Rendiconti Lincei Matematica E Applicazioni

José M. Isidro, Jean-Pierre Vigué
 On the product property of the Carathéodory pseudodistance

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 11 (2000), n.1, p. 21-26.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_2000_9_11_1_21_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://ww.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 2000.

Analisi matematica. - On the product property of the Carathéodory pseudodistance. Nota (*) di José M. Isidro e Jean-Pierre Vigué, presentata dal Socio E. Vesentini.

Abstract. - We prove that, for certain domains \mathbb{D}, continuous product of domains D_{ω}, the Carathéodory pseudodistance satisfies the following product property

$$
C_{\mathbb{D}}(f, g)=\sup _{\omega} C_{D_{\omega}}(f(\omega), g(\omega)) .
$$

Key words: Carathéodory pseudodistance; Product domains; Product property.

Riassunto. - Proprietà del prodotto della pseudodistanza di Carathéodory. Si prova che per alcuni domini \mathbb{D}, che sono prodotti continui di domini D_{ω}, la pseudodistanza di Carathéodory soddisfa la seguente proprietà:

$$
C_{\mathbb{D}}(f, g)=\sup _{\omega} C_{D_{\omega}}(f(\omega), g(\omega)) .
$$

1. Introduction

Let Ω and E respectively be a completely regular topological space and a complex Banach space with open unit ball $B(0)$. Let $\mathbb{E}:=\mathcal{C}_{b}(\Omega, E)$ be the Banach space of all continuous bounded E-valued functions $f: \Omega \rightarrow E$, endowed with the pointwise operations and the norm of the supremun. Whenever E is a complex Banach space and $D \subset E$ is a domain, we let C_{D} denote the Carathéodory distance in D.

Recall [5, Definition 1.5] a domain $\mathbb{D} \subset \mathcal{C}(\Omega, E)$ is the continuous Ω-product of the family $\left(D_{\omega}\right)_{\omega \in \Omega}$ of bounded domains in E if the following two conditions hold : \mathbb{D} is the interior of

$$
\left\{f \in \mathcal{C}(\Omega, E): f(\omega) \in D_{\omega}, \quad(\omega \in \Omega)\right\}, \quad D_{\omega}=\{f(\omega): f \in \mathbb{D}\}, \quad(\omega \in \Omega)
$$

In that case \mathbb{D} consists of continuous sections of $\mathbb{D}_{\star}:=\left\{(\omega, x) \in \Omega \times E: \omega \in \Omega, x \in D_{\omega}\right\}$ with respect to the fibration $p: \mathbb{D}_{\star} \rightarrow \Omega$ given by $(\omega, x) \mapsto \omega$. Let Ω, E and $\|\cdot\|_{\omega}$, ($\omega \in \Omega$), respectively be a compact topological space, a complex Banach space and a family of norms in E with open unit balls D_{ω}, and let $\mathbb{D}:=\{f \in \mathcal{C}(\Omega, E): f(\omega) \in$ $\left.\in D_{\omega}, \quad(\omega \in \Omega)\right\}$ be a bounded domain in $\mathcal{C}(\Omega, E)$. Then \mathbb{D} is the continuous Ω product of the family $\left(D_{\omega}\right)_{\omega \in \Omega}$ if and only if there are constants $0<m \leq M<\infty$ such that $m\|\cdot\| \leq\|\cdot\|_{\omega} \leq M\|\cdot\|$ for all $\omega \in \Omega$ and the function $N(\omega, x):=\|x\|_{\omega}$ is upper semicontinuous on $\Omega \times E$.

Definition 1.1. Let $\left(D_{\omega}\right)_{\omega \in \Omega}$ be a family of domains $D_{\omega} \subset E$ whose Ω-product \mathbb{D} is domain in $\mathcal{C}_{b}(\Omega, E)$.
(1) We say that the continuous product property (the CPP for short) holds for \mathbb{D} if
${ }^{(*)}$ Pervenuta in forma definitiva all'Accademia il 6 ottobre 1999.
the Carathéodory distance $C_{\mathbb{D}}$ satisfies

$$
\begin{equation*}
C_{\mathbb{D}}(f, g)=\sup _{\omega \in \Omega} C_{D_{\omega}}[f(\omega), g(\omega)], \quad f, g \in \mathbb{D} . \tag{1}
\end{equation*}
$$

(2) We say that the CPP holds for the space $\mathcal{C}_{b}(\Omega, E)$ if whenever $\left(D_{\omega}\right)_{\omega \in \Omega}$ is a family whose Ω-product \mathbb{D} is a domain in $\mathcal{C}_{b}(\Omega, E)$, the CPP holds for \mathbb{D}.

In general no information is available about how D_{ω} depends on $\omega \in \Omega$. If all domains D_{ω} coincide (say with $D \subset E$) then $s \mapsto C_{D}[f(\omega), g(\omega)]$ is continuous, hence the supremun in (1) is attainable whenever Ω is compact. In the general case, the evaluation $e_{\omega}: \mathcal{C}_{b}(\Omega, E) \rightarrow E$ is a holomorphic map, hence it is a contraction for the Carathéodory distances and so

$$
\begin{equation*}
\sup _{\omega \in \Omega} C_{D_{\omega}}[f(\omega), g(\omega)] \leq C_{\mathbb{D}}(f, g) \tag{2}
\end{equation*}
$$

holds, hence the CPP for the domain \mathbb{D} is equivalent to

$$
\begin{equation*}
C_{\mathbb{D}}(f, g) \leq \sup _{\omega \in \Omega} C_{D_{\omega}}[f(\omega), g(\omega)], \quad f, g \in \mathbb{D} \tag{3}
\end{equation*}
$$

In [3], Jarnicki and Pflug have proved that (3) holds whenever Ω is finite and E is finite dimensional. The general case seems to be very difficult, and we prove this property in the following cases:
(a) Ω is a finite set and E is a Banach space.
(b) \mathbb{D} is contained in a space of sequences converging to zero at infinity.
(c) Ω is an infinite set with the discrete topology and we consider an infinite product of copies of the same domain $D \subset \mathbb{C}^{n}$, with an additional hypothesis on D.

2. Finite products in complex Banach spaces

We get the following result
Proposition 2.1. Let A and B be domains in the Banach spaces E and F respectively. Then

$$
C_{A \times B}\left[(a, b),\left(a^{\prime}, b^{\prime}\right)\right]=\max \left\{C_{A}\left(a, a^{\prime}\right), C_{B}\left(b, b^{\prime}\right)\right\}
$$

holds for all pairs $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$.
Proof. For a domain D in a complex Banach space X and a pair of points $x, x^{\prime} \in D$, we let $\mathcal{F}\left(X, x, x^{\prime}\right)$ denote the family of all vector subspaces $Z \subset X$ such that $\operatorname{dim} Z<\infty$ and $x, x^{\prime} \in Z$. By [1, Th. 2.1] we have

$$
\begin{equation*}
C_{D}\left(x, x^{\prime}\right)=\inf _{Z \in \mathcal{F}\left(X, x, x^{\prime}\right)} C_{D \cap Z}\left(x, x^{\prime}\right) \tag{4}
\end{equation*}
$$

Let $\epsilon>0$ be given. By (4) there are subspaces $X \in \mathcal{F}\left(E, a, a^{\prime}\right)$ and $Y \in \mathcal{F}\left(F, b, b^{\prime}\right)$ such that

$$
C_{A}\left(a, a^{\prime}\right)+\epsilon>C_{A \cap X}\left(a, a^{\prime}\right), \quad C_{B}\left(b, b^{\prime}\right)+\epsilon>C_{B \cap Y}\left(b, b^{\prime}\right) .
$$

Obviously we have $\mathcal{F}\left(E \times F,(a, b),\left(a^{\prime}, b^{\prime}\right)\right) \supset \mathcal{F}\left(E, a, a^{\prime}\right) \times \mathcal{F}\left(F, b, b^{\prime}\right)$. Therefore by [3, Th. 1.1]

$$
\begin{aligned}
C_{A \times B}\left[(a, b),\left(a^{\prime}, b^{\prime}\right)\right] & \leq \inf _{X, Y} C_{(A \cap X) \times(B \cap Y)}\left[(a, b),\left(a^{\prime}, b^{\prime}\right)\right]= \\
& =\inf _{X, Y} \max \left\{C_{A \cap X}\left(a, a^{\prime}\right), C_{B \cap Y}\left(b, b^{\prime}\right)\right\} \leq \\
& \leq \max \left\{C_{A}\left(a, a^{\prime}\right)+\epsilon, C_{B}\left(b, b^{\prime}\right)+\epsilon\right\}=\max \left\{C_{A}\left(a, a^{\prime}\right), C_{B}\left(b, b^{\prime}\right)\right\}+\epsilon
\end{aligned}
$$

Since this is valid for all $\epsilon>0$, the result follows from (3).

3. Space of continuous sections converging to zero at infinity

Let Ω be a a locally compact space and let $\mathcal{C}_{0}(\Omega, E)$ be the Banach space of continuous maps $f: \Omega \rightarrow E$ converging to 0 at infinity. First, we prove the following proposition

Proposition 3.1. Let Ω, E and D respectively be a locally compact space, a complex Banach space and a domain $D \subset E$ such that $0 \in D$. Let \mathcal{K} be a compact set in $\mathcal{C}_{0}(\Omega, E)$. Then

$$
\lim _{\omega \rightarrow \infty} C_{D}[f(\omega), g(\omega)]=0
$$

holds uniformly for $f, g \in \mathcal{K}$. In particular, for $f, g \in \mathcal{C}_{0}(\Omega, E)$ with $f(\Omega), g(\Omega) \subset D$, the function $d: \omega \mapsto C_{D}[f(\omega), g(\omega)]$ satisfies $d \in \mathcal{C}_{0}(\Omega, \mathbb{R})$.

Proof. Let $f, g \in \mathcal{C}_{0}(\Omega, E)$ satisfy $f(\Omega), g(\Omega) \subset D$. The evaluations and the Carathéodory distance are continuous functions, hence so is $d: \omega \mapsto C_{D}[f(\omega), g(\omega)]$. Thus we only have to prove that

$$
\lim _{\omega \rightarrow \infty} C_{D}[f(\omega), g(\omega)]=0
$$

holds uniformly for $f, g \in \mathcal{K}$. Let $\epsilon>0$ be given. For a suitable $\rho>0$, the ball $B_{\rho}(0):=\{x \in E:\|x\|<\rho\}$ clearly satisfies $B_{\rho}(0) \subset \subset$, hence by [2, Th. IV.2.] there is a constant M such that

$$
C_{D}(z, w) \leq M\|z-w\|, \quad z, w \in B_{\rho}(0) .
$$

Let $\epsilon^{\prime}:=\min \left\{\frac{1}{2}, \frac{\epsilon}{2 M}\right\}$. Since \mathcal{K} is a compact subset $\mathcal{C}_{0}(\Omega, E)$, there is a compact set $S \subset \Omega$ such that $\|h(\omega)\| \leq \epsilon^{\prime}$ for all $\omega \in \Omega \backslash S$ and all $h \in \mathcal{K}$. Therefore
$C_{D}[f(\omega), g(\omega)] \leq M\|f(\omega)-g(\omega)\| \leq M(\|f(\omega)\|+\|g(\omega)\|) \leq 2 M \epsilon^{\prime}=\epsilon, \quad s \in \Omega \backslash S$ which completes the proof.

For every compact subset $K \subset \Omega$ we let $\mathcal{S}(K, E)$ denote the (possibly non closed) normed subspace of $\mathcal{C}_{0}(\Omega, E)$ consisting of the functions f such that $\operatorname{supp}(f) \subset K^{\circ}$.

Proposition 3.2. Let Ω, E and D respectively be a locally compact σ-compact topological space, a complex Banach space and a star-like domain $D \subset E$. Let $\mathbb{D}_{0} \subset \mathcal{C}_{0}(\Omega, E)$ denote the $c_{0}(\Omega)$-power of D. If the CPP holds in $\mathcal{S}(K, E)$ for every compact set $K \subset \Omega$, then the CPP holds for \mathbb{D}_{0}.

Proof. For every compact subset $K \subset \Omega$ we define $\mathbb{D}(K, E)$ by

$$
\mathbb{D}(K, E):=\mathbb{D}_{0} \cap \mathcal{S}(K, E)
$$

Clearly $\mathbb{D}(K, E)$ is a domain in $\mathcal{S}(K, E)$ since it an open star-like (hence connected) subset of $\mathcal{S}(K, E)$. Also if K and L are compact subsets of Ω such that $K \subset L^{\circ}$, then we have the inclusions

$$
\mathbb{D}(K, E) \hookrightarrow \mathbb{D}(L, E) \hookrightarrow \mathbb{D}_{0}
$$

Lemma 3.3. There are a sequence $\left(S_{n}\right)_{n \in \mathbb{N}}$ of compact subsets of Ω such that $S_{n} \subset S_{n+1}^{\circ}$ for all $n \in \mathbb{N}$ and $\Omega=\cup_{n \in \mathbb{N}} S_{n}$ and a sequence of functions $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ in $\mathcal{C}_{0}(\Omega, E)$ such that $\left.\varphi_{n}\right|_{S_{n}} \equiv 1$ and $\left.\varphi_{n}\right|_{\Omega \backslash S_{n+1}^{\circ}} \equiv 0$ such that the following statement holds: For every $h \in \mathcal{C}_{0}(\Omega, E)$ we have $h=\lim _{n \rightarrow \infty}$ h φ_{n} in the space $\mathcal{C}_{0}(\Omega, E)$.

Proof. Combining the σ-compactness of Ω and Urysohn's lemma we can easily construct sequences $\left(S_{n}\right)_{n \in \mathbb{N}}$ and $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ meeting the properties required in the first sentence of the lemma.

Let $h \in \mathcal{C}_{0}(\Omega, E)$ and $\epsilon>0$ be given. Then there is a compact set $K \subset \Omega$ such that $\sup _{s \in \Omega \backslash K}\|h(\omega)\| \leq \epsilon$, and for $n \in \mathbb{N}$ large enough we have $K \subset S_{n}$. Therefore

$$
\left\|h-h \varphi_{n}\right\|=\sup _{\omega \in \Omega \backslash S_{n}}\left\|h(\omega)-h(\omega) \varphi_{n}(\omega)\right\| \leq \sup _{\omega \in \Omega \backslash K}\left\|h\left(1-\varphi_{n}\right)\right\| \leq 2 \epsilon
$$

which shows that $\lim _{n \rightarrow \infty} h \varphi_{n}=h$ in the space $\mathcal{C}_{0}(\Omega, E)$.
Now we prove the proposition. Take sequences $\left(S_{n}\right)_{n \in \mathbb{N}}$ and $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ in accordance with (3.3). Note that the products $f \varphi_{n}, g \varphi_{n}$ belong to \mathbb{D}_{0} due to the star-likeness. Since the Carathéodory distance in \mathbb{D}_{0} is continuous, we have

$$
\begin{equation*}
C_{\mathbb{D}_{0}}(f, g)=\lim _{n \rightarrow \infty} C_{\mathbb{D}_{0}}\left(f \varphi_{n}, g \varphi_{n}\right), \quad f, g \in \mathbb{D}_{0} \tag{5}
\end{equation*}
$$

To simplify the notation, write \mathbb{D}_{n} instead of $\mathbb{D}\left(S_{n}, E\right)$. Consider the maps $\mathbb{D}_{0} \xrightarrow{\varphi_{n}} \mathbb{D}_{n+1} \xrightarrow{i} \mathbb{D}_{0}$, where the arrows are the operator of multiplication by φ_{n} and the canonical inclusion respectively. Note that $\operatorname{supp}\left(\varphi_{n} h\right) \subset S_{n+1}$ so that $\varphi_{n} h \in \mathbb{D}_{n+1}$ for all $h \in \mathbb{D}_{0}$. By the contractive property of $\mathbb{D}_{n+1} \xrightarrow{i} \mathbb{D}_{0}$

$$
\begin{equation*}
C_{\mathbb{D}_{0}}\left(f \varphi_{n}, g \varphi_{n}\right) \leq C_{\mathbb{D}_{n+1}}\left(f \varphi_{n}, g \varphi_{n}\right), \quad n \in \mathbb{N} \tag{6}
\end{equation*}
$$

By taking upper limits and using (5) we get $C_{\mathbb{D}_{0}}(f, g) \leq \lim \sup _{n \in \mathbb{N}} C_{\mathbb{D}_{n+1}}\left(f \varphi_{n}, g \varphi_{n}\right)$.
 the result follows. By assumption the CCP holds for every $\mathcal{S}(K, E)$. Hence for every fixed $n \in \mathbb{N}$ we have

$$
\begin{align*}
C_{\mathbb{D}_{n+1}}\left(f \varphi_{n}, g \varphi_{n}\right) & =\max _{\omega \in \Omega} C_{D}\left[\left(f \varphi_{n}\right)(\omega),\left(g \varphi_{n}\right)(\omega)\right]=\max _{\omega \in S_{n+1}} C_{D}\left[\left(f \varphi_{n}\right)(\omega),\left(g \varphi_{n}\right)(\omega)\right]= \\
& =\max \left[\sup _{\omega \in S_{n}} C_{D}\left[\left(f \varphi_{n}\right)(\omega),\left(g \varphi_{n}\right)(\omega)\right], \sup _{\omega \in S_{n+1} \backslash S_{n}} C_{D}\left[\left(f \varphi_{n}\right)(\omega),\left(g \varphi_{n}\right)(\omega)\right] .\right. \tag{7}
\end{align*}
$$

For $\omega \in S_{n}$ we have $\varphi_{n}(\omega)=1$, therefore

$$
\sup _{\omega \in S_{n}} C_{D}\left[\left(f \varphi_{n}\right)(\omega),\left(g \varphi_{n}\right)(\omega)\right]=\sup _{\omega \in S_{n}} C_{D}[f(\omega), g(\omega)] \leq \sup _{\omega \in \Omega} C_{D}[f(\omega), g(\omega)], \quad n \in \mathbb{N} .
$$

On the other hand, the set $\mathcal{K}:=\{h\} \cup\left\{h \varphi_{n}: n \in \mathbb{N}\right\}$ is compact for every $h \in \mathcal{C}_{0}(\Omega, E)$, hence (3.1) applies. Let $\epsilon>0$ be given. There is a compact subset $K \subset \Omega$ such that

$$
C_{D}\left[\left(f \varphi_{n}\right)(\omega),\left(g \varphi_{n}\right)(\omega)\right]<\epsilon, \quad \omega \in \Omega \backslash K, n \in \mathbb{N} .
$$

For n large enough (say $n \geq n_{0}$)) we have $K \subset S_{n} \subset S_{n+1} \subset \Omega$, therefore $S_{n+1} \backslash S_{n} \subset \Omega \backslash K$ and so

$$
\sup _{\omega \in S_{n+1} \backslash S_{n}} C_{D}\left[\left(f \varphi_{n}\right)(\omega),\left(g \varphi_{n}\right)(\omega)\right] \leq \epsilon, \quad n \geq n_{0}
$$

Replacing this in (7) we get $C_{D_{n+1}}\left(f \varphi_{n}, g \varphi_{n}\right) \leq \max \left\{\sup _{\omega \in \Omega} C_{D}[f(\omega), g(\omega)], \epsilon\right.$. $\}$ for $n \geq n_{0}$. Since ϵ was arbitrary, $\lim \sup C_{D_{n+1}}\left(f \varphi_{n}, g \varphi_{n}\right) \leq \sup _{\omega \in \Omega} C_{D}[f(\omega), g(\omega)]$ which completes the proof.

Example 3.4. Take $\Omega:=\mathbb{N}$ with the discrete topology, and let D be a balanced domain in E. Then \mathbb{D}_{0}, the $c_{0}(\mathbb{N})$-power of D, is a balanced domain in $c_{0}(\mathbb{N}, E)$ and it is easy to see that the assumptions in (3.2) are satisfied. Hence the CPP holds for $C_{\mathbb{D}}$.

4. Infinite product of a finite dimensional domain

Let I and E respectively be a set of indices and a normed space. As usually, we let $\ell^{\infty}(I, E)$ be the vector space of all bounded sequences $\left(x_{i}\right)_{l \in I}$ with the supremun norm $\left\|\left(x_{t}\right)_{\imath \in I}\right\|:=\sup _{t \in I}\left\|x_{\imath}\right\|$. In this case, we can prove the following theorem

Theorem 4.1. Let E be a finite dimensional vector space with a norm. Let D be a bounded domain in E such that, for every $r \geq 0$ and for every $a \in D$, the ball $B_{C}(a, r)$ for the Carathéodory distance is relatively compact in D. Let $\mathbb{D}:=\Pi_{\imath \in I} D_{\imath}$ where D_{\imath} is a copy of D. More precisely,

$$
\mathbb{D}:=\left\{\left(x_{\imath}\right)_{\imath \in I}: x_{\imath} \in D \text { and } \exists \eta>0 \text { such that } \forall \imath \in I \quad d\left(x_{\imath}, \partial D\right)>0\right\} .
$$

Then

$$
C_{\mathbb{D}}\left(\left(x_{\imath}\right)_{\imath \in I},\left(y_{\imath}\right)_{\imath \in I}\right)=\sup _{\imath \in I} C_{D}\left(x_{\imath}, y_{\imath}\right)
$$

Proof. The inequality \geq is trivial. Let $\epsilon>0$. We have to prove that

$$
C_{\mathbb{D}}\left(\left(x_{\imath}\right)_{\imath \in I},\left(y_{\imath}\right)_{\imath \in I}\right) \leq \sup _{\imath \in I} C_{D}\left(x_{\imath}, y_{\imath}\right)+\epsilon .
$$

First we get the following lemma
Lema 4.2. Let $\mathbf{a}:=(a, \ldots, a, \ldots)$ and $\mathbf{b}:=(b, \ldots, b, \ldots)$ be constant sequences equal to a (resp. to b) in \mathbb{D}. Then $C_{\mathbb{D}}(\mathbf{a}, \mathbf{b})=C_{D}(a, b)$

Proof. Clear because there exists an inverse mapping $D \rightarrow \mathbb{D}$.
Lemma 4.2. Let $\mathbf{c}:=(c, \ldots c, \ldots) \in \mathbb{D}$. Let $B_{C}(\mathbf{c}, r)$ be a ball for the Carathéodory distance in \mathbb{D}. Let $\mathbf{a}=(a, \ldots, a, \ldots)$ and $\mathbf{b}=(b, \ldots, b, \ldots)$ be two points in $B_{C}(\mathbf{c}, r)$. Then for all $\epsilon>0$ there is an $\eta>0$ such that, if $\left(a_{t}\right)_{t \in I}$ and $\left(b_{t}\right)_{t \in I}$ satisfy $\left\|a_{t}-a\right\|<\eta$ and $\left\|b_{\imath}-b\right\|<\eta$ for all $\imath \in I$, then we have

$$
C_{\mathbb{D}}\left(\left(a_{\imath}\right)_{\imath \in I},\left(b_{\imath}\right)_{t \in I}\right) \leq C_{D}(a, b)+\epsilon .
$$

Proof. By the triangle inequality, we get

$$
C_{\mathbb{D}}\left(\left(a_{\imath}\right)_{\imath \in I},\left(b_{\imath}\right)_{\imath \in I}\right) \leq C_{\mathbb{D}}\left(\left(a_{\imath}\right)_{\imath \in I}, \mathbf{a}\right)+C_{\mathbb{D}}(\mathbf{a}, \mathbf{b})+C_{\mathbb{D}}\left(\mathbf{b},\left(b_{\imath}\right)_{t \in I}\right) .
$$

But there is some $r_{0}, 0<r_{0}<r_{1}$, such that for all $\mathbf{d}=(d, \ldots, d, \ldots) \in B_{C}(\mathbf{c}, r)$ we have $B\left(\mathbf{d}, r_{0}\right) \subset D \subset B\left(\mathbf{d}, r_{1}\right)$, and it is easy to prove the existence of $\eta>0$ such that

$$
\left\|a_{\imath}-a\right\|<\eta \quad \forall \imath \in I \Longrightarrow C_{D}\left(a_{\imath}, a\right)<\frac{\epsilon}{2} .
$$

This implies the result.
Now we can end the proof of the theorem. For every $(a, b) \in{\overline{B_{C}(c, r)}}^{2}$ the ball $B(a, \eta) \times B(b, \eta)$ covers ${\overline{B_{C}(\mathbf{c}, r)}}^{2}$ which is compact. We can extract a finite cover

$$
{\overline{B_{C}(\mathbf{c}, r)}}^{2} \subset \bigcup_{\substack{j=1, \ldots, n \\ k=1, \ldots, m}} B\left(d_{j}, \eta\right) \times B\left(e_{k}, \eta\right)
$$

This enables us to define a partition $I=\bigcup_{\substack{j=1, \ldots, n \\ k=1, \ldots, m}} I_{j, k}$ with the property that, for all $\imath \in I_{j, k}$ we have $\left|x_{\imath}-d_{j}\right|<\eta$ and $\left|y_{\imath}-e_{k}\right|<\eta$. Of course,

$$
C_{\mathbb{D}}\left(\left(x_{\imath}\right)_{\imath \in I},\left(y_{\imath}\right)_{\imath \in I}\right)=\sup _{J, k} C_{\mathbb{D}_{J, k}}\left(\left(x_{\imath}\right)_{\imath \in I_{j, k}}, \quad\left(y_{\imath}\right)_{\imath \in I_{J, k}}\right)
$$

(where $\mathbb{D}_{\jmath, k}$ is the product of copies of D over $I_{j, k}$) by the finite product property. But

$$
C_{\mathbb{D}_{J, k}}\left(\left(x_{i}\right)_{\imath \in I_{J, k}}, \quad\left(y_{i}\right)_{\imath \in I_{J, k}}\right) \leq C_{D}\left(d_{j}, e_{k}\right)+\epsilon
$$

and this proves the result.

References

[1] S. Dineen - R. M. Timoney - J.-P. Vigué, Pseudodistances invariantes sur les domaines d'un espace localement convexe. Ann. Scu. Norm. Sup. di Pisa, XII (4), 1985, 515-529.
[2] T. Franzoni - E. Vesentinı, Holomorphic maps and invariant distances. North Holland Mathematics Studies, 40, North Holland, Amsterdam 1980.
[3] M. Jarnicki - P. Pflug, The Carathéodory pseudodistance has the product property. Math. Ann., 285, 1989, 161-164.
[4] M. Jarnicki - P. Pflug, Invariant distances and metrics in complex analysis. De Gruyter expositions in mathematics, 9, De Gruyter, Berlin 1993.
[5] J.-P. Vigué, Automorphismes analytiques des produits continus de domaines bornés. Ann. Sci. Ecole Norm. Sup., 8, 1978, 229-246.

