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Equazioni a derivate parziali. — Blow-up of nonnegative solutions to quasilinear parabolic
inequalities. Nota di Stanislav I. Pohozaev e Alberto Tesei, presentata (*) dal Socio A.
Tesei.

Abstract. — We investigate critical exponents for blow-up of nonnegative solutions to a class of
parabolic inequalities. The proofs make use of a priori estimates of solutions combined with a simple
scaling argument.

Key words: Critical exponent; Parabolic inequalities; Blow-up; Global existence.

Riassunto. — Esplosione in tempo finito di soluzioni nonnegative di disequazioni paraboliche quasilineari.
Si studia l’esponente critico per l’esplosione in tempo finito di soluzioni nonnegative di una classe di
disequazioni paraboliche. Le dimostrazioni fanno uso di stime a priori delle soluzioni, combinate con un
semplice argomento di riscalamento.

1. Introduction

In this paper we investigate blow-up of nonnegative solutions to parabolic inequalities
of the following type:

(1.1) ρ(x; t )@ t (u
k) ≥

n∑

i;j=1

@xi

[
aij (x; t; u) f (| ∇u |) @xj

u
]

+ c(x; t; u) uq

in IRn × (0;∞); here k > 0, q > 1 and ρ, aij , f , c are given functions (ρ; f; c positive,
aij = aji ; precise assumptions are made in Section 2). In particular, our results apply
to solutions of the Cauchy problem for parabolic equations of the form (1.1) with the
equality sign.

Our purpose is to investigate critical exponents for blow-up. To describe the type of
results we seek, consider the semilinear Cauchy parabolic problem:

(1.2)
{

@ t u = ∆u + uq in IRn × (0;∞)

u = u0 in IRn × {0} ;

where u0 is nonnegative, continuous and bounded in IRn. As is well known, if

(1.3) 1 < q < 1 + 2=n

the only global solution to problem (1.2) is trivial; on the other hand, when q > 1 +

+ 2=n global solutions exist if the initial data u0 is suitably small (see [1]). The number
qc = qc (n) := 1 + 2=n is called the critical exponent of problem (1.2).

The appearance of a critical exponent larger than one is a typical feature of blow-up
for space dependent evolution problems; in fact, it can be regarded as the effect of

(*) Nella seduta del 10 marzo 2000.
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competition between diffusion (and/or convection) effects on one side, and reaction on
the other. The existence of critical exponents has been widely investigated by different
methods, e.g. using comparison results, similarity solutions or particular functionals (see
[2, 5] and references therein). In general, these methods appear to rely on the specific
form of the problem under investigation.

In this paper we approach the problem from a general viewpoint, regarding blow-up
as nonexistence of global solutions to the evolution problem. We derive sufficient condi-
tions, which ensure nonexistence of global nonnegative solutions to parabolic inequality
(1.1) (see Theorem 3.1). In particular, this nonexistence result applies to solutions of
the Cauchy problem for the corresponding parabolic equation, thus giving conditions
which determine the critical exponent of the problem. When applied to concrete cases
dealt with in the literature, our procedure obtains the already known critical exponents
(see Theorems 3.2-3.4 below and [2]). On the other hand, it can be applied to a wide
class of problems, as apparent from (1.1).

Let us mention that similar methods have been used to prove nonexistence theorems
of Liouville type for elliptic inequalities (see [3]). The underlying ideas of the method
suggest a general approach to nonexistence problems, which leads to the concept of
nonlinear capacity (see [4]).

2. Mathematical background

Let ST denote the strip IRn × (0; T ] (T ∈ (0;∞]); set S ≡ S∞. The following
assumptions will be made throughout the paper:
(a) ρ ∈ C (ST ), aij ∈ C (ST × [0;∞)), c ∈ C (ST × [0;∞)), f ∈ C ([0;∞));
(b) ρ > 0, c > 0, ρ(x; ·) nondecreasing for any x ∈ IRn;
(c) there exist A0 = A0(x; t; u), A1 = A1(x; t; u) ∈ C (ST × [0;∞)) such that 0 ≤ A0 ≤

≤ A1 and there holds:

A0| ξ |2 ≤
n∑

i;j=1

aij ξi ξj ; |
n∑

i;j=1

aij ξi ηj |≤ A1 | ξ || η |

for any ξ; η ∈ IRn ;
(d ) f ≥ 0 in [0;∞) and for any t ≥ 0 there holds either

(i) 0 ≤ f (t ) ≤ c0 ; or (ii) c1 t p−2 ≤ f (t ) ≤ c2 t p−2

(c0 > 0; 0 < c1 ≤ c2, p > 2).

The above assumptions will be collectively referred to as Assumption (H ).
Concerning solutions to inequality (1.1) let us make the following definitions.

Definition 2.1. By a strong solution to inequality (1:1) in ST we mean any nonnegative
function u ∈ C (ST ) such that (its distributional derivatives of the first order in time and up
to the second order in the space variables are defined almost everywhere in ST and ) inequality
(1:1) is satisfied almost everywhere in ST .
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Definition 2.2. Let α ∈ (−k; 0). By a solution of class P
α

to (1:1) in ST we mean
any nonnegative function u ∈ C (ST ) such that for any test function ψ ≥ 0 with support in
ST there holds :

(i)

(2.1)
∫∫

supp u

A1f (| ∇u |) | ∇u | uα | ∇ψ |< ∞ ;

(ii)

(2.2)

| α |
∫∫

supp u

[ n∑

i;j=1

aij@xi
u @xj

u
]

f (| ∇u |) uα−1ψ +

∫∫

supp u

c uq+αψ ≤

≤
∫∫

supp u

[ n∑

i;j=1

aij@xi
u @xj

ψ
]

f (| ∇u |) uα − k
k + α

∫∫

supp u

ρ uk+α@tψ :

A solution of class Pα to (1:1) is said to be global, if it is such a solution in ST for any T > 0.

It is easy to prove that, due to Assumption (H ), to condition (2.1) and to the
assumption α > −k, every integral in inequality (2.2) is finite. Hence Definition 2.2
is well posed.

Concerning the relationship between the above definitions, let us note the following
result.

Proposition 2.3. Let u be a strong solution to inequality (1:1) in ST , such that @t u ∈
∈ L1

loc(ST ) and the pointwise limit u(·; 0) := limt→0 u(·; t ) is defined and continuous in IRn.
Let condition (2:1) be satisfied. Then u is a solution of class P

α
(α ∈ (−k; 0)).

Proof. Multiplying (1.1) by uα ψ (where α < 0 and ψ ≥ 0 is any test function with
support in ST ) and integrating by parts we obtain:

k
k + α

∫

IRn
uk+α(x; 0)ψ(x; 0)dx +

k
k + α

∫∫

supp u

ρ uk+α@tψ +

+
k

k + α

∫∫

supp u

(@tρ) uk+αψ ≤ α

∫∫

supp u

[ n∑

i;j=1

aij@xi
u @xj

u
]

f (| ∇u |) uα−1ψ +

+

∫∫

supp u

[ n∑

i;j=1

aij@xi
u @xj

ψ
]

f (| ∇u |) uα −
∫∫

supp u

c uq+αψ :

The first two integrals in the left-hand side of the above inequality are finite (since
u(·; 0) is locally bounded and α ∈ (−k; 0)), while the third is is nonnegative by As-
sumption (H )-(b). As for the right-hand side, the second integral is finite by Assumption
(H )-(c) and condition (2.1), while the other two are nonpositive. Hence every integral
is finite, thus the claim follows.
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3. Results

In order to prove nonexistence of global solutions of class Pα to inequality (1.1) we
shall argue as follows: firstly we prove suitable a priori estimates for such a solution
(see Lemma 4.1); secondly, we combine the above estimates with a scaling argument to
prove a general nonexistence result (see Theorem 3.1). Let us introduce the following
quantities:

(3.1) D = D(x; t; u) :=
( Ap

1

Ap−1
0 c

µ−1
µ

)µ

; E = E (x; t; u) :=
( ρ

c
ν−1
ν

)ν

;

where

(3.2) µ :=
q + α

q − p + 1
; ν :=

q + α

q − k
(α < 0) ;

here p = 2 if condition (i), respectively p > 2 if condition (ii) of Assumption (H )-(d )
holds.

Our main nonexistence result can be stated as follows.

Theorem 3.1. Let k > 0, p ≥ 2, q > max{p − 1; k} and Assumption (H ) be satisfied.
Assume that for some α ∈ (−min{p − 1; k}; 0) there exists λ > 0 such that :

Rn+ 2
λ−pµ

∫∫

{1≤ξλ≤2}

[
sup
u≥0

D(Rξ; R
2
λ τ; u)

]
d ξ d τ −→ 0 as R → ∞ ;(3.3)

Rn+ 2
λ− 2ν

λ

∫∫

{1≤ξλ≤2}

[
sup
u≥0

E (Rξ; R
2
λ τ; u)

]
d ξ d τ −→ 0 as R → ∞ ;(3.4)

where

(3.5) ξλ := |ξ|2η + |τ |λη ; η := max{1=λ; 1} (ξ ∈ IRn; τ > 0;λ > 0) :

Then the only global solution of class P
α

to inequality (1:1) is trivial.

Let us mention some applications of the above result.

Theorem 3.2. Let condition (1:3) be satisfied. Then there exists α ∈ (−1; 0) such that for
any α ∈ (α; 0) the only global solution of class Pα to the inequality :

(3.6) @ t u ≥
n∑

i=1

@xi

[ 1
(1 +| ∇u |2)θ

@xi
u
]

+ uq

in S (θ ≥ 0) is trivial.

Theorem 3.3. Let m ≥ 1 and there hold :

(3.7) m < q < m +
2
n

:

Then there exists α ∈ (−1=m; 0) such that for any α ∈ (α; 0) the only global solution of class
P
α to the inequality:

(3.8) @ t u ≥ ∆(um) + uq

in S is trivial.
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Theorem 3.4. Let p ≥ 2 and there hold :

(3.9) p − 1 < q < p − 1 +
p
n

:

Then there exists α ∈ (−1; 0) such that for any α ∈ (α; 0) the only global solution of class P
α

to the inequality:

(3.10) @ t u ≥
n∑

i=1

@xi

[
| ∇u |p−2 @xi

u
]

+ uq

in S is trivial.

It can be observed that both conditions (3.7) and (3.9) reduce to the Fujita condition
(1.3) when m = 1, respectively when p = 2. The same condition (1.3) determines the
critical exponent for inequality (3.6) for any θ ≥ 0.

Due to Proposition 2.3, Theorems 3.2-3.4 imply corresponding results for strong
solutions to the Cauchy problem for parabolic equations - in particular, for classical
positive solutions. We leave their formulation to the reader.

4. Proofs

Let us first prove Theorem 3.1. For this purpose we need the following lemma
(where the quantities D, E , µ, ν are defined by (3.1)-(3.2)).

Lemma 4.1. Let k > 0, p ≥ 2, q > max{p − 1; k} and Assumption (H ) be satisfied. Let u
be a solution of class P

α
to (1:1) in ST (α ∈ (−min{p − 1; k}; 0)). Then there exist k1 > 0,

k2 > 0 (depending on k, p, q, α, f ) such that

(4.1)

| α |
p

∫∫

supp u

A0 | ∇u |p uα−1ψ +
1
µν

∫∫

supp u

c uq+αψ ≤

≤ k1

∫∫

supp u

D
| ∇ψ |pµ

ψpµ−1 + k2

∫∫

supp u

E
| @tψ |ν

ψν−1

for any test function ψ ≥ 0 with support in ST .

Proof. By inequality (2.2) in Definition 2.2 and Assumption (H )-(c) there holds:

(4.2)

| α |
∫∫

supp u

A0 | ∇u |2 f (| ∇u |)uα−1ψ +

∫∫

supp u

c uq+αψ ≤

≤
∫∫

supp u

A1 | ∇u | f (| ∇u |)uα | ∇ψ |+ k
k + α

∫∫

supp u

ρ uk+α | @tψ | :

Concerning the first term in the right-hand side of the above inequality, by Young
inequality we have on supp ψ:

A1|∇u| f (|∇u|)uα|∇ψ| ≤ f (|∇u|)
{ |α|

2
A0|∇u|2 uα−1ψ +

1
2|α|

A2
1

A0
u1+α |∇ψ|2

ψ

}
:
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Integrating on supp u both members of the above inequality and inserting the resulting
inequality in (4.2) we obtain:

(4.3)

| α |
2

∫∫

supp u

A0 | ∇u |2 f (| ∇u |)uα−1ψ +

∫∫

supp u

c uq+αψ ≤

≤ 1
2 | α |

∫∫

supp u

A2
1

A0
f (| ∇u |)u1+α | ∇ψ |2

ψ
+

k
k + α

∫∫

supp u

ρ uk+α | @tψ | :

(A) Suppose first that condition (i) of Assumption (H )-(d ) is satisfied. In this case
there holds:

1
2 | α |

A2
1

A0
f (| ∇u |)u1+α | ∇ψ |2

ψ
≤ c0

2 | α |
A2

1

A0
u1+α | ∇ψ |2

ψ
≤

≤ µ− 1
µ

c uq+αψ +
1
µ

( c0

2 | α |
)µ

D
| ∇ψ |2µ

ψ2µ−1

(where c0 is the positive constant in condition (i)). Integrating again and inserting the
resulting inequality in (4.3) we obtain:

(4.4)

| α |
2

∫∫

supp u

A0 | ∇u |2 f (| ∇u |)uα−1ψ +
1
µ

∫∫

supp u

c uq+αψ ≤

≤ 1
µ

( c0

2 | α |
)µ

∫∫

supp u

D
| ∇ψ |2µ

ψ2µ−1 +
k

k + α

∫∫

supp u

ρ uk+α | @tψ | :

The second integral in the right-hand side of (4.4) can be similarly estimated. In fact,
using again Young inequality we obtain:

(4.5)
k

k + α
ρ uk+α | @tψ |≤ ν − 1

µν
c uq+αψ +

µν−1

ν

( k
k + α

)ν

E
| @tψ |ν

ψν−1 :

From (4.4)-(4.5) we obtain easily:

| α |
2

∫∫

supp u

A0 | ∇u |2 f (| ∇u |)uα−1ψ +
1
µν

∫∫

supp u

c uq+αψ ≤

≤ 1
µ

( c0

2 | α |
)µ

∫∫

supp u

D
| ∇ψ |2µ

ψ2µ−1 +
µν−1

ν

( k
k + α

)ν
∫∫

supp u

E
| @tψ |ν
|ψ |ν−1 :

Then the conclusion follows in this case.
(B) Let condition (ii) of Assumption (H )-(d ) be satisfied. In this case from inequal-

ity (4.2) we obtain:

(4.6)

| α | c1

∫∫

supp u

A0 | ∇u |p uα−1ψ +

∫∫

supp u

c uq+αψ ≤

≤ c2

∫∫

supp u

A1 | ∇u |p−1 uα | ∇ψ |+ k
k + α

∫∫

supp u

ρ uk+α | @tψ |

(where c1 and c2 appear in condition (ii)). Using repeatedly the Young inequality we
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have on supp ψ:

c2A1 | ∇u |p−1 uα | ∇ψ |≤

≤ | α | c1

2
A0 | ∇u |p uα−1ψ +

c2

2 | α | c1

A2
1

A0
| ∇u |p−2 u1+α | ∇ψ |2

ψ
≤

≤| α | c1

p − 1
p

A0 | ∇u |p uα−1ψ +
c

p
2

2

p(| α | c1)p−1

Ap
1

Ap−1
0

up−1+α | ∇ψ |p

ψp−1 ≤

≤| α | c1

p − 1
p

A0 | ∇u |p uα−1ψ +
µ− 1
µ

c uq+αψ +
1
µ

[ c
p
2

2

p (| α | c1)p−1

]µ
D

| ∇ψ |pµ

ψpµ−1 :

By integrating and inserting the resulting inequality in (4.6) we obtain:

| α | c1

p

∫∫

supp u

A0 | ∇u |p uα−1ψ +
1
µ

∫∫

supp u

c uq+αψ ≤

≤ 1
µ

[ c
p
2

2

p(| α | c1)p−1

]µ ∫∫

supp u

D
| ∇ψ |pµ

ψpµ−1 +
k

k + α

∫∫

supp u

ρ uk+α | @tψ | :

The second integral in the right-hand side of the above inequality can be dealt with as
in (A) above. Then the conclusion follows.

Now we can prove Theorem 3.1.

Proof of Theorem 3.1. Let u be a global solution of class P
α to (1.1). We shall

prove the following claim:
For any λ > 0 there exist K1 > 0, K2 > 0 (depending on λ, q, p, k, α, f ) such

that for any R > 0

(4.7)

| α |
p

∫∫

Bλ;R

A0 | ∇u |p uα−1dx dt +
1
µν

∫∫

Bλ;R

c uq+αdx dt ≤

≤ K1 Rn+ 2
λ−pµ

∫∫

{1≤ξλ≤2}

[
sup
u≥0

D(Rξ; R
2
λ τ; u)

]
d ξ d τ +

+ K2 Rn+ 2
λ− 2ν

λ

∫∫

{1≤ξλ≤2}

[
sup
u≥0

E (Rξ; R
2
λ τ; u)

]
d ξ d τ ;

where ξ
λ

is defined by (3.5) and B
λ;R := supp u

⋂
{(x; t ) ∈ S | | x |2η+ tλη ≤ R2η}

(λ > 0; R > 0; η := max{1=λ; 1}).
From inequality (4.7) the conclusion easily follows. In fact, let Q ⊆ S be any

bounded subset; choose λ > 0 such that conditions (3.3)-(3.4) are satisfied. Since the
family {Bλ;R} is nondecreasing in R and supp u =

⋃
R>0 Bλ;R , there exists R1 > 0 such

that supp u
⋂

Q ⊆ Bλ;R1
. Moreover, due to assumptions (3.3)-(3.4), for any ε > 0

there exists R2 > 0 such that for any R > R2:

Rn+ 2
λ−pµ

∫∫

{1≤ξλ≤2}

[
sup
u≥0

D(Rξ; R
2
λ τ; u)

]
d ξ d τ < ε;

Rn+ 2
λ− 2ν

λ

∫∫

{1≤ξλ≤2}

[
sup
u≥0

E (Rξ; R
2
λ τ; u)

]
d ξ d τ < ε :



106 s.i. pohozaev - a. tesei

Set R := max{R1; 2R2}; from (4.7) we obtain:

| α |
p

∫∫

supp u ∩ Q

A0 | ∇u |p uα−1 +
1
µν

∫∫

supp u∩ Q

c uq+α ≤

≤ | α |
p

∫∫

B
λ;R

A0 | ∇u |p uα−1 +
1
µν

∫∫

B
λ;R

c uq+α < (K1 + K2)ε :

Due to the arbitrariness of Q and ε the conclusion follows.

It remains to prove inequality (4.7). For this purpose, consider any smooth function
ψ0 : [0;∞) → [0; 1] with the following properties:

(i) ψ0 ≡ 1 in [0; 1], ψ0 ≡ 0 in [2;∞), ψ0 nonincreasing;

(ii) there holds:

sup
ξ∈[1;2]

| ψ′
0(ξ) |pµ

ψ
pµ−1
0 (ξ)

< ∞ ; sup
ξ∈[1;2]

| ψ′
0(ξ) |ν

ψν−1
0 (ξ)

< ∞ :

Define

ξλ;R :=
| x |2η+ tλη

R2η ; ψλ;R (x; t ) := ψ0 (ξλ;R ) (λ > 0; R > 0) :

Since

suppψλ;R = {ξλ;R ≤ 2} ;

setting ψ = ψ
λ;R in inequality (4.1) we obtain:

(4.8)

| α |
p

∫∫

Bλ;R

A0 | ∇u |p uα−1 +
1
µν

∫∫

Bλ;R

c uq+α ≤

≤ | α |
p

∫∫

supp u ∩{ξλ;R≤2}

A0 | ∇u |p uα−1ψλ;R +
1
µν

∫∫

supp u ∩{ξλ;R≤2}

c uq+αψλ;R ≤

≤
∫

supp u ∩{1≤ξλ;R≤2}

D
| ∇ψλ;R |pµ

ψ
pµ−1
λ;R

+ k2

∫∫

supp u ∩{1≤ξλ;R≤2}

E
| @tψλ;R |ν

ψν−1
λ;R

≤

≤ k1

∫∫

{1≤ξλ;R≤2}

[sup
u≥0

D]
| ∇ψλ;R |pµ

ψ
pµ−1
λ;R

+ k2

∫∫

{1≤ξλ;R≤2}

[sup
u≥0

E ]
| @tψλ;R |ν

ψν−1
λ;R

:

It is easily seen that

| ∇ψλ;R | = 2η|ψ′
0(ξ)| |x |

2η−1

R2η ;

| @tψλ;R | = λη|ψ′
0(ξ)| tλη−1

R2η :
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Then from (4.8) we obtain:

(4.9)

| α |
p

∫∫

Bλ;R

A0 | ∇u |p uα−1 +
1
µν

∫∫

Bλ;R

c uq+α ≤

≤ k1

( 2η
R2η

)pµ
∫∫

{1≤ξλ;R≤2}

[
sup
u≥0

D
] | ψ′

0(ξλ;R ) |pµ

ψ0(ξλ;R )pµ−1 |x |(2η−1)pµ +

+ k2

( λη

R2η

)ν
∫∫

{1≤ξλ;R≤2}

[
sup
u≥0

E
] | ψ′

0(ξλ;R ) |ν

ψ0(ξλ;R )ν−1 t (λη−1)ν :

Introducing the scaled variables

ξ := x=R ; τ := t=R2=λ

there holds:

ξλ :=| ξ |2η+ τλη = ξλ;R (λ > 0; R > 0) :

Then inequality (4.9) reads:

| α |
p

∫∫

Bλ;R

A0 | ∇u |p uα−1 +
1
µν

∫∫

Bλ;R

c uq+α ≤

≤ (4η)pµk1 sup
ξ∈[1;2]

| ψ′
0(ξ) |pµ

ψ
pµ−1
0 (ξ)

Rn+ 2
λ−pµ

∫∫

{1≤ξλ≤2}

[
sup
u≥0

D(Rξ; R
2
λ τ; u)

]
d ξ d τ +

+ 2(λη)νk2 sup
ξ∈[1;2]

| ψ′
0(ξ) |ν

ψν−1
0 (ξ)

Rn+ 2
λ− 2ν

λ

∫∫

{1≤ξλ≤2}

[
sup
u≥0

E (Rξ; R
2
λ τ; u)

]
d ξ d τ :

Then by a proper definition of K1,K2 the conclusion follows.

Proving Theorems 3.2-3.4 amounts to show that the conditions of Theorem 3.1 are
satisfied.

Proof of Theorem 3.2. In the present case k = 1, ρ = c ≡ 1, aij ≡ δij , f (t ) = (1 +

+ t 2)−θ. Then Assumption (H ) is satisfied; in particular, condition (i) in (H )-(d )
holds. It follows that D = E ≡ 1, p = 2 and

µ = ν =
q + α

q − 1
:

Both conditions (3.3)-(3.4) are satisfied with λ = 1 if

n + 2 − 2(q + α)
q − 1

< 0 :

Due to condition (1.3), the above inequality holds for α = 0; hence the conclusion
follows.

Proof of Theorem 3.3. Setting k := 1=m and v := u1=k , inequality (3.8) reads

@ t (v
k) ≥ k∆v + vkq ;
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which is of the form (1.1) with ρ = c ≡ 1, aij ≡ kδij , c ≡ 1 and q replaced by kq.
Since condition (i) in (H )-(d ) holds, we have p = 2. It is easily seen that D ≡ k µ,
E ≡ 1 and

µ =
kq + α

kq − 1
; ν =

kq + α

k(q − 1)
:

Then conditions (3.3)- (3.4) are satisfied if




n +
2
λ
− 2(kq + α)

kq − 1
< 0

n +
2
λ
− 2(kq + α)

λk(q − 1)
< 0 :

As in the proof of Theorem 3.4, we choose λ such that the above inequalities reduce
to the same for α = 0. This gives

λ = λ :=
kq − 1

k(q − 1)
> 0 ;

since q > m = 1=k by condition (3.7). Hence both inequalities above are satisfied at
α = 0 for λ = λ if

n +
2k(q − 1)

kq − 1
− 2kq

kq − 1
= n − 2

q − m
< 0 :

Then by condition (3.7) the conclusion follows.

Proof of Theorem 3.4. In the present case k = 1, ρ = c ≡ 1, aij ≡ δij , f (t ) = t p−2.
Hence Assumption (H ) is satisfied; in particular, condition (ii) in (H )-(d ) holds. It is
easily seen that D = E ≡ 1 and

µ =
q + α

q − p + 1
; ν =

q + α

q − 1
:

Then conditions (3.3)-(3.4) are satisfied if




n +
2
λ
− p (q + α)

q − p + 1
< 0

n +
2
λ
− 2(q + α)

λ(q − 1)
< 0 :

As above, we determine λ by requiring the left-hand sides of the above inequalities to
be equal for α = 0. This gives

λ = λ :=
2(q − p + 1)

p (q − 1)
> 0 :

Hence both inequalities above are satisfied at α = 0 for λ = λ if

n +
2
λ
− pq

q − p + 1
= n − p

q − p + 1
< 0 :

Then by condition (3.9) the conclusion follows.
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