uAu .

The required unitary equivalence is implemented by the following representation of 
the unitary group of A  in H,

(93) u —>ujuj~l .

The transformation (91) is the identity in the usual Riemannian case. To get a 
nontrivial example it suffices to consider the product of a Riemannian triple by the 
unique spectral geometry on the finite-dimensional algebra A F = M N(C) of N  x N  
matrices on C, TV > 2. One then has A  = C°° (M) 0  A F, Int(*4) =  C°°(M , PSU(N))  
and inner deformations of the geometry are parameterized by the gauge potentials for 
the gauge theory of the group SU(N).  The space of pure states of the algebra A,  P(A.), 
is the product P =  M  x PN_l (C) and the metric on P(A.) determined by the formula 
(69) depends on the gauge potential A. It coincide with the Carnot metric [33] on 
P defined by the horizontal distribution given by the connection associated to A. The 
group Aut+(*4) is the following semi-direct product

(94) Aut+U ) = ^ x D i f f f (M)

of the local gauge transformation group Int(^4) by the group of diffeomorphisms.
Now coming back to space-time the question that comes about is how do you 

recover the original action functional which contained both the Einstein-Hilbert term 
as well as the standard model? The answer is very simple: the Fermionic part of this 
action is there from the start and one recovers the bosonic part as follows. Both the 
Hilbert-Einstein action functional for the Riemannian metric, the Yang-Mills action for 
the vector potentials, the self interaction and the minimal coupling for the Higgs fields 
all appear with the correct signs in the asymptotic expansion for large A of the number 
N(A)  of eigenvalues of D  which are < A (cf. [56]),

(95) N(A) = # eigenvalues of D  in [—A, A].

This step function N(A)  is the superposition of two terms,

N (  A) =  (N(A)) +  7Vosc(A).

The oscillatory part A^sc(A) is the same as for a random matrix, governed by the 
statistic dictated by the symmetries of the system and does not concern us here. The 
average part (N(A))  is computed by a semiclassical approximation from local expressions 
involving the familiar heat equation expansion and delivers the correct terms. Other 
nonzero terms in the asymptotic expansion are cosmological, Weyl gravity and topolog
ical terms. We showed in [62] that if one studies natural presentations of the algebra 
generated by A  and D  one naturally gets only metrics with a fixed volume form so that 
the bothering cosmological term does not enter in the variational equations associated
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to the spectral action (N(A)). It is tempting to speculate that the phenomenological 
Lagrangian of physics, combining matter and gravity appears from the solution of an 
extremely simple operator theoretic equation along the lines described in [62]. As a 
starting point for such investigations see [57].
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