Rendiconti Lincei Matematica E Applicazioni

M. Chiara Tamburini, Paola Zucca

On a question of M. Conder

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 11 (2000), n.1, p. 5-7.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_2000_9_11_1_5_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 2000.

Teoria dei gruppi. - On a question of M. Conder. Nota (${ }^{*}$) di M. Chiara Tamburini e Paola Zucca, presentata dal Socio C. De Concini.

Abstract. - We show that the special linear group $\operatorname{SL}(3, \mathbb{Z})$, over the integers, is not $(2,3)$-generated. This gives a negative answer to a question of M . Conder.

Key words: Linear Groups; Simple groups; $(2,3)$-generation.

Riassunto. - Su un problema di M. Conder. Dimostriamo che il gruppo speciale lineare $\operatorname{SL}(3, \mathbb{Z})$, sugli interi, non è (2,3)-generato.

1. Introduction

Recently M. Conder raised the question whether the special linear group $\operatorname{SL}(3, \mathbb{Z})$, over the integers, is $(2,3)$-generated. It appears as Problem 14.49 in the 14° edition of the Kourovka Notebook [8]. The aim of this paper is to show that this question has a negative answer. Such an outcome is not so obvious as, for all primes p, the groups $\operatorname{SL}(3, p)$ are $(2,3)$-generated. This fact can easily be deduced from the result that $\operatorname{PSL}(3, q)$ is $(2,3)$-generated for all prime powers $q \neq 4$ (see $[1,3])$.

Our motivation is founded on the vast literature concerning the $(2,3)$-generation problem. So we find it appropriate to mention some relevant results in this area. We recall that a group G is said to be $(2,3)$-generated if it can be generated by an involution and an element of order 3. Equivalently if it is a non-trivial epimorphic image of $\operatorname{PSL}(2, \mathbb{Z})$, by a well-known result (see, for example, [10, p. 164]). Furthermore, for each natural number k, G is said to be $(2,3, k)$-generated if it admits a $(2,3)$ generating pair (X, Y) such that $X Y$ has order k. First of all we mention a remarkable paper [4], where it is shown that, for all series of finite simple groups of Lie type (with the exception of $\operatorname{PSp}(4, q), q=2^{m}$ or 3^{m}), a generic involution and a generic element of order 3 generate the group with probability 1 . On the other hand, recent constructive results show that the family of $(2,3, k)$-generated groups is very large. In fact, for each prime $k \geq 7$, there are $2^{\aleph_{0}}$ isomorphism classes of simple $(2,3, k)$ generated groups (see [5, 7, 12]). In particular, most finite classical groups of large rank are $(2,3,7)$-generated [6].

It has been shown in $[7,11]$ that the special linear $\operatorname{group} \operatorname{SL}(n, \mathbb{Z})$ is $(2,3)$ generated for all $n \geq 28$ and, indeed, that it is $(2,3,7)$-generated for all $n \geq 287$. On the other hand, if $n=2,4$, the groups $\operatorname{SL}(n, \mathbb{Z})$ and $\operatorname{GL}(n, \mathbb{Z})$ are not $(2,3)$ generated. This assertion is trivial for $\operatorname{SL}(2, \mathbb{Z})$, since the only involution is the central one. Considering the epimorphism $\operatorname{SL}(2, \mathbb{Z}) \rightarrow \operatorname{GL}(2,2) \simeq \operatorname{Sym}(3)$ it is easy to see
(*) Pervenuta in forma definitiva all'Accademia il 16 settembre 1999.
that $\operatorname{GL}(2, \mathbb{Z})$ contains a normal subgroup of index 4 . It follows that $\operatorname{GL}(2, \mathbb{Z})$ has an abelian quotient of order 4 , and thus it cannot be $(2,3)$-generated. Finally the groups $\operatorname{SL}(4, \mathbb{Z})$ and $\operatorname{GL}(4, \mathbb{Z})$ have $\operatorname{SL}(4,2) \simeq \operatorname{Alt}(8)$ as an epimorphic image. And Miller [9], in 1901, showed that $\operatorname{Alt}(8)$ is not $(2,3)$-generated. For sake of completeness we also mention that $\operatorname{SL}(n, \mathbb{Z})$ is not $(2,3,7)$-generated for all $n \leq 19$ and $n=22$ (cf. [2]).

2. Proof of the result

As usual, we let $G L(3, \mathbb{Z})$ act on the right on the free abelian group \mathbb{Z}^{3}, consisting of row vectors, with canonical basis $\left\{e_{1}, e_{2}, e_{3}\right\}$. In the following p denotes a prime and $f_{p}: \operatorname{GL}(3, \mathbb{Z}) \rightarrow \mathrm{GL}(3, p)$ the obvious homomorphism. We will make repeated use of the fact that $\operatorname{Im} f_{p}$ contains $\operatorname{SL}(3, p)$. In particular, for all primes $p, \operatorname{Im} f_{p}$ is absolutely irreducible (in both actions on row and column vectors) and it is not contained in the group of isometries of any non-zero bilinear form.

Theorem. The groups $\mathrm{GL}(3, \mathbb{Z})$ and $\operatorname{SL}(3, \mathbb{Z})$ are not $(2,3)$-generated.
Proof. Assume, by contradiction, $\mathrm{GL}_{3}(\mathbb{Z})=\langle A, B\rangle$ with $A^{2}=B^{3}=I$. Clearly $\operatorname{det} A=-1$ and $\operatorname{det} B=1$. In particular A fixes pointwise a 2 -dimensional subspace W of \mathbb{Q}^{3}. It follows easily that, up to conjugation in $\mathrm{GL}_{3}(\mathbb{Z})$, we may assume $W \cap \mathbb{Z}^{3}=$ $=\left\langle e_{1}, e_{2}\right\rangle$. Since B cannot be scalar, it admits the eighenvalue 1 . So let $0 \neq w=$ $=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{Z}^{3}$ be such that $w B=w$. The irreducubility of $\operatorname{Im} f_{p}$, for all primes p, implies $\lambda_{3}= \pm 1$. It follows that $\left\{e_{1}, e_{2}, w\right\}$ is a basis of \mathbb{Z}^{3}. Hence, we may assume:

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
a & b & -1
\end{array}\right) \quad, \quad B=\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
0 & 0 & 1
\end{array}\right)
$$

for suitable coprime integers a, b. Now let $z, t \in \mathbb{Z}$ be such that $a z+b t=1$ and consider the matrix $X=\operatorname{block} \operatorname{diag}\left(\left(\begin{array}{cc}z & -b \\ t & a\end{array}\right), 1\right)$. Conjugating A and B by X we get:

$$
\mathrm{GL}(3, \mathbb{Z})=\left\langle A^{X}, B^{X}\right\rangle=\left\langle\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & -1
\end{array}\right),\left(\begin{array}{ccc}
r & v & * \\
s & u & * \\
0 & 0 & 1
\end{array}\right)\right\rangle
$$

Clearly $v= \pm 1$, by the irreducibility of $\operatorname{Im} f_{p}$ in the dual action on column vectors, and $\left(\begin{array}{cc}r & \pm 1 \\ s & u\end{array}\right)$ has order 3 and trace -1 . Setting $Y=\operatorname{block} \operatorname{diag}\left(\left(\begin{array}{cc}1 & 0 \\ -r & 1\end{array}\right), 1\right)$ and subsituting B with B^{-1} if necessary, one easily obtains:

$$
\operatorname{GL}(3, \mathbb{Z})=\left\langle A^{X Y}, B^{X Y}\right\rangle=\left\langle\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & -1
\end{array}\right), \quad\left(\begin{array}{ccc}
0 & 1 & x \\
-1 & -1 & y \\
0 & 0 & 1
\end{array}\right)\right\rangle
$$

where x and y are suitable coprime integers. Now consider the matrix

$$
J=\left(\begin{array}{ccc}
2(2 x+y) & 2(y-x) & 2 x+y \\
2(y-x) & (y+x-4)(y-x) & y-x \\
2 x+y & y-x & 3
\end{array}\right)
$$

and set $\bar{A}=A^{X Y}, \bar{B}=B^{X Y}$. A direct calculation shows that $\bar{A} J \bar{A}^{t}=J$ and $\bar{B} J \bar{B}^{t}=J$, whenever $y(2 x+y-6)=0$. This means that, if p divides $y(2 x+y-6)$, then $\operatorname{Im} f_{p}$ is a group of isometries with respect to the bilinear form induced by $f_{p}(J)$. It follows $f_{p}(J)=0$, hence $p=3, x \equiv y(\bmod 3)$. But, in this case, $\operatorname{Im} f_{3}$ would fix the subspace $\langle(1,-1,0)\rangle$ of \mathbb{Z}_{3}^{3}, a contradiction. It follows $y= \pm 1,2 x+y-6= \pm 1$ and we are left with 4 possibilities. Assume first $x=3, y=1$ or $x=4, y=-1$. Then $\operatorname{Im} f_{13}$ would fix the subspace $\langle(1,-x y, 0)\rangle$ of \mathbb{Z}_{13}^{3}, against the irreducibilty. Finally, if $x=2, y=1$ or $x=3, y=-1$, then $\operatorname{Im} f_{7}$ would fix the subspace $\langle(1,-x y, 0)\rangle$ of \mathbb{Z}_{7}^{3}, a final contradiction. We have thus shown that $\mathrm{GL}(3, \mathbb{Z})$ is not $(2,3)$-generated.

Noting that $\mathrm{GL}(2 m+1, \mathbb{Z})=\operatorname{SL}(2 m+1, \mathbb{Z}) \times\langle-I\rangle$ it follows immediately that $\operatorname{SL}(3, \mathbb{Z})$ is not $(2,3)$-generated. In fact any $(2,3)$-generating couple (C, D) of $\operatorname{SL}(2 m+1, \mathbb{Z})$ gives rise to the $(2,3)$-generating couple $(-C, D)$ of $\operatorname{GL}(2 m+1, \mathbb{Z})$.

References

[1] J. Cohen, On non-Hurwitz groups. Glasgow Math. J., 22, 1981, 1-7.
[2] L. Di Martino - M. C. Tamburini - A. Zalesskii, On Hurwitz groups of low rank. To appear.
[3] D. Garbe, Uber eine Classe von arithmetisch definierbaren Normalteilern der Modulgruppe. Math. Ann., 235, 1978, 195-215.
[4] M. W. Liebeck - A. Shalev, Classical groups, probabilistic methods and the (2,3)-generation problem. Ann. Math., 144, 1996, 77-125.
[5] A. Lucchint, (2 , 3, k)-generated groups of large rank. Arch. Math. (Basel), 73, n. 4, 1999, 241-248.
[6] A. Lucchini - M. C. Tamburini, Classical groups of large rank as Hurwitz groups. J. Algebra, 219, 1999, 531-546.
[7] A. Lucchini - M. C. Tamburini - J. S. Wilson, Hurwitz groups of large rank. To appear.
[8] V. D. Mazurov - E. I. Кhuкнro, Unsolved Problems in Group Theory. 14° edition, The Kourovka Notebook, Novosibirsk 1999.
[9] G. A. Milier, On the groups generated by two operators. Bull. AMS, 7, 1901, 424-426.
[10] D. Robinson, The Theory of Groups. Springer-Verlag 1982.
[11] M. C. Tamburini - J. S. Wilson - N. Gavioli, On the (2,3)-generation of some classical groups I. J. Algebra, 168, 1994, 353-370.
[12] J. S. Wisson, Simple images of triangle groups. Quart. J. Math. Oxford, Ser. (2), 50, n. 200, 1999, 523-531.

Pervenuta il 5 luglio 1999,
in forma definitiva il 16 settembre 1999.
M. C. Tamburini: Dipartimento di Matematica e Fisica Università Cattolica del Sacro Cuore Via Trieste, 17-25121 Brescia C.Tamburini@dmf.bs.unicatt.it
P. Zucca:

Dipartimento di Matematica Università degli Studi di Palermo Via Archirafi, 34-90123 Palermo

