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Analisi matematica. — Regularity of solutions to stochastic Volterra equations. Nota di
Anna Karczewska e Jerzy Zabczyk, presentata (*) dal Socio G. Da Prato.

Abstract. — We study regularity of stochastic convolutions solving Volterra equations on Rd driven
by a spatially homogeneous Wiener process. General results are applied to stochastic parabolic equations
with fractional powers of Laplacian.

Key words: Stochastic Volterra equations; Stochastic convolution; Function-valued solutions; Gener-
alized and classical random fields.

Riassunto. — Regolarità delle soluzioni di equazioni di Volterra stocastiche. Viene studiata la regolarità
di convoluzioni stocastiche risolvendo un’equazione di Volterra in Rd perturbata da un processo di Wiener
spazialmente omogeneo. I risultati generali ottenuti sono applicati a equazioni paraboliche stocastiche con
una potenza frazionaria del Laplaciano.

1. Introduction

The paper is concerned with the following stochastic Volterra equation

(1) X (t; θ) =

∫ t

0
v(t − τ )AX (τ; θ)d τ + X0(θ) + W (t; θ);

where t ∈ R+, θ ∈ Rd , v ∈ L1
loc (R+), X0 ∈ S ′(Rd ) and W is a spatially homogeneous

Wiener process with values in the space of real, tempered distributions S ′(Rd ). The
class of operators A covered in the present paper contains, in particular, the Laplace
operator ∆ and its fractional powers −(−∆)α=2, α ∈]0; 2]. We consider existence of
solutions to (1) in S ′(Rd ) and derive conditions under which the solutions to (1) are
function-valued or continuous.

The equation (1) is a generalization of stochastic heat and wave equations studied
by many authors, see e.g., [10, 17, 18, 21-23, 25, 30 and references therein]. In the
context of infinite particle systems stochastic heat equation of a similar type has been
investigated in recent papers by Bojdecki and Jakubowski [4-6] and by Dawson and
Gorostiza in [12]. Stochastic heat equation with Rd replaced by a compact Lie group
is an object of the recent paper by Tindel and Viens [29].

Taking in (1), A = ∆ and v(t ) ≡ 1, and differentiating (1) with respect to time, we
obtain stochastic heat equation

@X
@t

(t; θ) = ∆X (t; θ) +
@W
@t

(t; θ):

Similarly taking v(t ) = t , t ∈ [0; + ∞[, and differentiating (1) twice results in stochastic

(*) Nella seduta del 10 marzo 2000.
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wave equation

(2)
@2X

@t 2 (t; θ) = ∆X (t; θ) +
@2W

@t 2 (t; θ) :

Let us notice however that the noise term in equation (2) differs from the one considered
in papers [10, 17, 18, 21-23, 25, 30].

The stochastic Volterra equations have been treated by many authors, see [7-9] or
[27, 28]. In the first three papers stochastic Volterra equations are studied in connection
with problems arising in mathematical physics, particularly in viscoelasticity. It has been
shown that the stochastic convolution leads to regular solutions, and next, its samples
are Hölder-continuous. In the papers [27, 28] stochastic Volterra equations in the
plane are studied. Authors have obtained sufficient conditions for the existence of
smooth densities for the probability law of the solutions and studied also their small
perturbations.

Our aim is to find conditions under which solutions to the stochastic Volterra
equation (1) are function-valued or continuous with respect to the space variable. In the
paper we treat the case of general dimension and the correlated, spatially homogeneous
noise WΓ of the general form.

The paper is organized as follows. In Section 2 we recall some concepts and facts
needed in the paper. We formulate Proposition 1 giving conditions under which Gaus-
sian random fields have function-valued solutions and recall from [1] a continuity cri-
terium which will be used in the proofs of the main results. Section 3 summarizes
properties of the stochastic integral with values in the space of tempered distributions
S ′(Rd ). We generalize slightly a result from [6] concerned with the existence of stochas-
tic integral. In Section 4 our main results on stochastic Volterra equations are formulated
as Theorems 1 and 2. In Section 5 we provide some applications. In particular we
formulate regularity and continuity results in Theorems 3 and 4.

The paper is a rewritten version of the report by Karczewska and Zabczyk [19].

2. Generalized and classical homogeneous

Gaussian random fields

We start from recalling several analytical concepts needed in the paper.
Let S (Rd ) , Sc (R

d ) , denote respectively the spaces of all infinitely differentiable
rapidly decreasing real and complex functions on Rd and S ′(Rd ), S ′

c (R
d ) denote the

spaces of real and complex, tempered distributions. The value of a distribution ξ ∈
∈ S ′

c (R
d ) on a test function ψ will be written as 〈ξ;ψ〉. For ψ ∈ S (Rd ) we set

ψ(s)(θ) = ψ(−θ), θ ∈ Rd . Denote by S(s)(R
d ) the space of all ψ ∈ S (Rd ) such that

ψ = ψ(s), and by S ′
(s)(R

d ) the space of all ξ ∈ S ′(Rd ) such that 〈ξ;ψ〉 = 〈ξ;ψ(s)〉 for

every ψ ∈ S (Rd ).
In the paper we denote by F the Fourier transform both on Sc (R

d ), and on S ′
c (R

d ).
In particular,

Fψ(θ) =

∫

Rd

e−2πi〈θ;η〉ψ(η)dη; ψ ∈ Sc (R
d );
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and for the inverse Fourier transform F−1;

F−1ψ(θ) =

∫

Rd

e2πi〈θ;η〉ψ(η)dη; ψ ∈ Sc (R
d ):

Moreover, if ξ ∈ S ′
c (R

d ), 〈Fξ;ψ〉 = 〈ξ;Fψ〉 for all ψ ∈ Sc (R
d ). Let us note that F

transforms the space of tempered distributions S ′(Rd ) into S ′
(s)(R

d ).

For any h ∈ Rd , ψ ∈ S (Rd ), ξ ∈ S ′(Rd ), the translations τhψ, τ ′
hξ are defined by the

formulas: τhψ(x) = ψ(x − h) ; 〈τ ′
hξ ;ψ〉 = 〈ξ ; τhψ 〉 ; x ∈ Rd .

By B(S ′(Rd )) and B(S ′
c (R

d )), we denote the smallest σ-algebras of subsets of S ′(Rd )
and S ′

c (R
d ), respectively, such that for any test function ϕ the mapping ξ → 〈ξ;ϕ〉 is

measurable.
Let (Ω;F; P ) be a complete probability space. Any measurable mapping Y : Ω →

→ S ′(Rd ) is called a generalized random field . A generalized random field Y is called
Gaussian if 〈Y;ϕ〉 is a Gaussian random variable for any ϕ ∈ S (Rd ). The definition im-
plies that for any functions ϕ1; : : :;ϕn ∈S (Rd ) the random vector (〈Y;ϕ1〉; : : :;〈Y;ϕn〉)
is also Gaussian. One says that a generalized random field Y is homogeneous or stationary
if for all h ∈ Rd , the translation τ ′

h(Y ) of Y has the same distribution as Y .
If Y is a generalized homogeneous, Gaussian random field then for each ψ ∈ S (Rd ),

〈Y;ψ〉 is a Gaussian random variable and the bilinear functional q : S (Rd )×S (Rd ) → R
defined by the formula,

q(ϕ;ψ) = E(〈Y;ϕ〉〈Y;ψ〉) ; for ϕ; ψ ∈ S (Rd ) ;

is continuous and positive definite. Since q(ϕ;ψ) = q(τhϕ; τhψ) for all ϕ, ψ ∈ S (Rd ),
h ∈ Rd , there exists, see e.g. [13], a unique positive-definite distribution Γ ∈ S ′(Rd )
such that for all ϕ; ψ ∈ S (Rd ) ; one has:

q(ϕ;ψ) = 〈Γ;ϕ ∗ ψ(s)〉 :

The distribution Γ is called the space correlation of the field Y . By Bochner-Schwartz
theorem the positive-definite distribution Γ is the inverse Fourier transform of a unique
positive, symmetric, tempered measure µ on Rd : Γ = F−1(µ). The measure µ is called
the spectral measure of Γ and of the field Y .

Let Y : Ω → S ′(Rd ) be a generalized random field. When the values of Y are func-
tions, with probability 1, then Y is called a classical random field or shortly random field.

In particular a homogeneous (stationary), Gaussian random field is a family of
Gaussian random variables Y (θ), θ ∈ Rd , with Gaussian laws invariant with respect
to all translations. That is, for any θ1; : : : ; θn ∈ Rd and h ∈ Rd , the law of
(Y (θ + h); : : : ; Y (θn + h)) does not depend on h ∈ Rd .

The following apparently well-known result is essential for the sequel. Its proof can
be found in [19].

Proposition 1. A generalized, homogeneous, Gaussian random field Y is classical if and
only if the space correlation Γ of Y is a bounded function and if and only if the spectral measure
µ of Y is finite.
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We finish the section recalling a continuity criterium which will be used in the
proofs of the main continuity results, see [1, Theorem 3.4.3].

Proposition 2. Let Y (θ), θ ∈ Rd , be a homogeneous, Gaussian random field with the
spectral measure µ. If, for some ε > 0,

∫

Rd

(ln(1 + |λ|))1+εµ(dλ) <+ ∞;

then Y has a version with almost surely continuous sample functions.

3. Stochastic integration

In the paper we integrate operator-valued functions R(t ), t ≥ 0, with respect to a
Wiener process W . The operators R(t ), t ≥ 0, will be non-random and will act from
some linear subspaces of S ′(Rd ) into S ′(Rd ). We shall assume that W (t ), t ≥ 0, is
taking values in S ′(Rd ). The process W is space homogeneous in the sense that, for
each t ≥ 0, random variables W (t ) are stationary, Gaussian, generalized random fields.
We denote by Γ the covariance of W (1) and the associated spectral measure by µ. To
underline the fact that the distributions of W are determined by Γ we will write WΓ.
From now on we denote by q, a scalar product on S (Rd ) given by the formula:

q(φ;ψ) = 〈Γ;φ ∗ ψ(s)〉; φ;ψ ∈ S (Rd ):

The crucial role in the theory of stochastic integration with respect to WΓ is played
by the Hilbert space S ′

q ⊂ S ′(Rd ) called the kernel of WΓ. Namely the space S ′
q consists

of all distributions ξ ∈ S ′(Rd ) for which there exists a constant C such that

|〈ξ;ψ〉| ≤ C
√

q(ψ;ψ); ψ ∈ S (Rd ):

The norm in S ′
q is given by the formula:

|ξ|S ′
q

= sup
ψ∈S

|〈ξ;ψ〉|√
q(ψ;ψ)

:

Let us assume that the stochastic integral should take values in a Hilbert space H
continuously imbedded into S ′(Rd ) : Let LHS (S ′

q; H ) be the space of Hilbert-Schmidt
operators from S ′

q into H . Assume that R(t ), t ≥ 0, is measurable LHS (S ′
q; H )-valued

function such that ∫ t

0
‖R(σ)‖2

LHS (S ′
q ;H )dσ <+ ∞; for all t ≥ 0 :

Then the stochastic integral
∫ t

0
R(σ)dWΓ(σ); t ≥ 0

can be defined in a standard way, see [16, 11] or [24].
Of special interest are operators R(t ), t ≥ 0, of convolution type:

R(t )ξ = r(t ) ∗ ξ ; t ≥ 0 ; ξ ∈ S ′(Rd ) ;
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with r(t ) ∈ S ′(Rd ) . The convolution operator is not, in general, defined for all ξ ∈
∈ S ′(Rd ) and for the stochastic integration it is important to know under what condi-
tions on r(·) and ξ the convolution is well-defined. For many important examples the
Fourier transformFr(t )(λ) ; t ≥ 0 ;λ ∈ Rd , is continuous in both variables and, for
any T ≥ 0 ,

(3) sup
t∈[0;T ]

sup
λ∈Rd

|Fr(t )(λ)| = MT <+ ∞:

If this is the case then the operators R(t ) can be defined in a non-ambiguous way using
Fourier transforms:

R(t )ξ = F−1(Fr(t )Fξ) ;

for all ξ such that Fξ has a representation as a function.

Proposition 3. Assume that the function Fr is continuous in both variables and satisfies
condition (3). Then the stochastic convolution :

R ∗ WΓ(t ) =

∫ t

0
R(t − σ)dWΓ(σ) ; t ≥ 0 ;

is a well-defined S ′(Rd )-valued stochastic process. For each t ≥ 0, R ∗ WΓ(t ) is a Gaussian,
stationary, generalized random field with the spectral measure :

(4) µt (dλ) =

(∫ t

0
|Fr(σ)(λ)|2dσ

)
µ(dλ) ;

and with the covariance Γt :

(5) Γt =

∫ t

0
r(σ) ∗ Γ ∗ r(s)(σ)dσ :

Proof. We show first that formula (4) defines a tempered measure µt and formula
(5) defines a positive-definite distribution Γt . Since, by our assumptions, the function
|F(r(σ))(λ)|2, σ ≥ 0, λ ∈ Rd , is bounded and continuous, so the integral

∫ t

0
|F(r(σ))(λ)|2dσ ; λ ∈ Rd ;

is bounded and continuous, as well.
Since µ was a tempered measure, so it is clear that also µt given by (4) is a tempered

measure. To show that (5) defines a positive-definite distribution it is enough to show
that Γt = F−1(µt ). But

F−1(µt ) =

∫ t

0
F−1 [|F(r(σ))(λ)|2

]
dσ :

However

|F(r(σ))(λ)|2 = F(r(σ))(λ)F(r(σ))(λ) = F(r(σ))(λ)F(r(s)(σ))(λ)

and therefore

|F(r(σ))(λ)|2µ = F(r(σ))(λ)F(r(s)(σ))(λ)F−1(F(µ)):
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Since F−1 transforms product of distributions ξ1ξ2ξ3 (if well-defined) onto convolutions
of the inverse Fourier transforms F−1(ξ1) ∗ F−1(ξ2) ∗ F−1(ξ3), we have

F−1 [|F(r(σ))(λ)|2µ
]

= r(σ) ∗ r(s)(σ) ∗ F−1(µ) :

Then

F−1(µt ) =

∫ t

0

(
F−1[|F(r(σ))(λ)|2µ]

)
dσ =

∫ t

0
r(σ) ∗ r(s)(σ) ∗ F−1(µ)dσ :

Since Γ = F−1(µ) and Γt = F−1(µt ), so

Γt =

∫ t

0
r(σ) ∗ Γ ∗ r(s)(σ)dσ :

Let us notice that integrals are Riemann integrals.
Let p be an arbitrary continuous scalar product on S (Rd ) ; such that the embedding:

S ′
q(Rd ) ⊂ S ′

p(Rd ), is Hilbert-Schmidt. Note that for ξ ∈ S ′
q(Rd ) ,

ξ = F−1(uµ) with u ∈ L2
(s)(R

d ;µ) :

By (3) , F(r(t ))F(ξ) is a measure,

F(r(t ))(λ)u(λ)µ(dλ) ;

belonging again to S ′
q(Rd ) . Moreover, for t ∈ [0; T ] ;

||R(t )||L(S ′
q ;S ′

q ) ≤ sup
t∈[0;T ]

sup
λ∈Rd

|Fr(t )(λ)| = MT <+ ∞ :

Since the embedding S ′
q ⊂ S ′

p is Hilbert-Schmidt, the stochastic integral, by the very
definition, is an S ′

p -valued random variable. Denote:

Zt = R ∗ WΓ(t ) :

Then we may write

E
(
〈Zt ;ϕ〉〈Zt ;ψ〉

)
= E

(〈∫ t

0
R(t − σ)dWΓ(σ);ϕ

〉〈∫ t

0
R(t − u)dWΓ(u);ψ

〉)
=

= E
(∫ t

0
〈r(t − σ) ∗ ϕ; dWΓ(σ)〉

∫ t

0
〈r(t − u) ∗ ψ; dWΓ(u)〉

)
=

=

∫ t

0
〈Γ; (r(σ) ∗ ϕ) ∗ (r(σ) ∗ ψ)(s)〉dσ

where ϕ, ψ ∈ S (Rd ). This implies the formula (5) of the theorem, from which (4)
easily follows.

As an application consider the so called Levy-Khinchin exponent

(6) a(λ) =
1
2
〈Qλ;λ〉 −

∫

Rd

(ei(λ;y) − 1)ν(dy)
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of an infinitely divisible symmetric law. In the formula (6), Q is a symmetric, non-
negative definite matrix and ν is a symmetric measure concentrated on Rd \ {0} such
that

(7)
∫

|y|≤1
|y|2ν(dy) <+ ∞;

∫

|y|>1
1ν(dy) <+ ∞ :

From Proposition 3 we have the following proposition.

Proposition 4. Assume that

Fr(t )(λ) = e−ta(λ) ; t ≥ 0

where a is the Levy-Khinchin exponent defined by (6) and (7). Then the conditions of
Proposition 3 are satisfied.

The proposition together with Proposition 3 strengthen slightly an earlier result by
[12] which was concerned with function a(λ) = |λ|α, α ∈]0; 2]. The proof in [12]
was different and more functional analytic.

For more information on stochastic integral with values in the Schwartz space of
tempered distributions S ′(Rd ) we refere to Itô [15, 16], Bojdecki and Jakubowski [3-6],
Bojdecki and Gorostiza [2] and Peszat and Zabczyk [24, 25].

4. Stochastic Volterra equation

We study the linear, stochastic, Volterra equation in S ′(Rd ) :

(8) X (t ) =

∫ t

0
v(t − τ )AX (τ )d τ + X0 + WΓ(t );

where X0 ∈ S ′(Rd ), A is an operator given in the Fourier transform form:

(8a) F(Aξ)(λ) = −a(λ)F(ξ)(λ) ;

v is a locally integrable function and WΓ is an S ′(Rd )-valued space homogeneous Wiener
process.

The deterministic version of the equation has been investigated by many authors, see
Prüss [26]. Stochastic Volterra equation (8) but in bounded domains has been analysed
by Clément and Da Prato [7, 8].

We shall assume the following Hypothesis (H1):

1. For any γ ≥ 0, the equation

s(t ) + γ

∫ t

0
v(t − τ )s(τ )d τ = 1; t ≥ 0

has exactly one solution s(·; γ) locally integrable and measurable with respect to
both variables γ ≥ 0 and t ≥ 0.

2. Moreover, for any T ≥ 0, supt∈[0;T ] sup
γ≥0 |s(t; γ)| <+ ∞.
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For some special cases the function s(t ; γ) may be found explicitely. Namely, we
have (see, e.g., [26]):

for v(t ) ≡ 1; s(t ; γ) = e−γt ; t ≥ 0; γ ≥ 0;(9)

for v(t ) = t; s(t ; γ) = cos(
√
γt ); t ≥ 0; γ ≥ 0;(10)

for v(t ) = e−t ; s(t ; γ)=(1+γ)−1
[
1+γe−(1+γ)t

]
; t ≥ 0; γ ≥ 0:(11)

Hypothesis (H1) is satisfied if for instance function v is nonnegative and nonin-
creasing, see [26, p. 39].

We introduce now the so called resolvent family R(·) determined by the operator A
and the function v . Namely,

R(t )ξ = r(t ) ∗ ξ; ξ ∈ S ′(Rd );

where,

r(t ) = F−1s(t; a(·)); t ≥ 0 :

As in the deterministic case the solution to the stochastic Volterra equation (8) is
of the form:

X (t ) = R(t )X0 +

∫ t

0
R(t − τ )dWΓ(τ ) ; t ≥ 0 :

We have the following corollaries of the previous results on stochastic integration.

Theorem 1. Let WΓ be a spatially homogeneous Wiener process and R(t ), t ≥ 0, the
resolvent for the equation (8). If Hypothesis (H1) holds then the stochastic convolution

R ∗ WΓ(t ) =

∫ t

0
R(t − σ)dWΓ(σ) ; t ≥ 0;

is a well-defined S ′(Rd )-valued process. For each t ≥ 0 the random variable R ∗ WΓ(t ) is a
generalized, stationary random field on Rd with the spectral measure µt :

(12) µt (dλ) =

[∫ t

0
(s(σ; a(λ)))2 dσ

]
µ(dλ):

Proof of Theorem 1 is a direct consequence of Proposition 3.

Theorem 2. Assume that the Hypothesis (H1) holds. Then the process R∗WΓ(t ) is function-
valued for all t ≥ 0 if and only if

∫

Rd

(∫ t

0
(s(σ; a(λ)))2 dσ

)
µ(dλ) <+ ∞; t ≥ 0 :

If for some ε > 0 and all t ≥ 0,
∫ t

0

∫

Rd
(ln(1 + |λ|))1+ε (s(σ; a(λ)))2dσµ(dλ) <+ ∞;

then, for each t ≥ 0 , R ∗ WΓ(t ) is a sample continuous random field.

Proof of Theorem 2 comes directly from Theorem 1 and Propositions 1 and 2.
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5. Applications

5.1. Regularity and continuity in terms of Γ.

In this subsection we provide conditions for regularity and continuity of the solutions
in terms of the covariance kernel Γ of the Wiener process WΓ rather than in terms of
the spectral measure as we have done up to now.

We shall need an additional assumption.

Hypothesis (H2). For arbitrary T > 0, there exist constants c1; c2 ≥ 0 such that for
some δ ≥ 0, all λ ∈ Rd and t ∈ [0; T ]

c1

1 + aδ(λ)
≤

∫ t

0
s2(σ; a(λ))dσ ≤ c2

1 + aδ(λ)
:

Let us notice that functions s(t; a(λ)) from the cases (9), (10) and (11) satisfy
Hypothesis (H2) with δ = 1, δ = 0 and δ = 1, respectively. The folllowing result is a
consequence of Theorem 2.

Theorem 3. Assume that (H1) and (H2) hold and that the operator A is given by formula
(8a). Then there exists a function-valued solution to the stochastic Volterra equation (8) if and
only if

(13)
∫

Rd

1
1 + aδ(λ)

µ(dλ) <+ ∞ :

In the case of stochastic wave equation (2), v(t ) = t , δ = 0 and a(λ) = |λ|α,
α ∈]0; 2], A = −(−∆)α=2, condition (13) is equivalent to the requirement that the
measure µ is finite. If δ > 0 and a(λ) = |λ|α, then condition (13) is equivalent to

(13a)
∫

Rd

1
1 + |λ|δα

µ(dλ) <+ ∞ :

Moreover, if Γ is a nonnegative measure and d ≥ 3, (13a) is equivalent to
∫

|λ|<1

1

|λ|d−αδ
Γ(dλ) <+ ∞ :

Theorem 4. Let Hypothesis (H2) hold. Assume that d ≥ 2 ; that Γ is a non-negative
measure and A = −(−∆)α=2,α ∈]0; 2] : If

∫

|λ|≤1

1

|λ|d−α+δ
Γ(dλ) <+ ∞;

∫

|λ|>1

1

|λ|d+α−δ
Γ(dλ) <+ ∞;

then the solution to the stochastic Volterra equation (8) has continuous version.

The proof will be based on several lemmas. For any γ ∈]0; 2] denote by pγ
t the

density of the γ-stable, rotationally invariant, density on the d -dimensional space. Thus,

e−t |λ|γ = Fpγ
t (λ) :

Lemma 1. For arbitrary t > 0 and arbitrary x ∈ Rd ;

pγ
t (x) = t−d=γpγ

1 (xt−1=γ) :
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Lemma 2. There exists a constant c > 0 such that for all γ ≤ 2 ;

Gγ

d (x) df
=

∫ +∞

0
e−t pγ

t (x)dt ≤ c

|x |d+γ
; x ∈ Rd :

Proof. It is well-known, see e.g., Gorostiza and Wakolbinger [14, p. 286], that for
some constant c1 > 0:

(14) pγ
1 (x) ≤ c1

1 + |x |d+γ
; x ∈ Rd :

From Lemma 1 and the estimate (14) we obtain:

Gγ

d (x) =

∫ +∞

0
e−t t−

d
γ pγ

1

(
x t−

1
γ

)
dt ≤

∫ +∞

0
e−t t−

d
γ

c1

1 +
∣∣∣xt−

1
γ

∣∣∣
d+γ

dt ≤

≤
∫ +∞

0
e−t t−

d
γ

c1t
d+γ
γ

t
d+γ
γ + |x |d+γ

dt ≤
∫ +∞

0
e−t t

c1

t
d+γ
γ + |x |d+γ

dt ≤

≤ c1

|x |d+γ

∫ +∞

0
e−t t dt :

Lemma 3. If γ < d ; γ ∈]0; 2], then there exists a constant c > 0 such that,

Gγ

d (x) ≤ c

|x |d−γ
for |x | < 1 :

Proof. Since

Gγ

d (x) ≤
∫ +∞

0
pγ

t (x) dt ;

the result follows from the well-known formula for Riesz γ-potential, see e.g., Landkof
[20].

Conclusion. There exists a constant c > 0 such that, if γ < d , γ ≤ 2, then:

Gγ

d (x) ≤ c

|x |d−γ
if |x | ≤ 1 ;

and

Gγ

d (x) ≤ c

|x |d+γ
if |x | ≥ 1 :

Proof of Theorem 4.

Now, we pass to the proof of the theorem. If for some ε > 0 and all t > 0,

(15)
∫

Rd

(ln(1 + |λ|))1+ε

[∫ t

0
s2(σ; a(λ)) dσ

]
µ(dλ) <+ ∞;
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then by Theorem 3 for all t > 0, the solution X of the stochastic equation (8) has
a continuous version. Taking into account that by (H2)

∫ t

0
s2(σ; a(λ))dσ ≤ c2

1 + aδ(λ)
;

one can replace (15) by

(16)
∫

Rd

(ln(1 + |λ|))c2+ε c2

1 + aδ(λ)
µ(dλ) <+ ∞ :

Since we have assumed that A = −(−∆)α=2, then a(λ) = |λ|α, with α ∈]0; 2] and
therefore (16) becomes

(17)
∫

Rd

(ln(1 + |λ|))1+ε 1
1 + |λ|αδ

µ(dλ) <+ ∞ :

However, the condition (17) holds for some ε > 0 if for some δ′ > 0
∫

Rd

1
1 + |λ|αδ−δ′ µ(dλ) <+ ∞ :

In the same way as in the paper [18] by Karczewska and Zabczyk, for some constant
c > 0: ∫

Rd

1
1 + |λ|γ µ(dλ) = c

∫

Rd

Gγ

d (x)Γ(dx) ;

where γ := αδ − δ′.
Taking into account Lemma 2 and Lemma 3, the result follows.

5.2. Some special cases.

In this subsection we illustrate the main results obtained in the paper by several
examples.

Let us recall that the linear stochastic Volterra equation (8) considered in the paper,
with the operator A given in the form (8a), is determined by three objects: the spatial
correlation Γ of the process WΓ, the operator A and the function v or, equivalently, by
the spectral measure µ, the function a and the function s, respectively.

We apply our Theorems 2 and 4 to several special cases corresponding to particular
choices of functions v, a and of the measure µ. We will assume, for instance, that
v(t ) ≡ 1 or v(t ) = t or v(t ) = e−t , t ≥ 0, that a(λ) = |λ|α, α ∈]0; 2], λ ∈ Rd

and that the measure µ is either finite or µ(dλ) = 1
|λ|γ dλ, γ ∈]0; d [. Note that if

a(λ) = |λ|2, then A = ∆ and if a(λ) = |λ|α, α ∈]0; 2[, then A = −(−∆)α=2 is the
fractional Laplacian.

Case 1. If (H1) holds, the function a is given by (6) and (7) and the measure
µ is finite then R ∗ WΓ is a function-valued process. To see this note that by (H1)
and Theorem 1, the measure µt given by (12) is finite. So, the result follows from
Theorem 2.
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Case 2. If (H1) and (H2) hold, the function a is given by (6) and (7) and µ is a
measure such that for some ε > 0,

∫

Rd
(ln(1 + |λ|))1+ε 1

1 + aδ(λ)
µ(dλ) <+ ∞;

then for arbitrary t > 0, R ∗ WΓ(t ) is a continuous random field. This follows imme-
diately from Theorem 2.

Case 3. Assume that v(t ) ≡ 1 or v(t ) = t or v(t ) = e−t , t ≥ 0, A = ∆ and
Γ(x) = Γβ(x) = 1

|x|β , β ∈ [0; d [. Then function s is given by formulas (9), (10) and

(11), respectively. Moreover a(λ) = |λ|2, and the spectral measure µβ corresponding

to Γβ is of the form µβ(dλ) = cβ=|λ|d−β , with cβ a positive constant. To simplify
notation we assume that d ≥ 2. Then R ∗ WΓ is function-valued process if and only
if β ∈]0; 2[, see [18]. Moreover, if β ∈]0; 2[ then for each t > 0, R ∗ WΓ(t ), is a
continuous random field. To prove the latter statement we use Theorem 4 and show
that for some δ > 0,

(18)
∫

|λ|<1

1

|λ|d−2+δ
Γβ(λ)dλ <+ ∞

and

(19)
∫

|λ|≥1

1

|λ|d+2−δ
Γβ(λ)dλ <+ ∞ :

Condition (19) is always satisfied because it is equivalent to: β > δ−2. Condition (18)
may be replaced by the following one:

∫

|λ|<1

1

|λ|d−2+δ+β
dλ = c

∫ 1

0

1

rd−2+δ+β
rd−1dr = c

∫ 1

0

1
rβ−1+δ

dr <+ ∞;

equivalent to β < 2 − δ.

Case 4. Assume that v(t ) ≡ 1 and the operator A is given by the formula (8a),
where

a(λ) = 〈Qλ;λ〉 +

∫

Rd

(1 − cos〈λ; x〉)ν(dx)

and ν is a symmetric measure such that
∫

Rd

(|x |2 ∧ 1) ν(dx) <+ ∞ :

Then the equation (8) has a function-valued solution if and only if
∫

Rd

1
1 + a(λ)

µ(dλ) <+ ∞ :

Additionally, if X0 = 0 and
∫

Rd

(ln(1 + |λ|)1+ε)
1

1 + a(λ)
µ(dλ) <+ ∞;
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then equation (8) has continuous version for each t ≥ 0.
In this situation, s(σ; a(λ)) = e−σa(λ). By Theorem 2 the condition for the existence

of function-valued solution of the equation (8) becomes:
∫

Rd

(∫ t

0
(s(σ; a(λ)))2dσ

)
µ(dλ) =

∫

Rd

∫ t

0
e−2σa(λ)dσ µ(dλ) <+ ∞;

and it is equivalent to ∫

Rd

1
1 + a(λ)

µ(dλ) <+ ∞ :
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