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M ich el  T a l a g r a n d

SPIN GLASSES: A NEW  DIRECTION FOR PROBABILITY THEORY?

A bstract. —  Physicists have proposed a wealth o f new ideas concerning the collective behavior o f large 
families o f random variables, in which they have discovered the emergence of new types o f order. The quest 
for mathematically rigorous proofs o f their conjectures is likely to challenge and stimulate probabilists for 
years to come.
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1. In t r o d u c t io n

Independence is a fundamental concept of probability theory. A random event is 
independent of a collection of other random events if its outcome is not influenced 
by the outcome of the events of this collection. We all agree that the temperature in 
Paris has no measurable influence on the outcome of the Ohio lottery. Probabilists 
(but possibly not all gamblers) also believe that one does not increase ones chances 
of winning this lottery by buying a ticket from a store that recently sold a winning 
ticket. (Actually probabilists recommend overall not to invest more than a tiny fraction 
of one’s assets in lottery tickets). Independence, however important, is the exception 
rather than the rule: the outcome of future events is often influenced by the outcome 
of past events. The closing value of the Dow Jones index is not independent of 
its closing value the day before. In many situations, events occur at different times, 
and we consider them with the natural order of their occurrences. This gives rise to 
the idea of stochastic processes, the mainstay of Probability Theory. Although many 
different classes of stochastic processes have been studied, their mathematical structure 
almost always makes essential use of the order in which events occur. For example, 
particularly successful is the idea of Markov processes, where all the dependence of 
the future from the past is only through the present. There are however important 
cases where the events are not naturally ordered, and it is much less clear what are the 
important structures in such cases. Somewhat separate from the issue of a natural order 
on the events, is the situation o f very complicated dependence. Consider for example 
a complex system (such as the space shuttle) that can be in a first approximation 
considered as being made from many subsystems. Each of the subsystems has a certain 
probability of failure, and these probabilities are not independent. We are interested in 
the probability of failure of the entire system, failure that occurs when certain subsets 
of subsystems fail. How do we model such a situation and estimate the probability of 
failure of the entire system? The unfortunate truth is that this is very difficult, and 
that we are not very good at it. The estimates of a major failure in a space shuttle 
launch were revised from 1 /300000 to 1 /300  after the Challenger accident, figures that
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reflect the fact that these estimates contain more guesswork than hard science. (It is 
a sobering thought that the estimates of a major accident in a nuclear plant are not 
likely to be more reliable. Yet these estimates greatly influence decisions concerning 
these plants). A natural first step towards the understanding of the behavior of large 
families of random variables is the study of the case where the correlation structure 
of the family is in a sense, very regular, yet is distinctively different from the sort of 
patterns naturally associated with an ordering. This paper pertains to that direction of 
research.

A central theme of Probability Theory is the emergence of simple patterns (collective 
behavior) from disorder, a theme that will also be prominent here. Best known is the 
Law of Large Numbers. It is very unlikely that by throwing a large number N  of fair 
coins, the number X  of heads that come up is very different from N /2.  In fact much 
more is true. One has to be really unlucky to have \X — N/2\  >  100\/7V (the odds 
are less than 1 in IO8000). This example is a very special case of «the concentration of 
measure phenomenon». Although the concentration of measure phenomenon is not the 
topic of the present paper, we must at least mention this idea (which will be ubiquitous 
here). It has been a driving force of part of analysis and probability over the last 
decade, in particular under the influence of Vitali Milman [17, 18]. In probability 
[22, 23], this idea asserts (in the form of certain inequalities), that any well-behaved 
function of many, say N ,  probabilistically independent random variables, has small 
fluctuations provided its values do not depend too much upon any of these variables. 
This is a particularly strong type of simple pattern. Concentration of measure has the 
advantage that it applies even to situations where the function is very complicated, such 
as the solution of a stochastic optimization problem, and where it is otherwise very 
hard to say anything at all. O f course, in the statement above, what really matters 
is what is not said, the precise definition of «well-behaved» and «small fluctuations». 
Indeed, and even though this could look surprising at first sight, any random variable, 
at least in principle, can be approximated well by a function of the outcome of flipping 
N  fair coins (with arbitrarily good accuracy as N  becomes large), and certainly not 
every random variable has small fluctuations. Remarkably, the information brought by 
concentration of measure is still of interest even when N  is very large, and in fact 
sometimes does not depend at all of the value of N ,  a very precious quality in our 
area of increasing computer power that makes really large problems relevant. Another 
very noticeable feature of this theory is that all that is required to prove and formulate 
these inequalities was probably known around 1930; yet it took another sixty years 
to elaborate the underlying concepts. Abstractions do require a very long gestation 
time.

Now we formulate more precisely the theme of this paper: the emergence of col
lective behavior in large correlated families of random variables. We will consider cases 
where the correlation structure is very regular, but is in some (rather imprecise) sense 
«high dimensional». Two distinct points of view of probability theory are the study 
of «typical outcomes» and of «rare outcomes». Our topic will include a bit of both. 
We will consider a typical realization of our large family of random variables, giving us
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a large family of numbers. We will be interested in the largest (or the «few largest») 
element(s) of this family.

After these general considerations that attempted to provide some broad perspec
tive for our topic, as seen from the point of view of probability theory, let us turn 
to a more specific discussion. The words «spin glasses» refer to a class of alloys that 
display unconventional magnetic behavior at low temperature. A typical example is a 
mixture of 95% gold and 5% iron. In this alloy, only the iron atoms have magnetic 
properties. The distances between an iron atom and its closest neighbors are somewhat 
random, due to the dilution among the atoms of gold. It is believed that this ran
domness is at the root of the strange magnetic behavior. This explains the link with 
probability theory. The positions of the iron atoms are disordered, but this disorder 
does not evolve, it is «frozen» or, more accurately, «quenched» as physicists say. This 
situation of «quenched disorder» is typical o f glasses. Theoretical physicists desired to 
find models that would explain the strange behavior of these alloys, at least qualitatively, 
and would help to understand its causes. Any realistic model being too complicated 
for theoretical analysis, they turned towards simplified models. These models are rather 
simple mathematical objects. Yet the physicists predict that they have a very rich be
havior, a situation of considerable interest. The understanding of this behavior, even 
by the mathematically non-rigorous methods of the physicists, required considerable 
ingenuity and the invention of a number of new concepts. These new concepts seem 
relevant to a number of purely mathematical questions. We will describe in detail in 
Section 2 some of these questions, which are particularly natural and simple. Hav
ing realized the importance of their discoveries, M. Mézard, G. Parisi and M. Virasiro 
wrote the brilliant book Spin Glass Theory and Beyond [16]. A striking feature of this 
book is that it studies purely mathematical objects and problems in the language and 
with the methods of theoretical physics. It contains no mathematical proofs, and it is 
not obvious at all how even to formulate mathematically many of the statements made 
there. Both physicists and mathematicians have now written hundreds of pages about 
models for spin glasses, but the questions treated with great efforts by the mathemati
cians are at the very most the object of a few introductory comments in the physi
cist’s work. Physicists consider this topic as well understood. Mathematicians wonder 
whether they will ever be able to provide rigorous proofs of the main predictions. This 
paradoxical situation is the object of Section 4, where we will comment on the differ
ent meaning mathematicians and physicists give to the word «understanding». In the 
subsequent sections, we will try to explain a few of the main ideas while attempting 
to avoid anything technical. A more detailed account can be found in [33, 34].

2 . T hree  g o o d  problems

In this section we state three innocent looking but very difficult problems. These are 
examples of important questions which deserve more attention than they are currently 
getting. We have striven to describe these problems in simple terms. We have added 
a few observations which could help the mathematically inclined reader to get a better
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focus, but which might puzzle others. Some of our comments might be lost on a reader 
who has forgotten the mathematical definition of covariance, or what is the normal law 
(ever heard of the bell-shaped curve?). But these are just that, comments, and are not 
essential for following the main story.

2 .1. The Dean sproblem.

This somewhat mischievous name refers to the ordeal of the Dean of a College trying 
to split a rowdy department in two new departments to decrease internal fighting. In 
this model, we consider a (large) population of individuals, numbered 1 to N .  They all 
know each other. The feelings of the individual i toward the individual j  are measured 
by a number g~ which can be positive, or unfortunately, negative. For simplicity we will 
assume symmetry, g.j=g... This means that the feelings are reciprocal (the colleagues you 
can’t stand can’t stand you either). We want to model the situation where these re
spective feelings are random. We will make the assumption that the numbers (g f ,  for 
1 < i  < j  < N  are independent identically distributed random variables. This choice aims 
at simplicity, and has no claim to be realistic. For example, it ignores the fact that (at 
least in a human population) some individuals are definitely more likeable than others. 
There are several reasons for making such an assumption. First, it is unclear what more 
realistic assumptions one should use. Second, even the present very simplified model 
is hard enough to analyze. Third, as surprising as it may seem, even such an extreme 
simplification apparently preserves many important features arising from randomness. 
Since we try to write a simple model, we will make a simple choice for the variables g~. 
One obvious choice would be =  1) =  Pig-■= — l) =  l / 2 . This simply means that, 
given any two individuals i , j ,  we flip a fair coin. If heads come up they are friends. 
Otherwise they are enemies and there is only one possible «intensity» in this feeling. It 
is believed that the particular choice of the (g f  does not matter much and we will 
always assume that g{. is a standard normal random variable. This will make the dis
cussion slightly easier than the «coin flipping» case. The variables g~ will be called «the 
disorder» because they model just that. A very important feature of the model, called 
frustration, is that for many triples i , j ,  k, i and j ,  i and k are friends {g- , gik >  0) but 
j  and k are enemies (gjk <  0). These are called frustrated triples. The friends o f your 
friends are not necessarily your friends; they are equally likely to be your enemies. There 
are many social tensions inside the population. The Dean will try to decrease the social 
tensions by splitting the population in two parts, putting as much as possible friends 
together and enemies apart. The existence of frustrated triples shows that this cannot 
be achieved perfectly. Either some enemies will still be together, or some friends will be 
separated, and most likely both of these undesirable features will be present. Still, what 
is the best that can be done? It is convenient to assign to each individual i a number a i 
that is either 1 or —1 (its «spin»). A sequence a  — (cTj ,• • •, <j n ) of such numbers thus 
defines a partition of the population in two sets. It is natural to call such a sequence 
cr a configuration. It describes the configuration of a population of N  individuals, each 
of which having the choice between two values of its spin, T 1 and —1. Flow good is
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the partition associated to a  at regrouping friends and at separating enemies? A natural 
way to measure this is by the quantity

{2.1) AN{a) = Y h & fP j
*<j

that adds the interactions between each pair of individuals in the same class, and 
subtracts the interactions between pairs in different classes. Thus putting a pair of 
friends together increases AN(a)9 while separating them decreases this quantity. Simi
larly putting a pair of enemies together decreases while separating them increases
it. The Dean’s problem is to find the maximum of over all possible choices of
the configuration <7. Since we cannot exactly separate the enemies and regroup the 
friends, any choice of a  involves a lot of compromises. To choose the best among 
them is going to be awfully difficult. Before we discuss further the issues of this prob
lem, let us now consider the case where our N  individuals, rather than being persons, 
are atoms, a situation that prompted two physicists, Sherrington and Kirkpatrick, to 
introduce this model (that will henceforth be called the SK model) in 1978 [21], the 
starting point of an ebullient period of research culminating in [16]. One striking 
feature in this model is that any two atoms interact, in a way that does not depend 
upon their relative positions. This is very different from any realistic situation where 
atoms can have significant interactions only with their close neighbors. This assump
tion is a huge simplification. Even the simplest models which take into account the 
«geometry» of the situation are so difficult to study that consensus has not yet been 
reached even concerning the results of numerical simulations. The decision to forget 
the «geometry» of the situation is called the mean field approximation, and the SK- 
model is called a mean-field model. One should again wonder at the fact that such a 
drastic simplification seems to preserve at least some of the main features one tries to 
model.

Now let us discuss the quantity we are interested in, namely maxa AN(a). For each 
choice of a , An (o) is a random variable. It depends upon the «disorder», i.e., the 
interactions g-. Since we assumed these to be standard normal and independent, AN(a) 
is again normal, with EAN(cr) =  0, and EAN(ar)2 =  N (N  — 1) / 2, where E  denotes the 
expected value (average) with respect to the disorder. The important feature is that if 
p^<J, then the random variables and AN(p) are not independent. In fact we have

(2.2) E(AN(a)AN(p)) =  ^  o p f i P j  =  \  (  a iPi] “  N  •
i<j \ i < N  )

The very large family of random variables AN(cr), consisting of 1N elements, where a  
varies over all possible choices, has thus a simple correlation structure. The correlation 
between and AN(p) is determined by the single parameter YIì c n ^ ìPì' ^  *s usefu^
to note that even though our basic randomness (the g~ s) was very simple (independence) 
we reach, through the simple formula (2 .1), a situation that turns out to be extremely 
non trivial. What can we say about mssia AN{a)i
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To try to guess what could happen, the mathematically inclined reader could com
pute what would happen if these random variables AN{cr) were independent. Con
sidering independent normal random variable BN(cr) with EBn (g ) =  0, EB2n (cf) =  
=  N ( N  ~  1 )/2, the probability that mzxBN(a) be less than a number t  is exactly

/  I p t  2 \  2TV

(2 .3 )  n  =

from which simple considerations imply that N ~3//2 max .̂ Bn {<t) must be (for N  large) 
very close to 2 log 2 with overwhelming probability.

But what about maxa AN{a)i Remarkably N ~ 3̂ 2 maxa AN(cr) is essentially inde
pendent of the disorder, a consequence of the ubiquitous concentration of measure 
phenomenon. Thus its value is well captured by its average E maxa An ((t). It is of 
order TV3/2. The second statement is of interest, because there are N ( N  — l )/2  terms 
in the sum (2 .1). This statement can be reformulated by saying that splitting a De
partment of size N  can yield a relative improvement in the personal relationships of 
at most about TV~1//2, hardly worth the trouble. This surprising fact results from the 
randomness of the interactions. Enemies and friends are so completely intertwined that 
they can hardly be separated at all. It also becomes less surprising if one believes that 
maxCT a n (&) should not behave too differently from maxff Bn (cf). According to com
puter simulation (for N  o f order 100) the average N ~ 3̂ 2E An (ct) should be close
to .7633 for large N .  Unfortunately the only argument towards the existence o f a 
limiting value of this average as N  becomes very large is that one sees no reason why 
it should not exist.

2 .2 . An integer programming problem, and the lottery phenomenon.

The goal of integer programming is to find integer solutions to systems of linear 
inequalities. In the more restricted version considered here we allow only values that 
are +  1 or —1. We look for numbers (called again «spins») a ^ i  — l , -  - , N  that 
satisfy M  linear constraints,

(2.4) J 2 ^ . ka i ~ °
i< N

for k — 1 , • • • , M  and we require <7  ̂=  1 or cr =  —1. We try again to model disorder (or 
maybe the «generic» situation) by assuming that the constraints (2.4) are random. For 
reasons similar to those in the Dean’s problem, we make the simplest possible choice, 
and we assume that the coefficients r)i k , i =  \ ,• • •, N ; j = \ , • • • , M ,  are independent 
random variables, with the same distribution. The specific form of this distribution is 
not expected to be very important. We assume for specificity P(r]i k =  1) =  P(rji k — 
— —1 ) =  1/2. It of course depends upon the realization of the disorder whether the 
system (2.4) has solutions. But does it typically have solutions, and if so, how many, 
out of 2n possible choices for the numbers a 2. A first analysis of the problem is 
as follows. Assuming N  odd to prevent equality in (2.4), given a particular choice
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of a  =  (ax , • , a N), by symmetry there is exactly a 50% chance that any given
constraint (2.4) is satisfied. By independence, there is a probability 2~M that a  is a 
solution; The expected number of solutions is thus 1N~ . The reason why this is not 
the interesting part of the story is that there is a subtle difference between the «expected» 
and the «typical» number of solutions. Much of the difficulty is linguistic. The word 
«expected» in probability does not mean «that one can realistically expect» but means 
«in average» over repeating the same experiment many times. The Ohio lottery can 
help us again to understand the difference. If in a particular drawing, the jackpot is 
$10 million, and you have a chance of 1 in 20 million of winning it, then your expected 
(=  average) gain for buying a $1 ticket is 50c, but your typical gain is zero, a hard 
fact that motivated our earlier investment advice. (On the other hand, should there be 
such a drawing once a week, and should you buy a ticket at each drawing, after only 
about 554992 years you would have a fifty-fifty chance of having won at least once). 
In the rest of the paper we will invoke the «lottery phenomenon» in situations where 
the typical value of a random quantity is much smaller than its average value.

The interesting case is when M  is large, of order N .  The natural measure of the 
size of M  is the ratio a  =  M /N .  Then the expected number of solutions 2N~M is a 
very small proportion of 2 . There are comparatively very few solutions. It is hard to 
find them, and to decide whether they exist at all.

The physicists conjecture [14] that when N  is large, there are solutions provided 
a <  .83 (about). Thus, for a  =  .9, there should typically be no solution, while the average 
number of solutions is 1. This is an occurrence of the «lottery phenomenon» described 
above. There are (extremely rare) occurrences of the random coefficients ?7 . k for which 
the system (2.4) has so many solutions that this does influence the average number 
of solutions; but certainly we should not count on these to occur any more than we 
should count on winning the Ohio lottery. When there are solutions, a good way to 
«rescale» their number 5, to obtain a quantity of order 1 is to consider the quantity

(2.5) ^ l o g  (2~n S).

Thjs quantity is known to be essentially independent from the randomness for large TV, 
and the problem (to which physicists propose an explicit solution [12]) is to compute 
its limiting values as TV —> 00, for given a. The problem considered in this section is 
rather important in the theory of neural networks, where it is called the «perceptron 
capacity problem».

2.3,. The assignment problem and the cost o f  monogamy.

In this problem we are given TV boys and TV girls, numbered 1 to TV, and we 
have to create happy couples. Creating couples means that we have to find a one to 
one correspondence p between the set { ! , ■• •  , TV} of girls and the set { ! , • • •  , TV} 
of boys. We assign a partner to each boy or girl, (so that the problem is usually 
called the assignment problem). The reader will observe that this is a perfectly politically 
cofrect problem. Neither sex has any advantage over the other. Not all couples get
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along equally well. There is a cost a~ in assigning j  to i as a partner. The assignment 
problem is to minimize the total cost ^ i<N aip̂  (that is, the sum of the costs of 
creating each couple) over all possible choices of the correspondence p. It would be 
mathematically equivalent (but much more uplifting) to «maximize happiness» rather 
than to «minimize costs» when creating couples, but we have not felt appropriate to 
change the (gloomy . . .  ) traditional formulation. What makes the problem interesting 
is the requirement that p be one to one. The girl i would like to pick for partner the 
boy j  she likes the most; but some boys are elected as best choices by several girls, and 
these conflicts must be resolved. Some girls will have to settle for their second best 
choices. A few might even have to accept their third best, or worse. We will consider 
the stochastic version where the costs a{. are independent random variables uniformly 
distributed over [0 , 1], The comments made in Section 2.1 about the meaningfulness 
of the choices of the variables {g )̂ there apply equally well here, and this choice has no 
pretense of being realistic. It is known that minp N aip̂  is essentially independent 
of the randomness (concentration of measure again), so that this random quantity is 
well represented by its expectation. The physicists conjecture that

(2 .6) lim fi min a . M =  — ,
V '  N —>oo p ^  ^  6

i<N

or in words, that for N  large, the cost of the best assignment is very close to 7t2/ 6 . In 
my opinion this is one of the prettiest conjectures of the entire probability theory. To 
understand why this sum of N  terms is of order 1, we must keep in mind that, for each 
girl i there are typically several boys j  for which is of size of order 1 j N . If we were 
not having the requirement that different girls must choose different boys we would 
have 1 in (2.6) rather than 7t2/6  ~  1.64; the extra cost arises from the monogamy 
requirement. In short, the cost of monogamy is believed to be 7t2/6  — 1 ~  0.64! (On 
the other hand, it was firmly pointed out to me that any attempt at polygamy would 
incur very high costs not taken into account by this model).

O f course, the fascinating part of conjecture (2 .6) is the occurrence of the exact 
value 7r2/6  (=  1 +  1 /4  +  1 /9  +  ■ • •)• There is even a more fascinating conjecture by 
G. Parisi. Consider independent exponentially distributed random variables b-, that is, 
for t  >  0,

P{btj > t )  =  e~\

It can be proved that (2.6) is equivalent to the corresponding statement where one 
replaces by b .̂ This is simply because only the small values among the numbers 
a - , bÿ matter for the assignment problem, and for small t ,

P(a;j > t )  =  l -  t ~ e  * =  P(b~ >  t). 

The conjecture of Parisi is that for each N ,

(2.7) £m y T + ) =  1 +  /
i < N  Z

+  ••• +
N
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This has been checked by M. Mézard up to N  =  5. Such a miraculous formula 
for such a complicated problem, if true, almost certainly indicates a simple underlying 
structure yet to be discovered. This points out to the fact that the «statistical mechanics» 
approach at which we hint below is probably not needed. In fact, D. Aldous proved 
in [1] that the limit of the right-hand side of (2 .6) exists, and, motivated by the 
conjectures of the physicists, recently succeeded in refining the arguments of [1] to prove 
that

7T2
lim E  min ain(, < -~r ,

N-+°o  P ^  6
i< N

a giant step towards (2 .6) (private communication). The method of Aldous does not 
seem to be related to the method of the physicists. However, even if Aldous5 method 
succeeds in proving (2 .6), the very subtle structures predicted by the physicists will 
remain of considerable interest.

We chose to discuss the three previous problems in detail because they are particularly 
simple to state, and yet lie very deep. Lack of space prevents us from explaining 
other important questions, and in particular from discussing the Hopfield model, a 
very popular model of memory [13, 3, 25, 4, 30]. Also important are the random 
>̂-sat problem (a stochastic version of the problem of satisfiability of many logical clauses 

which is fundamental in computer science) [27] and stochastic versions of time-honored 
optimization problems such as the Traveling Salesman Problem.

3 . S ta tistic a l  m ec h a n ic s  a n d  c o m bin a to r ia l  o p t im iz a t io n

The problem of finding the maximum of a quantity such as (2 .1) over all possible 
configurations (choices of a) is usually called a combinatorial optimization problem. 
Arising from statistical mechanics is the idea of replacing the search of the largest value 
by a study of the «large values», with a suitable weight. This weight is provided by 
a parameter ß  >  0 that physically represents «the inverse of the temperature of the 
system». Combinatorial optimization problems then appear as the «zero temperature 
case» of a more general question. It is necessary to replace (2.1) by a quantity more 
adapted to the present purpose, namely

(3-D =
i<j

The minus sign respects the physical idea, that HN (a) represents the energy of the 
configuration a , (Hamiltonian) and that systems always tend to favor low energy levels. 
The factor y /N  ensures that mina Hn (g ) is of order N ,  and, as we will see, this is the 
correct normalization. Given a parameter ß  > 0, we introduce Gibbs measure Gn , a 
probability measure on the set of all configurations, that gives to a  the weight

Gn (o) =  —  exp ( - ß H N(a)).
^N

(3-2)
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The number ZN is the factor required to ensure that the sums of the weights is one, 
namely

(3.3) ZN =  Y J z M ~ ß H N{a))

where the sum is over the 2N possible configurations. A large part of the subtlety of 
what occurs here is contained in the fact that this sum is over a great many terms of 
very different order o f magnitudes. Many terms are at most one (e.g. if HN{a) > 0) but 
a few terms are very large. The normalization that we have chosen, that max^ HN(a) 
be of order N , is designed to ensure that in the sum (2 .1) is not obviously dominated 
by the contribution from the many small terms or by the contribution from the rare 
large ones. The precise magnitude of the terms that contribute the most depends upon 
the value of ß.

The relationship between the behavior of g n (p ) and the problem of the minimum 
value of Hn (g ) is the following. If one fixes N , and lets ß  become large, the weights 
(3.2) concentrate on the configuration a  that minimizes HN (and that is called the 
ground state in physics). One can then hope to get information about the energy of 
the ground state by studying Gibbs’s measure for large values of ß. There are several 
gains in this approach. First, even though we are interested in the case of ß  large, we 
can start by studying the case of ß  small, which should be easier. The parameter ß  can 
be viewed as interpolating the difficulty between a trivial situation (ß  =  0) and a very 
tough one (ß  very large). Second, it has historically been a very successful approach to 
find a wider framework in which to study a difficult problem. Rather than being stuck 
with a single narrow problem, we have new objects from statistical mechanics to study 
to make progress. And, last but not least, we can appeal to intuition from physics.

We have here introduced statistical mechanics as a way to approach hard problems of 
combinatorial optimization, because it is possibly the most attractive feature of this circle 
of problems. But of course statistical mechanics is very interesting in itself. Consider 
a physical system that can be in any of the 2N configurations a  considered above, 
and assume that when it is in the configuration <7, its energy is Hn (g ). Then Gibbs’ 
measure (3 .2) is the probability that the system is in configuration a  when it is in 
thermal equilibrium with a heat bath at temperature 1 / ß. It is of course statistical 
mechanics that motivated Sherrington and Kirkpatrick to introduce their famous model 
(that we called here the Dean’s problem).

The link between the Dean’s problem and statistical mechanics is easy to see; but 
what about the other two problems of Section 2? What is the relevant way to define 
the energy of a configuration? In the case of our integer programming problem, a very 
natural choice is

HN{a) =  ~S(a)

where S(a) is the number of constraints (2.4) that a  satisfies. Then there exists a 
configuration a  satisfying all constraints if and only if there is one for which S(cr) =  M ,  
that is min^ Hn (g ) =  —M .  Deciding the existence of solutions is naturally reduced in 
this manner to the problem of finding the minimum of a certain function HN.
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Concerning the assignment problem, the correct choice of the Hamiltonian is a 
notch more subtle, and the reader is better referred to [16] for this.

4. M a t h em a t ic a l  a n d  physical u n d e r s t a n d in g

The author must first point out that he has no particular qualification to discuss this 
difficult question other than being a modest practitioner in his field. The comments 
of this section are probably naive and have no claim whatsoever to apply beyond the 
specific area of spin glasses. They are directed especially to non-mathematicians, for 
whom the nature of mathematical work is not necessarily clear. The physicists feel 
they understand almost everything about spin glasses, while mathematicians feel they 
understand close to nothing. We are not aware of any authoritative statistical study 
that rules out a lower I.Q. level among mathematicians; yet at least part of the answer 
seems to lie in different meanings of the word «understanding».

The physicists do not demand irrefutable arguments, but rather try to understand 
the behavior of the objects they study with a high degree of certainty. Their natural 
tendency is always to assume that «everything is fine». They do not pay attention to 
pathologies that are possible in principle but are very unlikely. They always propose as 
solution «the most natural behavior». «The most natural behavior» needs by no means 
be simple; it can even be extremely intricate as in many parts of [16]. Once this behav
ior has been guessed, it is checked as much as possible. It is first checked by theoretical 
computations. A mathematician would likely call these «heuristic» (as opposed to rig
orous) since they often rely on natural, sensible, but unproven approximations. They 
also sometimes rely upon procedures to which it is currently very unclear how to assign 
a mathematical meaning. The proposed behavior is finally checked through numerical 
simulation. Numerical simulation for spin glasses is not easy. Often it can be carried 
out only for rather small values of the parameters (number of atoms of order 100); but 
this is compensated by great ingenuity, in trying to check behaviors that cannot occur 
by mere accident.

On the other hand, the mathematician does require irrefutable arguments, and will 
spehd unlimited energy to rule out pathologies, regardless of how unlikely they might 
be. One basic reason why the results from physicists and mathematicians are so much 
apart is quite simple. The physicists make extensive use of the intuitive properties 
of the material objects they have acquired over literally hundreds of years, and this 
despite the fact that the SK model is a mean-field model (that is, does not take into 
account the geometric locations of the atoms) and gives little reason to use this intuition. 
For example, it is obvious that the addition of a single atom does not change the 
properties of a sample of matter. It is obvious, and can be measured very precisely, 
that the properties of a sample of matter do not depend upon its size (modulo an 
obvious scaling), a principle known as the existence of the thermodynamical limit. These 
principles are not so obvious for the SK and related models, if only because they are at 
best true for most, but not all, the realizations of the random interactions. Many of the 
arguments of the physicists rely from the start on the existence of the thermodynamical
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limit, leaving the mathematician looking for an approach. Another principle, intuitively 
obvious for a physicist, is that at high temperature, a system is «in a pure equilibrium 
state» (an expression we will try to explain later). This is the «default situation» that 
is abandoned only when untenable. The validity of this principle is unquestionable in 
the physical world, but does it remain valid for mathematical objects rather far from 
this world? In this particular case, the answer turns out to be yes, because rigorous 
justification has recently been given, but at the expense of considerable work.

Mathematicians feel that this work is necessary. This of course raises the larger issue 
of what is the value of trying to prove results mathematically when their validity is 
already widely accepted. Are we talking only of hair splitting here? There are of course 
several levels of answer. One obvious reason is that mathematical results build upon 
previous results. This has been going on for many generations, and hopefully will keep 
going on for many more. It would compromise the whole construction to allow at any 
step a possibility of error, however remote, since errors could accumulate in a disastrous 
way. The main motivation (at least for this author) is however rather different. In order 
to be able to find complete arguments, one has to work much harder than if one allows 
«reasonable» unproven assumptions. In working much harder, one (sometimes) gains a 
deeper level of understanding, and (more rarely) one discovers connections and abstract 
principles that greatly enhance our knowledge, and would have remained undiscovered 
otherwise. One could give here the example of concentration of measure, which was 
briefly explained in the introduction. It can be learned in a few days, but took sixty 
years and the work of many to emerge. The rate at which important abstract principles 
are discovered is very slow, but there is seemingly no other method to find them than 
to go through a huge amount of unrewarding nitty-gritty work, just as is the case for 
most worthy discoveries in other areas of science. Situations where simple objects lead 
to very complicated behavior as is the case here seem the best potential mining ground. 
And in conclusion, to reassure the reader not yet convinced that this is a worthwhile 
endeavor, let us point out that the resources invested by mankind in this particular 
project (and even in mathematics in general) are really minuscule by any measure.

5. F irst results o n  t h e  SK m o d e l

Having decided to study problems such as these of Section 2 through the statistical 
mechanics approach of Section 3, what questions should one ask? Obviously the Gibbs’ 
measure (3 .2) is a central object, but for pedagogical reasons we postpone its discussion 
to the next section. Another quantity of interest is the number ZN of (3.3), called in 
physics the partition function. As we previously explained, it is not at all obvious a 
priori how large Zn  is, so we should try to calculate it. This is not just a technical 
question. It can be shown that one can recover many of the properties of Gibbs’ 
measure from the value of ZN. (Therefore, it will not come as a surprise that the 
computation o f  ZN requires in turn a detailed understanding of Gibbs measure). It is 
in general not difficult to compute the average of ZN over the disorder; but we must 
beware of the «lottery phenomenon». We are not interested in the average value of ZN,
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but in its «typical value», which can be much smaller. The typical value of ZN increases 
exponentially fast with N ,  so it is convenient to rescale it and to consider instead

(5.1) - l n Z „ .

This quantity depends upon the disorder. However it turns out that for many models 
the fluctuations of this quantity due to the disorder are of size about N ~ 1̂ 2. This 
is again a consequence of concentration of measure. Thus, at this order of accuracy, 
(almost . . .  ) all the information contained in this random variable is in fact contained 
in the number

(5.2) 4 h  Zn

and we would like to compute this for large N .  The quantity (5.2) measures, on a 
logarithmic scale, the typical value of ZN\ if the quantity (5.2) is about this means 
simply that ZN is typically of size eaN. On the same logarithmic scale, the average value 
o f Z N is measured by

(5.3) - I n EZn>

a quantity that is always larger than or equal to (5.2) (as follows from the concavity of 
the logarithm). Thus, when the quantities (5.2) and (5.3) are nearly equal, this means 
that the «lottery phenomenon» does not occur.

We will now center the rest of our discussion on the SK model, not because it 
is necessarily the most interesting, but because it does have some simple features that 
involve a number of general phenomena. The best known rigorous result about the SK 
model is the fact that for ß  <  1, we have [2]

1 3 2
(5.4) lim E — \r\ZN =  ln 2 +

a/—>oo N  N 4

On the other hand, for each ß  >  0, it is very simple to show that

(5.5) lim 2  In EZN =  In 2 +  ^  ,
N - * o o  l y  4

so that the content of (5.4) is that the lottery phenomenon does not occur for 
0 <  ß  < 1. While this is certainly not obvious a priori, it can be interpreted to 
mean that nothing of real interest happens in that case. The proof of (5.4) is actually 
not very complicated. On the other hand, the range ß  >  1 is the domain of the 
famous predictions of G. Parisi, that are considerably more interesting, and that will be 
discussed further in Section 7.

It is rather unfortunate that the well known result (5.4) bears on a somewhat un
interesting situation, because it gives a false idea of the «high temperature» problems. 
(Since ß  represents the inverse of the temperature, a «high temperature» problem is 
a situation where ß  is not too large. A precise definition will be given in the next 
section). It is also very unfortunate that the best known model (the SK model) is either
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easy (ß < 1) or very hard (ß >  1). This is not conducive to progress. To get out of 
this situation, it is very fruitful to consider a generalization of (3.1), namely

(5-6) Hn (a) =  -  —  5 3  g p p j  -  h £  a ;.
V i<j i< N

The new term h ^ li< N (Ji is physically very natural. It represents the action of an 
external magnetic field that tends to align the spins in the +  1 direction. The presence 
of this term makes the situation much more interesting, because it is expected that 
when h ^  0 the «lottery phenomenon» always takes place. The prediction is that in 
a certain domain of the parameters ( ß , h), called the «high temperature» region (and 
which consists of the left of a certain analytically defined curve), we have

(5.7) lim — E lnZN = minip(q , ß , h)

where the minimum is over 0 < q < 1, and where
n 2  1 poo

(5.8) ty(q> ß  , h) =  -^(1 — q)1 H---- - =  /  ln(2 coshß(ty /q  +  h))e~t ^dt.
4 V27r J-oo

On the other hand, it is easy to show that

(5.9) ■— In EZn  =  (f(0 , ß , h) =  —  +  ln(2 cosh ß h)

and, for h >  0, this is larger than the quantity (5.7). The remarkable character of a 
formula such as (5.7) should be self apparent. O f course, such a remarkable formula 
does not occur by chance, but reflects an underlying structure that is the object of the 
next section.

6 . S ystem s in  a  pu r e  equilibrium  sta te

In the previous section we postponed the study of Gibbs’ measure in order to state 
the striking formula (5.7). We return to this study now. It will be done at a given ß, 
as TV —̂ oo. The basic idea is that if ß  is not too large (that is, the temperature l / ß  
is high enough), Gibbs’ measure has a remarkable structure that is the reason behind 
formulas such as (5.7). This remarkable structure also occurs when the temperature is 
high enough in many other systems, and it is the purpose of this section to describe 
it, even though it would take us too far to explain in detail the derivation of (5.7). 
This structure appears to be the correct mathematical formulation of the physical idea 
that the system «is in a pure equilibrium state» which means roughly that it cannot be 
decomposed in simpler systems.

First we should keep in mind that we have two levels of randomness. There is 
the randomness associated to the thermal fluctuations. This is what the Gibbs measure 
describes. Then there is the randomness associated to the disorder of the system, the 
«randoinness of the glass», which is called quenched (= frozen in) in physics because it is 
not affected by the thermal fluctuations. In line with the spirit of the previous sections,
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we will study Gibbs’ measure for «typical» realizations of the disorder. What kind of 
structure should one expect? The Gibbs’ measure is a priori a very complex object: it 
involves the weights given to the 2N possible configurations a  =  (a l , • • • , a N) , a i =  
=  ± 1. Could it be possible that one can describe Gibbs’ measure with much fewer 
parameters? Obviously of importance are the averages (cr.) where the brackets denote 
average with respect to Gibbs’ measure (called thermal averages), that is

(6.1) (o'.) =  J  a ^ G ^ a )  =  -J - ^  a i exp(~ ßH N(a))

when the sum is over all configurations. These numbers (aß  do not a priori determine 
Gibbs’ measure. To know Gibbs measure, we need to know not only the quantities
(6 .1) , but also we need to know the values of all the averages (a\ a  ̂  • • • a i ) for all 
possible choices of 1 < n < N , ix <  • • • <  in. This simple fact should be intuitively 
clear if one observes that the number of such averages (i.e. 2N — 1) is exactly the number 
of «parameters» needed to determine a probability measure on the configuration space. 
There are 2N configurations, the weights of which must add to one. The simplest 
structure one could have is that

(6.2) =

in which case the numbers (6.1) determine Gibbs’s measure. However, condition (6 .2) 
is too much to ask. It is never true for our class of models (unless ß  =  0). What will 
happen instead (at high enough temperature) is that (roughly speaking) for N  large, the 
two sides of (6 .2) will be nearly equal for «most» (but not all) choices of ix> • • • , in. 
Quite remarkably, requiring this asymptotic near equality for any choice of n turns out 
to be the same as requiring it for n =  2 . We will say (by definition) that the system is 
in a pure equilibrium state (at a given value of the parameters) if for large N  we have 
(axa ^  ~  (cr1)(cr2) f°r t îe typical disorder, or more formally, if

(6.3) lim E\{axa2) -  {<Jx){o2)\ =  0 .
N—>00

All the sites play the same role, so in (6.3) we can replace the indices 1 ,2  by any 
other. Even though (6.3) involves only 2 spins, it implies more generally that given 
any number n of spins, we have

(6.4) lim E\(ala 2 ■■■ , a n) -  (gx) • ■ • <cr ) | =  0.
jN —>o o

The link between (6.4) and the physical idea of «pure equilibrium state» is unfortunately 
not intuitive, but it is easier to explain the mathematical usefulness of (6.4). If (6.2) was 
true, this would mean that the maps a  —> a i are independent random variables when 
the configuration space is provided with probability Gn , and computations involving 
independent random variables tend to be easy. Condition (6.2) is not true, but its 
substitute (6.4) means that any fixed collection of spins is asymptotically independent 
under Gibbs’ measure. It can then be shown (with work) that in a number of crucial 
situations computations can be carried out as if the spins were independent under GN. 
This is in particular the case for the use of the cavity method. This method is of great
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importance, both in the heuristic arguments of the physicists and in mathematically 
rigorous arguments, and we explain its principle now. The basic idea is to examine 
what happens when one adds spins one at a time. Or, equivalently, one can remove 
one spin (atom), creating a «cavity», to study the (N  +  l)-spin system in function of 
a smaller 7V-spin system. It is a simple algebraic manipulation to express the Gibbs’ 
measure GN+l for the (N  +  l)-spin system in function of the Gibbs’ measure GN for 
the 7V-spin system. The basic quantities in this computation are averages

where t  =  ± ß / y / N ,  and where is an independent sequence of standard normal
random variables, which is independent of the disorder in GN. Condition (6.3) can 
be shown to imply that the quantity (6.5) can be replaced in the calculations by the 
quantity

(6.6) n < eW < >
i < N

just as if the spins where independent under Gibbs’ measure. The averages involved in
(6.5) are easy to compute, because a i takes only the values 1 and —1.

In summary of this discussion, under condition (6.3), explicit computations are 
possible with Gibbs’ measure (and it is these conditions that lead to (5.7)). The difficulty 
of the mathematical approach (in contrast with the physicist’s approach that assumes 
a priori that (6.3) holds) is that before (6.3) has been proved, it is very difficult to 
say anything at all about Gibbs’ measure. It has now been proved that condition (6.3) 
holds for the SK model when ß  is small enough (and h is arbitrary), and has also been 
proved (again at high enough temperature) for several other typical models [25-28].

The basic property of a system in a pure state is that for many purposes Gibbs’ 
measure is determined by the N  averages (6.1), so it is natural to wonder how these 
behave. For the SK model and several other important models it has now been proved 
that at high enough temperature the behavior is somehow as simple as possible. The 
averaged {aß are random variables, (since they depend upon the disorder). Any fixed 
number of them, as N  increases at fixed temperature become asymptotically independent 
with a limiting distribution that can be explicitly described.

7. LOW TEMPERATURE

Since condition (6.3), the asymptotic vanishing of spin correlations, is true for many 
models at high temperature, it is quite natural to define the «high temperature» behavior 
of a system by the validity of (6.3). This terminology however is somewhat mislead
ing. In certain cases (and in particular in the case of the assignment problem), it is 
conjectured that high temperature behavior takes place at any temperature. This is of 
importance, because this means that it would be sufficient to understand a certain case 
of high temperature behavior to prove (2 .6), and the prospects of mathematically rig-
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orous results in cases of high temperature behavior are currently much brighter than in 
the case of «low temperature behavior» (which we define by the failure of (6.3)). The 
only case of low temperature behavior that is completely understood is the «random 
energy model», a «toy model», invented by B. Derrida [8]. The idea is the same as 
in (2.3). Since the difficulty of the SK model stems from the correlations (2.2), let 
us throw them overboard! Let us consider a model where the energy Hn (<t) of the 
configuration a  is a normal r.v, with

(7.1) EHn (<t) =  0 , EH2n (o ) =  -

(in harmony with (3 .11)), but where the correlations are gone, for two configurations 
<T,P
(7.2) ?  p  =* E(HN(*)HN(p)) =  0.

It can be shown that the system is in a pure state if ß  <  2vTn2, but not if ß  >  2\/ln  2 .
The analysis of the later case is not difficult, yet is very instructive. The largest term 

of the sum (3.3) is o f the same order than the whole sum, and the few largest terms 
contribute essentially all the sum. (More precisely, there is a number n(ß), depending 
upon ß  but not upon N , such that for 99% (say) of the realizations of the randomness, 
the n(ß) largest terms of the sum contribute 99% of the value of this sum). To express 
what happens in terms of Gibbs’ measure, it is convenient to rank the configurations 
in decreasing order of their Gibbs weights. These weights do fluctuate in an essential 
way with the disorder (and the probability distribution of these weights is a natural 
and interesting object). Any given proportion (however close to one) of the mass of 
Gibbs’ measure is (with probability close to one) carried by a number of configurations 
independent of N;  but on the other hand no given number of configurations will carry 
all the mass as N  large. We will describe this situation in a pictorial manner by saying 
that (in the limit N  —> oo) Gibbs’ measure is «carried by a sequence of configurations» 
(an expression assuming quite incorrectly that it is possible to take this limit). This is 
a highly non-trivial situation, specially in view of the simplicity of the model.

The random energy model is the «building block» for the behavior of the SK model 
at löw temperature proposed by G. Parisi. The breadth (and the ambition) of the ideas 
proposed by Parisi can be appreciated in [19, pp. 298-346], which is one of the most 
accessible introductions to his theory.

The very basis of his prediction, that the Gibbs’ measure «is carried by a sequence 
of pure equilibrium states» is motivated by analogy with the behavior of much simpler 
models (with no disorder). There are no reasons to seriously doubt that this is the 
correct picture, but rigorous arguments, and even maybe precise definitions are still 
lacking. Intuitively a pure equilibrium state is a part of the configuration space such 
that if we forbid the configurations not in this part, the corresponding system is in a 
pure equilibrium state as defined in the previous section. The «organization of the pure 
equilibrium states», described by Parisi is so fascinating that one might forget that the 
existence of these states is in itself quite remarkable. We will explain a very striking 
rigorous consequence of this existence to make this important point. Let us define
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the overlap of two configurations a , p  by N ~ l &iPi- Then, if Gibbs measure
is carried by a sequence of pure equilibrium states there is a number n independent 
of N  such that, however large TV, given the typically realization of the disorder, if 
one chooses independently two configurations a , p  (weighted according to their Gibbs’ 
weights), there is a 99% chance that their overlap is (extremely close to) one of only n 
possible values, (and these permitted values depend upon the disorder).

Since the SK model is so difficult at ß  >  1, it is not the best starting point of a 
rigorous investigation. We will discuss a model (also invented by B. Derrida) which 
is conjectured to behave somewhat like the random energy model, but in a much less 
trivial way: the ^-spin interaction model (p integer > 2). The idea is to replace the 
2-spin interaction c r p ■ of (3.1) by a ^-spin interaction cd •••cr . The Hamiltonian
(3.1) is replaced by

M )
i<j

The sum is over all choices of indices \ — u <  ■ - <  i < N;  the coefficients
1 P —

giv..i are independent standard normal random variables. The normalization coeffi

cient (p \/2N p~1) 1̂ 2 in (7 .2) is chosen so that

(74) =
in harmony with (3.1), (7 .2). For p  — 2 this is the SK model; but the behavior is 
believed to be very different if p  >  3. The correlation between the variables Hn (g ) is 
now, at the first order,

\  i < N  J

Since W-1 | ^2i<NGiPi\ < T the larger p , the smaller the correlations. The basic idea of 
Derrida was that if we fix N  and have p  —» oo, this model «converges» to the random 
energy model; but we are instead interested in fixing p  and having N  —> oo.

The rigorous results on the p-spin interaction model recover almost all the predictions 
of the physicists, and validate their most spectacular aspects. There is a critical value 
ß  such that if ß  <  ßp the system is in a pure equilibrium state. On the other hand, 
for ß  >  ßpy but not too large, it has been proved that Gibbs measure is «carried by a 
sequence of small pieces of the configuration space». Small here means small for the 
natural distance on the configuration space. The distance between two configurations 
is simply the proportion of indices where they differ. For suitable (= large) p , one can 
achieve that any two configurations in the same «piece» differ in at most 1% of their 
indices, so that two configurations in different pieces will differ in at least 49% of these 
indices (almost as much as two «generic» configurations). These small pieces were very 
recently proved to be the «pure equilibrium states» predicted by the physicists. The 
remarkable fact is that these pure equilibrium states seem to form spontaneously, and 
that their existence is by no means obvious from the Hamiltonian. The reason why the



SPIN glasses: a  n e w  d ir ec tio n  for  probability t h e o r y ? 145

decomposition of the configuration space is much easier to obtain here than in the SK 
model is simply that the pieces are «as far from each other as they can possibly be» in 
contrast with the SK model where they «huddle together».

8 . C o n c l u s io n

Physicists propose a rich collective behavior for large correlated families of random 
variables, both in the «high temperature» and the «low temperature» regime. It is a long 
range program to prove their conjectures mathematically. Significant progress has been 
achieved at «high enough temperature», where for several typical models the predicted 
behavior has been established with great precision. The progress on the much harder 
low temperature regime remains more modest, but the fresh ideas proposed by the 
physicists will hopefully become the focus of significant efforts.
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