ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti Lincei Matematica e Applicazioni

José M. Isidro, Jean-Pierre Vigué

On the product property of the Carathéodory pseudodistance

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. **11** (2000), n.1, p. 21–26.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_2000_9_11_1_21_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 2000.

Analisi matematica. — On the product property of the Carathéodory pseudodistance. Nota (*) di José M. Isidro e Jean-Pierre Vigué, presentata dal Socio E. Vesentini.

ABSTRACT. — We prove that, for certain domains \mathbb{D} , continuous product of domains D_{ω} , the Carathéodory pseudodistance satisfies the following product property

$$C_{\mathbb{D}}(f, g) = \sup C_{D_{\omega}}(f(\omega), g(\omega))$$

KEY WORDS: Carathéodory pseudodistance; Product domains; Product property.

RIASSUNTO. — Proprietà del prodotto della pseudodistanza di Carathéodory. Si prova che per alcuni domini \mathbb{D} , che sono prodotti continui di domini D_{ω} , la pseudodistanza di Carathéodory soddisfa la seguente proprietà:

$$C_{\mathbb{D}}(f,g) = \sup_{\omega} C_{D_{\omega}}(f(\omega), g(\omega))$$

1. INTRODUCTION

Let Ω and E respectively be a completely regular topological space and a complex Banach space with open unit ball B(0). Let $\mathbb{E} := C_b(\Omega, E)$ be the Banach space of all continuous bounded E-valued functions $f: \Omega \to E$, endowed with the pointwise operations and the norm of the supremun. Whenever E is a complex Banach space and $D \subset E$ is a domain, we let C_D denote the Carathéodory distance in D.

Recall [5, Definition 1.5] a domain $\mathbb{D} \subset \mathcal{C}(\Omega, E)$ is the continuous Ω -product of the family $(D_{\omega})_{\omega \in \Omega}$ of bounded domains in E if the following two conditions hold : \mathbb{D} is the interior of

$$\{f\in \mathcal{C}(\Omega\,,\,E):f(\omega)\in D_{\omega}\,,\ (\omega\in\Omega)\}\,,\qquad D_{\omega}=\{f(\omega):f\in\mathbb{D}\}\,,\qquad (\omega\in\Omega).$$

In that case \mathbb{D} consists of continuous sections of $\mathbb{D}_*:=\{(\omega, x)\in\Omega\times E: \omega\in\Omega, x\in D_\omega\}$ with respect to the fibration $p:\mathbb{D}_*\to\Omega$ given by $(\omega, x)\mapsto\omega$. Let Ω , E and $\|\cdot\|_{\omega}$, $(\omega\in\Omega)$, respectively be a compact topological space, a complex Banach space and a family of norms in E with open unit balls D_ω , and let $\mathbb{D}:=\{f\in C(\Omega, E): f(\omega)\in$ $\in D_\omega$, $(\omega\in\Omega)\}$ be a bounded domain in $C(\Omega, E)$. Then \mathbb{D} is the continuous Ω product of the family $(D_\omega)_{\omega\in\Omega}$ if and only if there are constants $0 < m \le M < \infty$ such that $m\|\cdot\| \le \|\cdot\|_{\omega} \le M\|\cdot\|$ for all $\omega\in\Omega$ and the function $N(\omega, x):=\|x\|_{\omega}$ is upper semicontinuous on $\Omega \times E$.

DEFINITION 1.1. Let $(D_{\omega})_{\omega \in \Omega}$ be a family of domains $D_{\omega} \subset E$ whose Ω -product \mathbb{D} is domain in $\mathcal{C}_{b}(\Omega, E)$.

(1) We say that the *continuous product property* (the CPP for short) holds for \mathbb{D} if

(*) Pervenuta in forma definitiva all'Accademia il 6 ottobre 1999.

the Carathéodory distance $C_{\mathbb{D}}$ satisfies

(1)
$$C_{\mathbb{D}}(f,g) = \sup_{\omega \in \Omega} C_{D_{\omega}}[f(\omega),g(\omega)], \quad f,g \in \mathbb{D}.$$

(2) We say that the CPP holds for the space $C_b(\Omega, E)$ if whenever $(D_{\omega})_{\omega \in \Omega}$ is a family whose Ω -product \mathbb{D} is a domain in $C_b(\Omega, E)$, the CPP holds for \mathbb{D} .

In general no information is available about how D_{ω} depends on $\omega \in \Omega$. If all domains D_{ω} coincide (say with $D \subset E$) then $s \mapsto C_D[f(\omega), g(\omega)]$ is continuous, hence the supremun in (1) is attainable whenever Ω is compact. In the general case, the evaluation $e_{\omega}: C_b(\Omega, E) \to E$ is a holomorphic map, hence it is a contraction for the Carathéodory distances and so

(2)
$$\sup_{\omega \in \Omega} C_{D_{\omega}}[f(\omega), g(\omega)] \le C_{\mathbb{D}}(f, g) ,$$

holds, hence the CPP for the domain $\mathbb D$ is equivalent to

(3)
$$C_{\mathbb{D}}(f,g) \leq \sup_{\omega \in \Omega} C_{D_{\omega}}[f(\omega),g(\omega)], \quad f,g \in \mathbb{D}.$$

In [3], Jarnicki and Pflug have proved that (3) holds whenever Ω is finite and *E* is finite dimensional. The general case seems to be very difficult, and we prove this property in the following cases:

(a) Ω is a finite set and E is a Banach space.

(b) \mathbb{D} is contained in a space of sequences converging to zero at infinity.

(c) Ω is an infinite set with the discrete topology and we consider an infinite product of copies of the same domain $D \subset \mathbb{C}^n$, with an additional hypothesis on D.

2. FINITE PRODUCTS IN COMPLEX BANACH SPACES

We get the following result

PROPOSITION 2.1. Let A and B be domains in the Banach spaces E and F respectively. Then

$$C_{A \times B}[(a, b), (a', b')] = \max\{C_A(a, a'), C_B(b, b')\}$$

holds for all pairs a, $a' \in A$ and b, $b' \in B$.

PROOF. For a domain D in a complex Banach space X and a pair of points $x, x' \in D$, we let $\mathcal{F}(X, x, x')$ denote the family of all vector subspaces $Z \subset X$ such that dim $Z < \infty$ and $x, x' \in Z$. By [1, Th. 2.1] we have

(4)
$$C_D(x, x') = \inf_{Z \in \mathcal{F}(X, x, x')} C_{D \cap Z}(x, x').$$

Let $\epsilon > 0$ be given. By (4) there are subspaces $X \in \mathcal{F}(E, a, a')$ and $Y \in \mathcal{F}(F, b, b')$ such that

$$C_A(a, a') + \epsilon > C_{A \cap X}(a, a'), \qquad C_B(b, b') + \epsilon > C_{B \cap Y}(b, b').$$

Obviously we have $\mathcal{F}(E \times F, (a, b), (a', b')) \supset \mathcal{F}(E, a, a') \times \mathcal{F}(F, b, b')$. Therefore by [3, Th. 1.1]

$$\begin{aligned} C_{A \times B}[(a, b), (a', b')] &\leq \inf_{X, Y} C_{(A \cap X) \times (B \cap Y)}[(a, b), (a', b')] = \\ &= \inf_{X, Y} \max\{C_{A \cap X}(a, a'), C_{B \cap Y}(b, b')\} \leq \\ &\leq \max\{C_A(a, a') + \epsilon, C_B(b, b') + \epsilon\} = \max\{C_A(a, a'), C_B(b, b')\} + \epsilon. \end{aligned}$$

Since this is valid for all $\epsilon > 0$, the result follows from (3).

3. Space of continuous sections converging to zero at infinity

Let Ω be a a locally compact space and let $C_0(\Omega, E)$ be the Banach space of continuous maps $f: \Omega \to E$ converging to 0 at infinity. First, we prove the following proposition

PROPOSITION 3.1. Let Ω , E and D respectively be a locally compact space, a complex Banach space and a domain $D \subset E$ such that $0 \in D$. Let K be a compact set in $C_0(\Omega, E)$. Then

$$\lim_{\omega \to \infty} C_D[f(\omega), g(\omega)] = 0$$

holds uniformly for $f, g \in \mathcal{K}$. In particular, for $f, g \in C_0(\Omega, E)$ with $f(\Omega), g(\Omega) \subset D$, the function $d: \omega \mapsto C_D[f(\omega), g(\omega)]$ satisfies $d \in C_0(\Omega, \mathbb{R})$.

PROOF. Let $f, g \in C_0(\Omega, E)$ satisfy $f(\Omega), g(\Omega) \subset D$. The evaluations and the Carathéodory distance are continuous functions, hence so is $d: \omega \mapsto C_D[f(\omega), g(\omega)]$. Thus we only have to prove that

$$\lim_{\omega \to \infty} C_D[f(\omega), g(\omega)] = 0$$

holds uniformly for $f, g \in \mathcal{K}$. Let $\epsilon > 0$ be given. For a suitable $\rho > 0$, the ball $B_{\rho}(0) := \{x \in E : ||x|| < \rho\}$ clearly satisfies $B_{\rho}(0) \subset D$, hence by [2, Th. IV.2.] there is a constant M such that

$$C_D(z, w) \le M \|z - w\|$$
, $z, w \in B_o(0)$.

Let $\epsilon' := \min\{\frac{1}{2}, \frac{\epsilon}{2M}\}$. Since \mathcal{K} is a compact subset $\mathcal{C}_0(\Omega, E)$, there is a compact set $S \subset \Omega$ such that $\|h(\omega)\| \le \epsilon'$ for all $\omega \in \Omega \setminus S$ and all $h \in \mathcal{K}$. Therefore

$$C_D[f(\omega), g(\omega)] \le M \|f(\omega) - g(\omega)\| \le M (\|f(\omega)\| + \|g(\omega)\|) \le 2M\epsilon' = \epsilon$$
, $s \in \Omega \setminus S$
which completes the proof. \Box

For every compact subset $K \subset \Omega$ we let S(K, E) denote the (possibly non closed) normed subspace of $C_0(\Omega, E)$ consisting of the functions f such that $\operatorname{supp}(f) \subset K^\circ$.

PROPOSITION 3.2. Let Ω , E and D respectively be a locally compact σ -compact topological space, a complex Banach space and a star-like domain $D \subset E$. Let $\mathbb{D}_0 \subset C_0(\Omega, E)$ denote the $c_0(\Omega)$ -power of D. If the CPP holds in S(K, E) for every compact set $K \subset \Omega$, then the CPP holds for \mathbb{D}_0 .

PROOF. For every compact subset $K \subset \Omega$ we define $\mathbb{D}(K, E)$ by

$$\mathbb{D}(K, E) := \mathbb{D}_0 \cap \mathcal{S}(K, E) \,.$$

Clearly $\mathbb{D}(K, E)$ is a domain in $\mathcal{S}(K, E)$ since it an open star-like (hence connected) subset of $\mathcal{S}(K, E)$. Also if K and L are compact subsets of Ω such that $K \subset L^{\circ}$, then we have the inclusions

$$\mathbb{D}(K, E) \hookrightarrow \mathbb{D}(L, E) \hookrightarrow \mathbb{D}_0.$$

LEMMA 3.3. There are a sequence $(S_n)_{n\in\mathbb{N}}$ of compact subsets of Ω such that $S_n \subset S_{n+1}^{\circ}$ for all $n \in \mathbb{N}$ and $\Omega = \bigcup_{n\in\mathbb{N}} S_n$ and a sequence of functions $(\varphi_n)_{n\in\mathbb{N}}$ in $C_0(\Omega, E)$ such that $\varphi_n|_{S_n} \equiv 1$ and $\varphi_n|_{\Omega\setminus S_{n+1}^{\circ}} \equiv 0$ such that the following statement holds: For every $h \in C_0(\Omega, E)$ we have $h = \lim_{n\to\infty} h\varphi_n$ in the space $C_0(\Omega, E)$.

PROOF. Combining the σ -compactness of Ω and Urysohn's lemma we can easily construct sequences $(S_n)_{n\in\mathbb{N}}$ and $(\varphi_n)_{n\in\mathbb{N}}$ meeting the properties required in the first sentence of the lemma.

Let $h \in C_0(\Omega, E)$ and $\epsilon > 0$ be given. Then there is a compact set $K \subset \Omega$ such that $\sup_{s \in \Omega \setminus K} \|h(\omega)\| \le \epsilon$, and for $n \in \mathbb{N}$ large enough we have $K \subset S_n$. Therefore

$$\|h - h\varphi_n\| = \sup_{\omega \in \Omega \setminus S_n} \|h(\omega) - h(\omega)\varphi_n(\omega)\| \le \sup_{\omega \in \Omega \setminus K} \|h(1 - \varphi_n)\| \le 2\epsilon$$

which shows that $\lim_{n\to\infty} h\varphi_n = h$ in the space $\mathcal{C}_0(\Omega, E)$.

Now we prove the proposition. Take sequences $(S_n)_{n \in \mathbb{N}}$ and $(\varphi_n)_{n \in \mathbb{N}}$ in accordance with (3.3). Note that the products $f\varphi_n$, $g\varphi_n$ belong to \mathbb{D}_0 due to the star-likeness. Since the Carathéodory distance in \mathbb{D}_0 is continuous, we have

(5)
$$C_{\mathbb{D}_0}(f, g) = \lim_{n \to \infty} C_{\mathbb{D}_0}(f\varphi_n, g\varphi_n), \qquad f, g \in \mathbb{D}_0.$$

To simplify the notation, write \mathbb{D}_n instead of $\mathbb{D}(S_n, E)$. Consider the maps $\mathbb{D}_0 \xrightarrow{\varphi_n} \mathbb{D}_{n+1} \xrightarrow{i} \mathbb{D}_0$, where the arrows are the operator of multiplication by φ_n and the canonical inclusion respectively. Note that $\sup(\varphi_n h) \subset S_{n+1}$ so that $\varphi_n h \in \mathbb{D}_{n+1}$ for all $h \in \mathbb{D}_0$. By the contractive property of $\mathbb{D}_{n+1} \xrightarrow{i} \mathbb{D}_0$

(6)
$$C_{\mathbb{D}_0}(f\varphi_n, g\varphi_n) \leq C_{\mathbb{D}_{n+1}}(f\varphi_n, g\varphi_n), \qquad n \in \mathbb{N}.$$

By taking upper limits and using (5) we get $C_{\mathbb{D}_0}(f, g) \leq \limsup_{n \in \mathbb{N}} C_{\mathbb{D}_{n+1}}(f\varphi_n, g\varphi_n)$. We shall prove that $\limsup_{n \in \mathbb{N}} C_{\mathbb{D}_{n+1}}(f\varphi_n, g\varphi_n) \leq \sup_{\omega \in \Omega} C_D[f(\omega), g(\omega)]$ from which the result follows. By assumption the CCP holds for every S(K, E). Hence for every fixed $n \in \mathbb{N}$ we have

$$C_{\mathbb{D}_{n+1}}(f\varphi_n, g\varphi_n) = \max_{\omega \in \Omega} C_D[(f\varphi_n)(\omega), (g\varphi_n)(\omega)] = \max_{\omega \in S_{n+1}} C_D[(f\varphi_n)(\omega), (g\varphi_n)(\omega)] =$$

$$(7) = \max\left[\sup_{\omega \in S_n} C_D[(f\varphi_n)(\omega), (g\varphi_n)(\omega)], \sup_{\omega \in S_{n+1} \setminus S_n} C_D[(f\varphi_n)(\omega), (g\varphi_n)(\omega)]\right].$$

For $\omega \in S_n$ we have $\varphi_n(\omega) = 1$, therefore

$$\sup_{\omega \in S_n} C_D[(f\varphi_n)(\omega), (g\varphi_n)(\omega)] = \sup_{\omega \in S_n} C_D[f(\omega), g(\omega)] \le \sup_{\omega \in \Omega} C_D[f(\omega), g(\omega)], \quad n \in \mathbb{N}.$$

On the other hand, the set $\mathcal{K} := \{h\} \cup \{h\varphi_n : n \in \mathbb{N}\}$ is compact for every $h \in \mathcal{C}_0(\Omega, E)$, hence (3.1) applies. Let $\epsilon > 0$ be given. There is a compact subset $K \subset \Omega$ such that

$$C_D[(f \varphi_n)(\omega), (g \varphi_n)(\omega)] < \epsilon$$
, $\omega \in \Omega \setminus K$, $n \in \mathbb{N}$.

For *n* large enough (say $n \ge n_0$)) we have $K \subset S_n \subset S_{n+1} \subset \Omega$, therefore $S_{n+1} \setminus S_n \subset \Omega \setminus K$ and so

$$\sup_{\omega \in S_{n+1} \setminus S_n} C_D[(f\varphi_n)(\omega) , (g\varphi_n)(\omega)] \le \epsilon , \qquad n \ge n_0.$$

Replacing this in (7) we get $C_{D_{n+1}}(f\varphi_n, g\varphi_n) \leq \max\{\sup_{\omega\in\Omega} C_D[f(\omega), g(\omega)], \epsilon\}$ for $n \geq n_0$. Since ϵ was arbitrary, $\limsup_{\omega\in\Omega} C_{D_{n+1}}(f\varphi_n, g\varphi_n) \leq \sup_{\omega\in\Omega} C_D[f(\omega), g(\omega)]$ which completes the proof. \Box

EXAMPLE 3.4. Take $\Omega := \mathbb{N}$ with the discrete topology, and let D be a balanced domain in E. Then \mathbb{D}_0 , the $c_0(\mathbb{N})$ -power of D, is a balanced domain in $c_0(\mathbb{N}, E)$ and it is easy to see that the assumptions in (3.2) are satisfied. Hence the CPP holds for $C_{\mathbb{D}}$.

4. INFINITE PRODUCT OF A FINITE DIMENSIONAL DOMAIN

Let *I* and *E* respectively be a set of indices and a normed space. As usually, we let $\ell^{\infty}(I, E)$ be the vector space of all bounded sequences $(x_i)_{i \in I}$ with the supremum norm $||(x_i)_{i \in I}|| := \sup_{i \in I} ||x_i||$. In this case, we can prove the following theorem

THEOREM 4.1. Let *E* be a finite dimensional vector space with a norm. Let *D* be a bounded domain in *E* such that, for every $r \ge 0$ and for every $a \in D$, the ball $B_C(a, r)$ for the Carathéodory distance is relatively compact in *D*. Let $\mathbb{D} := \prod_{i \in I} D_i$ where D_i is a copy of *D*. More precisely,

$$\mathbb{D} := \{ (x_i)_{i \in I} : x_i \in D \text{ and } \exists \eta > 0 \text{ such that } \forall i \in I \quad d(x_i, \partial D) > 0 \}.$$

Then

$$C_{\mathbb{D}}((x_i)_{i\in I}, (y_i)_{i\in I}) = \sup_{i\in I} C_D(x_i, y_i).$$

PROOF. The inequality \geq is trivial. Let $\epsilon > 0$. We have to prove that

$$C_{\mathbb{D}}\big((x_{\iota})_{\iota\in I}, (y_{\iota})_{\iota\in I}\big) \leq \sup_{\iota\in I} C_{D}(x_{\iota}, y_{\iota}) + \epsilon.$$

First we get the following lemma

LEMA 4.2. Let $\mathbf{a}:=(a, \ldots, a, \ldots)$ and $\mathbf{b}:=(b, \ldots, b, \ldots)$ be constant sequences equal to a (resp. to b) in \mathbb{D} . Then $C_{\mathbb{D}}(\mathbf{a}, \mathbf{b}) = C_D(a, b)$

PROOF. Clear because there exists an inverse mapping $D \to \mathbb{D}$.

LEMMA 4.2. Let $\mathbf{c}:=(c,\ldots,c,\ldots)\in\mathbb{D}$. Let $B_C(\mathbf{c},r)$ be a ball for the Carathéodory distance in \mathbb{D} . Let $\mathbf{a}=(a,\ldots,a,\ldots)$ and $\mathbf{b}=(b,\ldots,b,\ldots)$ be two points in $B_C(\mathbf{c},r)$. Then for all $\epsilon > 0$ there is an $\eta > 0$ such that, if $(a_i)_{i\in I}$ and $(b_i)_{i\in I}$ satisfy $||a_i - a|| < \eta$ and $||b_i - b|| < \eta$ for all $i \in I$, then we have

$$C_{\mathbb{D}}((a_i)_{i\in I}, (b_i)_{i\in I}) \leq C_D(a, b) + \epsilon.$$

PROOF. By the triangle inequality, we get

$$C_{\mathbb{D}}((a_{i})_{i\in I}, (b_{i})_{i\in I}) \leq C_{\mathbb{D}}((a_{i})_{i\in I}, \mathbf{a}) + C_{\mathbb{D}}(\mathbf{a}, \mathbf{b}) + C_{\mathbb{D}}(\mathbf{b}, (b_{i})_{i\in I}).$$

But there is some r_0 , $0 < r_0 < r_1$, such that for all $\mathbf{d} = (d, \ldots, d, \ldots) \in B_C(\mathbf{c}, r)$ we have $B(\mathbf{d}, r_0) \subset D \subset B(\mathbf{d}, r_1)$, and it is easy to prove the existence of $\eta > 0$ such that $||a_i - a|| < \eta \quad \forall i \in I \Longrightarrow C_D(a_i, a) < \frac{\epsilon}{2}$.

This implies the result.

Now we can end the proof of the theorem. For every $(a, b) \in \overline{B_C(\mathbf{c}, r)}^2$ the ball $B(a, \eta) \times B(b, \eta)$ covers $\overline{B_C(\mathbf{c}, r)}^2$ which is compact. We can extract a finite cover $\overline{B_C(\mathbf{c}, r)}^2 \subset \bigcup_{\substack{j=1,\dots,n\\k=1,\dots,m}} B(d_j, \eta) \times B(e_k, \eta)$.

This enables us to define a partition $I = \bigcup_{\substack{j=1,\dots,n\\k=1,\dots,m}} I_{j,k}$ with the property that, for all $i \in I_{j,k}$ we have $|x_i - d_j| < \eta$ and $|y_i - e_k| < \eta$. Of course,

$$C_{\mathbb{D}}((x_{i})_{i\in I}, (y_{i})_{i\in I}) = \sup_{j,k} C_{\mathbb{D}_{j,k}}((x_{i})_{i\in I_{j,k}}, (y_{i})_{i\in I_{j,k}})$$

(where $\mathbb{D}_{i,k}$ is the product of copies of D over $I_{i,k}$) by the finite product property. But

$$C_{\mathbb{D}_{j,k}}((x_i)_{i\in I_{j,k}}, (y_i)_{i\in I_{j,k}}) \leq C_D(d_j, e_k) + \epsilon$$

and this proves the result.

References

- S. DINEEN R. M. TIMONEY J.-P. VIGUÉ, Pseudodistances invariantes sur les domaines d'un espace localement convexe. Ann. Scu. Norm. Sup. di Pisa, XII (4), 1985, 515-529.
- [2] T. FRANZONI E. VESENTINI, Holomorphic maps and invariant distances. North Holland Mathematics Studies, 40, North Holland, Amsterdam 1980.
- [3] M. JARNICKI P. PFLUG, The Carathéodory pseudodistance has the product property. Math. Ann., 285, 1989, 161-164.
- [4] M. JARNICKI P. PFLUG, *Invariant distances and metrics in complex analysis*. De Gruyter expositions in mathematics, 9, De Gruyter, Berlin 1993.
- [5] J.-P. VIGUÉ, Automorphismes analytiques des produits continus de domaines bornés. Ann. Sci. Ecole Norm. Sup., 8, 1978, 229-246.

Pervenuta il 1 luglio 1999, in forma definitiva il 6 ottobre 1999.

J. M. Isidro: Facultad de Matemáticas Universidad de Santiago 15706 Santiago de Compostela (Spagna) jmisidro@zmat.usc.es

> J.-P. Vigué: Université de Poitiers SP2MI Mathématiques, BP 30179 86962 FUTUROSCOPE CEDEX (Francia) vigue@mathlabo.univ-poitiers.fr