Rendiconti Lincei Matematica e Applicazioni

Giuseppe Zampieri

Existence and regularity of solutions of the $\bar{\delta}$-system on wedges of \mathbb{C}^{N}

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 10 (1999), n.4, p. 271-278.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1999_9_10_4_271_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1999.

Funzioni di variabile complessa. - Existence and regularity of solutions of the $\bar{\partial}$-system on wedges of \mathbb{C}^{N}. Nota di Giuseppe Zampieri, presentata (${ }^{*}$) dal Corrisp. C. De Concini.

Abstract. - For a wedge W of \mathbb{C}^{N}, we introduce two conditions of weak q-pseudoconvexity, and prove that they entail solvability of the $\bar{\partial}$-system for forms of degree $\geq q+1$ with coefficients in $C^{\infty}(W)$ and $C^{\infty}(\bar{W})$ respectively. Existence and regularity for $\bar{\partial}$ in W is treated by Hörmander [5, 6] (and also by Zampieri $[9,11]$ in case of piecewise smooth boundaries). Regularity in \bar{W} is treated by Henkin [4] (strong q-pseudoconvexity by the method of the integral representation), Dufresnoy [3] (full pseudoconvexity), Michel [8] (constant number of negative eigenvalues), and Zampieri [10] (more general q-pseudoconvexity and wedge type domains). This is an announcement of our papers [10, 11]; it contains refinements both in statements and proofs and, mainly, a parallel treatement of regularity in W and \bar{W}. All our techniques strongly rely on the method of L^{2} estimates by Hörmander [5, 6].

Key words: L^{2} estimates; Cauchy-Riemann system; C.R. structures.

Riassunto. — Esistenza e regolarità delle soluzioni del sistema $\bar{\partial}$ in «wedges» di \mathbb{C}^{N}. Si introducono due condizioni di q-pseudoconvessità debole per un «wedge» di \mathbb{C}^{N}, e si dimostra che esse sono sufficienti per la risolubilità del sistema $\bar{\partial}$ per forme di grado $\geq q+1$ a coefficienti in $C^{\infty}(W)$ e $C^{\infty}(\bar{W})$ rispettivamente. Esistenza e regolarità in W per il $\bar{\partial}$ sono trattate da Hörmander [5, 6] (e anche da Zampieri [9, 11] per bordi C^{2} a tratti). Regolarità in \bar{W} è trattata da Henkin [4] (q-pseudoconvessità forte con il metodo della rappresentazione integrale), Dufresnoy [3] (pseudoconvessità «completa»), Michel [8] (costanza del numero di autovalori negativi) e Zampieri [10] (q-pseudoconvessità più generale e domini di tipo «wedge»). Questa è una nota preliminare agli articoli $[10,11]$; contiene miglioramenti negli enunciati e nelle dimostrazioni e, soprattutto, una trattazione parallela della regolarità in W e \bar{W}. Tutte le tecniche qui impiegate si basano profondamente sul metodo delle stime L^{2} introdotto da Hörmander in [5, 6].

Let W be a wedge of \mathbb{C}^{N} defined, in a neighborhood of a point $z_{o} \in \partial W$ by $r_{j}<0, j=1, \ldots, l$ with $\partial r_{1} \wedge \cdots \wedge \partial r_{l} \neq 0$. We shall use the following notations: M_{j} will denote the hypersurfaces $\left\{r_{j}\right\}=0, \widehat{M}_{j}$ the «faces» $M_{j} \cap \partial W, R$ the union of the «wedges» $\left\{r_{j}=0, r_{i}=0\right.$ for $\left.i \neq j\right\}$. $\bar{\partial} \partial r_{j}$ (resp. $\left.\bar{\partial} \partial r_{j}\right|_{\partial r_{j}^{\perp}}$) will denote the Levi form of the function r_{j} (resp. of the hypersurface M_{j}) where ∂r_{j}^{\perp} denotes the plane orthogonal to ∂r_{j} i.e. the complex tangent plane to M_{j}. We shall formulate two different conditions of weak q-pseudoconvexity. For an orthonormal system of (1,0)-forms $\omega^{\prime}=\left\{\omega_{1} \ldots \omega_{q}\right\}$ on ∂W at z_{o} whose dual tangent derivations $\partial_{\omega^{\prime}}$ verify $\left.\operatorname{Span}\left\{\partial_{\omega^{\prime}}\right\}\right|_{\widehat{M}_{i}} \subset T^{1,0} M_{i} \forall i$, which are $C^{0}(\partial W) \cap C^{2}(\partial W \backslash R)$ with bounded first and second derivatives, and for an orthonormal completion $\omega^{\prime \prime}$ (possibly different on each
M_{i}), we have

$$
\begin{align*}
& \bar{\partial} \partial r_{i}(z)\left(\bar{v}^{\prime \prime}, v^{\prime}\right)=0, \quad \bar{\partial} \partial r_{i}(z)\left(\bar{v}^{\prime \prime}, v^{\prime}\right) \geq 0, \\
& \forall v=\left(v^{\prime}, v^{\prime \prime}\right) \in \partial r_{j}^{\perp}\left(=\mathbb{C}^{N-1}\right) \quad \forall z \in \widehat{M}_{i} \cap U . \tag{1}
\end{align*}
$$

(Here $\{U\}$ denotes a system of neighborhoods of z_{0}). We shall also deal with a slight improvement of (1):
(2) We have (1) and $\bar{\partial} \partial r_{i}(z)\left(\bar{v}^{\prime \prime}, v^{\prime \prime}\right) \geq \bar{\partial} \partial r_{i}(z)\left(\bar{v}^{\prime}, v^{\prime}\right) \forall z \in \widehat{M}_{i} \forall\left|v^{\prime}\right|=1,\left|v^{\prime \prime}\right|=1$.

Note that (1) means that $\operatorname{Span}\left\{\partial_{\omega^{\prime}}\right\}$ is engendred by a system of eigenvectors (the first q in case of (2)) which contains all negative ones.

Remark 1. It shall be clear from our proofs that we can allow a «thin» set R^{\prime} of C^{0}-discontinuity for the coefficients of the forms $\left\{\omega_{i}^{\prime}\right\}$ i.e. a set verifying codimen$\operatorname{sion}_{\partial W} R^{\prime} \geq 2$.

Let us discuss our conditions (1) and (2) by means of some examples. We assume that W is a half-space $\{r<0\}$ with C^{4}-boundary $M=\{r=0\}$, denote by $\mu_{1}(z) \leq \mu_{2}(z) \ldots$ the ordered eigenvalues of the Levi form $L_{M}(z):=\left.\bar{\partial} \partial r(z)\right|_{\partial r(z) \perp}$ and let $s^{+}(z), s^{-}(z), s^{0}(z)$ be the numbers of its positive, negative and null eigenvalues respectively. With these notations it is clear that a sufficient condition for (2) is

$$
\begin{equation*}
\mu_{q}(z)<\mu_{q+1}(z) \text { and } \mu_{q+1}(z) \geq 0 \quad \forall z \in M . \tag{3}
\end{equation*}
$$

As for (3) three many cases are given.
(a) $q=N-1-s^{+}\left(z_{0}\right)$ (strong q-pseudoconvexity). In this case (3) clearly holds.
(b) $q=s^{-}\left(z_{o}\right)$. The first of (3) holds but the second generally fails.
(c) $q \equiv s^{-}(z) \forall z$. Then (3) clearly holds.

We can also easily exhibit an example, in \mathbb{C}^{4} in which (1) holds (for $q=2$) but (2) fails:

$$
\begin{gathered}
W=\left\{z \in \mathbb{C}^{4}: x_{1}>-\left|z_{2}\right|^{2}+x_{2}\left|z_{3}\right|^{2}\right\} \\
\operatorname{Span}\left\{\partial_{\omega^{\prime}}\right\}=\text { the projection of } \operatorname{Span}\left\{\partial_{z_{2}}, \partial_{z_{3}}\right\} \text { on } T^{1,0} M .
\end{gathered}
$$

We come back to the general case of a wedge W and aim to rephrase (1) and (2) into properties for an exhaustion function of W. We choose complex coordinates $z=x+\sqrt{-1} y$ in \mathbb{C}^{N} and represent ∂W as a graph $x_{1}=h\left(y_{1}, z_{2}, \bar{z}_{2}, \ldots\right), W$ as $x_{1}>b$ and each M_{i} as $x_{1}=h_{i}$. We put $r=-x_{1}+h, \delta=-r$ and define $\phi=-\log \delta+\lambda|z|^{2}$ (λ a large constant to be fixed in the following). Let $S:=R+\mathbb{R}_{x_{1}}=\left\{z \in W: h_{i}=\right.$ h_{j} for $\left.i \neq j\right\}$. S is a manifold with boundary whose conormal n_{S} at generic points verifies
$n_{S}=\frac{\partial\left(h_{i}-h_{j}\right)}{\left|\partial\left(h_{i}-h_{j}\right)\right|}\left(=\mathcal{J}\left(\frac{\partial r}{|\partial r|}\right)\right)$ the «jump» of $\frac{\partial r}{|\partial r|}$ between the « i and j sides of S ».
We shall deal with vectors $\left(w_{J}\right)_{J}\left(J=\left(j_{1} \ldots j_{k}\right)\right)$ with alternate complex coefficients. We also extend the forms $\left\{\omega^{\prime}\right\}$ of (1), (2) from ∂W to W in a neighborhood of z_{o} by prescribing a constant value on the fibers of the projection $W \rightarrow \partial W z \mapsto z^{*}$ along the
x_{1}-axis and complete to a full system of forms $\omega^{\prime}, \omega^{\prime \prime}$ in $\left.T^{1,0} X\right|_{W}$. (Here the forms $\omega^{\prime \prime}$ have rank $N-q$ and not $N-1-q$ as was the case of (1), (2)). We shall denote by $\phi_{j i}$ the matrix of $\bar{\partial} \partial \phi$ in the basis $\omega^{\prime}, \omega^{\prime \prime}$.

Theorem 2. (i) Let (1) hold. Then for $k \geq q+1$, we have (in a neighborhood of z_{0} on $W)$:

$$
\begin{equation*}
\sum_{|K|=k-1 i}^{\prime} \sum_{\text {or } j \geq q+1} \phi_{j i} \bar{w}_{j K} w_{i K} \geq \lambda|w|^{2} \forall z \in W \backslash S, \forall\left(w_{J}\right) \tag{4}
\end{equation*}
$$

(ii) Let (2) hold. Then for $k \geq q+1$, we have:

$$
\begin{equation*}
\sum_{|K|=k-1}^{\prime} \sum_{i j=1, \ldots N} \phi_{j i} \bar{w}_{j K} w_{i K}-\sum_{|J|=k j \leq q}^{\prime} \sum_{j \mid} \phi_{j j}\left|w_{J}\right|^{2} \geq \lambda|w|^{2} \forall z \in W \backslash S, \forall\left(w_{J}\right) \tag{5}
\end{equation*}
$$

Proof. We begin by the proof of (ii) which is more involved. We first observe that

$$
\begin{equation*}
\left.\bar{\partial} \partial r(z)\right|_{\partial r(z)^{\perp}}=\left.\bar{\partial} \partial r\left(z^{*}\right)\right|_{\partial r\left(z^{*}\right)^{\perp}} \forall z \in W \tag{6}
\end{equation*}
$$

where $z \mapsto z^{*}$ is the projection along $\mathbb{R}_{x_{1}}$. Let $\lambda_{1} \leq \lambda_{2} \leq \ldots$ and $\mu_{1} \leq \mu_{2} \leq \ldots$ denote the eigenvalues of $\bar{\partial} \partial \phi$ and $\left.\bar{\partial} \partial\right|_{\partial r^{\perp}}$ respectively. Note that

$$
\begin{equation*}
\bar{\partial} \partial \phi=\delta^{-1} \bar{\partial} \partial r+\delta^{-2} \bar{\partial} r \wedge \partial r+\lambda d \bar{z} \wedge d z \tag{7}
\end{equation*}
$$

In particular by (6), (7) the eigenvalues of $\left.\bar{\partial} \partial \phi(z)\right|_{\partial r(z) \perp}$ are $\delta^{-1} \mu_{j}\left(z^{*}\right)+\lambda$. Also, by (7) if ∂^{τ} and ∂^{ν} denote the derivatives of type $(1,0)$ normal to (resp. parallel to) ∂r on $W \backslash S$, then we have for a suitable c :

$$
\begin{equation*}
\bar{\partial} \partial \phi \geq \delta^{-1} \bar{\partial}^{\tau} \partial^{\tau} r-c d \bar{z}^{\tau} \wedge d z^{\tau}+\lambda d \bar{z} \wedge d z \tag{8}
\end{equation*}
$$

It follows

$$
\begin{equation*}
\sum_{j=1, \ldots, k} \lambda_{j}(z) \geq \delta^{-1} \sum_{j=1, \ldots, k} \mu_{j}\left(z^{*}\right)+(\lambda-c) k \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1, \ldots, q} \phi_{j j}(z)=\delta^{-1} \sum_{j=1, \ldots, q} \mu_{j}\left(z^{*}\right)+\lambda q \tag{10}
\end{equation*}
$$

In conclusion the left hand side (I) of (5) verifies (for $|w|=1$)
$(I) \geq\left(\sum_{j=1, \ldots, k} \lambda_{j}(z)-\sum_{j=1, \ldots, q} \phi_{j j}(z)\right) \geq \delta^{-1} \sum_{j=q+1, \ldots, k} \mu_{j}\left(z^{*}\right)+\lambda(k-q)-c k \geq$ $\geq \lambda^{\prime} \quad\left(\right.$ for suitable λ and for a new $\left.\lambda^{\prime}\right)$.
(i): Let us put $w_{K}^{\prime}=\left(w_{j K}\right)_{j \leq q}, w_{K}^{\prime \prime}=\left(w_{j K}\right)_{j \geq q+1}$. Then (8) implies, on account of (6) and (1)

$$
\begin{equation*}
\sum_{i \text { or } j \geq q+1} \phi_{j i} \bar{w}_{j K} w_{i K} \geq-c\left(\left|w_{K}^{\prime}\right|^{2}+\left|w_{K}^{\prime \prime}\right|^{2}\right)+\lambda\left|w_{K}^{\prime \prime}\right|^{2} \tag{11}
\end{equation*}
$$

Observe now that any J with $J=k \geq q+1$ can be written as $J=j K$ for some $j \geq q+1$; hence $\sum_{|K|=k-1}^{\prime}\left|w_{K}^{\prime \prime}\right|^{2} \geq c^{\prime}|w|^{2}$. It follows that if we take summation of (11) over K we get (4) for a new λ.

Theorem 3. (i) Let W be a wedge of \mathbb{C}^{N} at z_{o} which satisfies (1). Then for any $\bar{\partial}$-closed form f of degree $k \geq q+1$ with $C^{\infty}(W \cap U)$-coefficients, there is a solution u of degree $k-1$ with $C^{\infty}(W \cap U)$-coefficients to the equation $\bar{\partial} u=f$.
(ii) Let W satisfy (2) at z_{0}. Then the same statement as above holds for forms with $C^{\infty}(\overline{W \cap U})$-coefficients.

Proof of Theorem 3 (ii). We start by (ii) which is more difficult. We denote by $L_{\phi}^{2}(W)$ (ϕ a real positive function) the space of square integrable functions on W in the measure $e^{-\phi} d V$ ($d V$ being the Euclidean element of volume). We denote by $\|\cdot\|_{\phi}$ the norm in the above space. We denote by $L_{\phi}^{2}(W)^{k}$ the space of $(0, k)$-forms $f=\sum_{|J|=k}^{\prime} f_{J} \bar{\omega}_{J}$ with coefficients f_{J} in $L_{\phi}^{2}(W)$. (Here \sum^{\prime} denotes summation over ordered indices, $\left\{\omega_{j}\right\}$ denotes a basis of $(1,0)$ forms, and finally $\bar{\omega}_{J}=\bar{\omega}_{j_{1}} \wedge \cdots \wedge \bar{\omega}_{j_{k}}$. Also the forms ω_{j} 's are supposed to fulfill all assumptions in Theorem 2 and in particular have bounded first and second derivatives in $\bar{W} \cap U)$. We denote by $\left(\phi_{j i}\right)$ the matrix of the Hermitian form $\bar{\partial} \partial \phi$ in the chosen basis. If ψ is another real positive function, which shall be fixed according to our future need, we shall deal with the complex of closed densely defined operators

$$
\begin{equation*}
L_{\phi-2 \psi}^{2}(W)^{k-1} \xrightarrow{\bar{\partial}} L_{\phi-\psi}^{2}(W)^{k} \xrightarrow{\bar{\sigma}} L_{\phi}^{2}(W)^{k+1} . \tag{12}
\end{equation*}
$$

We denote by $\bar{\partial}^{*}$ the adjoint of $\bar{\partial}$ and also define the operator $\delta_{\omega_{j}}(\cdot)=e^{\phi} \partial_{\omega_{j}}\left(e^{-\phi} \cdot\right)$. We have

$$
\begin{align*}
\bar{\partial}^{*} f & =-\sum_{|K|=k-1}^{\prime} \sum_{j=1, \ldots, N} e^{-\psi} \delta_{\omega_{j}}\left(f_{j K}\right) \bar{\omega}_{K}-\sum_{|K|=k-1}^{\prime} \sum_{j=1, \ldots, N} e^{-\psi} f_{j K} \partial_{\omega_{j}} \psi \bar{\omega}_{K}+e^{-\psi} R_{f} \\
\bar{\partial} f & =\sum_{|J|=k}^{\prime} \sum_{j=1, \ldots, N} \bar{\partial}_{\omega_{j}}\left(f_{J}\right) \bar{\omega}_{j} \wedge \bar{\omega}_{J}+R_{f} \tag{13}
\end{align*}
$$

where R_{f} are errors which involve products of the f_{J} 's by derivatives of coefficients of the ω_{j} 's. By means of (13) we then get the following estimate which generalizes [6, (4.2.8)]

$$
\begin{array}{r}
\sum_{|K|=k-1}^{\prime} \sum_{i j=1, \ldots, N} \int_{W} e^{-\phi}\left(\delta_{\omega_{i}}\left(f_{i K}\right) \overline{\delta_{\omega_{j}}\left(f_{j K}\right)}-\bar{\partial}_{\omega_{j}}\left(f_{i K}\right) \overline{\bar{\partial}_{\omega_{i}}\left(f_{j K}\right)}\right) d V+\sum_{|J|=k}^{\prime} \sum_{j=1, \ldots, N} \int_{W} e^{-\phi} \tag{14}\\
\left|\bar{\partial}_{\omega_{j}}\left(f_{J}\right)\right|^{2} d V \leq 3\left\|\bar{\partial}^{*} f\right\|_{\phi-2 \psi}^{2}+2\|| | \bar{\partial} f\|_{\phi}^{2}+c| | f\left\|_{\phi}^{2}+3\left|\|\partial \psi \mid f\|_{\phi}^{2},\right.\right.
\end{array}
$$

where c depends on the sup-norm of the derivatives of the coefficients of the ω_{j} 's over the support of f. Since these are bounded in $\bar{W} \cap U$ (maybe with a smaller $U^{\prime} \subset \subset U$),
then there is an uniform $c \forall f \in C_{c}^{\infty}(W \cap U)^{k}$. We have the commutation relations

$$
\begin{equation*}
\left[\delta_{\omega_{i}}, \bar{\partial}_{\omega_{j}}\right]=\partial_{\bar{\omega}_{j}} \partial_{\omega_{i}} \phi+\sum_{h} c_{j i}^{h} \partial_{\omega_{h}}-\sum_{h} \bar{c}_{i j}^{h} \partial_{\bar{\omega}_{h}}=\phi_{j i}+\sum_{h} c_{j i}^{h} \delta_{\omega_{b}}-\sum_{h} \bar{c}_{i j}^{h} \partial_{\bar{\omega}_{b}}, \tag{15}
\end{equation*}
$$

for suitable functions $c_{j i}^{b}$. We apply (15) to all terms in the first sum on the left of (14) and to the terms with $j \leq q$ in the second. We obtain, if f belongs to $C_{c}^{\infty}(W)^{k}$:

$$
\begin{align*}
& \sum_{|K|=k-1}^{\prime} \sum_{i j=1, \ldots, N} \cdot+\sum_{|J|=k}^{\prime} \sum_{j=1, \ldots, N} \cdot= \\
& =\left(\sum_{|K|=k-1}^{\prime} \sum_{i j=1, \ldots, N} \int_{\Omega} e^{-\phi} \phi_{j i} f_{i K} \bar{f}_{j K} d V-\sum_{|J|=k}^{\prime} \sum_{j \leq q} \int_{\Omega} e^{-\phi} \phi_{j j}\left|f_{J}\right|^{2} d V\right)+ \\
& +\left(\sum_{|J|=k}^{\prime} \sum_{j \leq q}\left\|\delta_{\omega_{j}} f_{j}\right\|_{\phi}^{2}+\sum_{|J|=k}^{\prime} \sum_{j \geq q+1} \|\left.\partial_{\bar{\omega}_{j}} f_{j}\right|_{\phi} ^{2}\right)+ \tag{16}\\
& +\left(\sum_{|K|=k-1}^{\prime} \sum_{i j=1, \ldots, N} \int_{S} e^{-\phi} J\left(\partial_{\omega_{i}} \phi\right) \bar{n}_{j} f_{i K} \bar{f}_{j K} d S-\sum_{|J|=k}^{\prime} \sum_{j \leq q} \int_{S} e^{-\phi} J\left(\partial_{\omega_{j}} \phi\right) \bar{n}_{j}\left|f_{j}\right|^{2} d S\right)+
\end{align*}
$$

$$
+ \text { Error }
$$

where the error term has the estimate

$$
\begin{equation*}
\mid \text { Error } \mid \leq\left(\sum_{|J|=k}^{\prime} \sum_{j \leq q}\left\|\delta_{\omega_{j}} f_{J}\right\|^{2}+\sum_{|J|=k}^{\prime} \sum_{j \geq q+1}\left\|\bar{\partial}_{\omega_{j}} f_{J}\right\|^{2}\right)+c\|f\|_{\phi}^{2} \tag{17}
\end{equation*}
$$

(where c depends now also on the second derivatives of the coefficients of the ω_{i} 's). Note that $n^{\prime}=0$ whence $\sum_{|J|=k}^{\prime} \sum_{j \leq q} \int_{S} \cdot d S=0$. Also, since $n=\frac{\mathcal{J}(\partial \phi)}{|\mathcal{J}(\partial \phi)|}$, then $\sum_{i j=1, \ldots, N} \mathcal{J}\left(\partial_{\omega_{i}} \phi\right) \bar{n}_{j} f_{i K} \bar{f}_{j K}$ is a square; hence the third term on the right of (16) is positive (thus negligeable). Assume that ϕ satisfies (5) of Theorem 2 on the whole W. Then by (16) we have the estimate:

$$
\begin{equation*}
\sum_{|K|=k-1}^{\prime} \sum_{i j=1, \ldots, N}+\sum_{|J|=k}^{\prime} \sum_{j=1, \ldots, N} \cdot \geq \lambda| | f\left\|_{\phi}^{2}-c| | f\right\|_{\phi}^{2} . \tag{18}
\end{equation*}
$$

By plugging together (14) and (18) we get with a new c

$$
\begin{equation*}
\lambda\|f\|_{\phi}^{2} \leq 3\left\|\bar{\partial}^{*} f\right\|_{\phi-2 \psi}^{2}+2\|\bar{\partial} f\|_{\phi}^{2}+c\|f\|_{\phi}^{2}+3\| \| \partial \psi \mid f \|_{\phi}^{2} \quad \forall f \in C_{c}^{\infty}(W)^{k} \tag{19}
\end{equation*}
$$

We fix now a compact subset $K \subset \subset W$, and choose ψ according to [6, Lemma 4.1.3]; (in particular we can choose $\left.\psi\right|_{K} \equiv 0$). This ensures density of C_{c}^{∞} into L^{2}-forms; hence now (19) holds for L^{2} instead of C_{c}^{∞} forms. We assume w.l.o.g. that $K=\{\phi \leq n\}$; we replace the above ϕ by

$$
\chi(\phi)+(3+c)|z|^{2}
$$

where χ is a positive convex function of a real argument t which satisfies:

$$
\begin{cases}\chi(t) \equiv 0, & \text { for } t \leq n \\ \dot{\chi}(t) \geq \sup _{\{z: \phi(z) \leq t\}} \frac{3\left(|\partial \psi|^{2}+e^{\psi}-1\right)}{\lambda}, & \text { for } t \geq n\end{cases}
$$

Under this choice of ϕ and ψ we conclude, for $k \geq q+1$,

$$
\begin{equation*}
\|f\|_{\phi-\psi}^{2} \leq\left\|\bar{\partial}^{*} f\right\|_{\phi-2 \psi}^{2}+\|\bar{\partial} f\|_{\phi}^{2} \forall f \in D_{\bar{\partial}}^{k} \cap D_{\bar{\partial}^{*}}^{k} \tag{20}
\end{equation*}
$$

where $D_{\bar{\partial}}^{k}$ and $D_{\bar{\partial}^{*}}^{k}$ are the domains in $L_{\phi}^{2}(W)^{k}$ of $\bar{\partial}$ and $\bar{\partial}^{*}$ respectively. Moreover for any compact subset $K \subset \subset \Omega$, we may choose $\left.\psi\right|_{K} \equiv 0$ and $\left.\phi\right|_{K} \equiv c|z|^{2}$ where we still write c instead of $3+c$. Let us point out that the estimate (20), with the additional condition $\left.\phi\right|_{K} \equiv c|z|^{2}$, will be the main ingredient of our proof. Let us recall that it was obtained by assuming that ϕ satisfies (5) on the whole $W \backslash S$.

End of proof of Theorem 3 (ii). We come back to our wedge W which satisfies (2). We suppose W be locally defined by $-x_{1}+h<0$ and then set $W_{\nu}=\left\{-x_{1}+h<\frac{\eta^{2}}{2}\right\}$ for $0<\eta<\frac{1}{2}$. Let U_{ν} (resp. U) be the sphere with center z_{o} and radius $\rho+\frac{\eta^{2^{\nu}}}{2}$ (resp. ρ) with ρ small. By an easy variant of Theorem 2 (ii), the functions $\phi:=-\log (-r+$ $\left.\frac{\eta^{2^{2}}}{2}\right)+\lambda|z|^{2}+\log \left(-\left|z-z_{0}\right|^{2}+\left(\rho+\frac{\eta^{2^{\nu}}}{2}\right)^{2}\right)$ will be exhaustion functions for the domains $W_{\nu} \cap U_{\nu}$ which satisfy (5) (globally). Thus (20) holds on each $W_{\nu} \cap U_{\nu}$. This easily implies that for $k \geq q+1$ and for any form $f \in L_{\left.c|z|\right|^{2}}^{2}\left(W_{\nu} \cap U_{\nu}\right)^{k}$ with $\bar{\partial} f=0$, there exists $u \in L_{\left.c|z|\right|^{2}}^{2}\left(W_{\nu} \cap U_{\nu}\right)^{k-1}$ such that

$$
\begin{equation*}
\left(\bar{\partial} u=f, \bar{\partial}^{*} u=0\right) \quad\|u\|_{c|z|^{2}}^{2} \leq\|f\|_{c|z|^{2}}^{2} . \tag{21}
\end{equation*}
$$

We note now that

$$
\begin{equation*}
\left\{z \in \mathbb{C}^{N}: \operatorname{dist}(z, W)<\eta^{2^{\nu+1}}\right\} \subset W_{\nu} \subset\left\{z \in \mathbb{C}^{N}: \operatorname{dist}(z, W)<\frac{\eta^{2^{\nu}}}{2}\right\} \tag{22}
\end{equation*}
$$

(in a neighborhood of z_{0}). According to [3] we can show that (21) implies, by the aid of (22), that for $k \geq q+1$, for $f_{\nu} \in C^{\infty}\left(\overline{W_{\nu} \cap U_{\nu}}\right)^{k}$ with $\bar{\partial} f_{\nu}=0$, there is $u_{\nu} \in C^{\infty}\left(\overline{W_{\nu+1} \cap U_{\nu+1}}\right)^{k-1}$ such that

$$
\begin{equation*}
\left(\bar{\partial} u_{\nu}=f_{\nu}, \bar{\partial}^{*} u_{\nu}=0\right) \quad\left\|u_{\nu}\right\|_{(s+1)} \leq \frac{M_{s}}{\eta^{2^{\nu+1}(s+1)}}\left\|f_{\nu}\right\|_{(s)} \tag{23}
\end{equation*}
$$

(where $\left\|u_{\nu}\right\|_{(s+1)}\left(\right.$ resp. $\left.\left\|f_{\nu}\right\|_{(s)}\right)$ are the norms in the Sobolev spaces $H^{s+1}\left(W_{\nu+1} \cap U_{\nu+1}\right)$ (resp. $\left.H^{s}\left(W_{\nu} \cap U_{\nu}\right)\right)$.

We are ready to conclude. Let $f \in C^{\infty}\left(\bar{W} \cap U_{1}\right)^{k}$ satisfy $\bar{\partial} f=0$. Extend f to \widetilde{f} such that

$$
\|\bar{\partial} \widetilde{f}\|_{(s)} \leq M_{r v} \eta^{r 2^{\nu}} \text { on } W_{\nu} \cap U_{\nu} \text { for any } r, s \text { and for suitable } M_{r s}
$$

However \widetilde{f} is no more $\bar{\partial}$-closed. To overcome this problem we take a solution h_{ν} on
$W_{\nu+1} \cap U_{\nu+1}$ of

$$
\left\{\begin{array}{l}
\bar{\partial} h_{\nu}=\bar{\partial} \widetilde{f} \\
\left\|h_{\nu}\right\|_{(s+1)} \leq M_{s}\left(\eta^{2^{\nu+1}}\right)^{-s-1}\|\bar{\partial} \widetilde{f}\|_{(s)}
\end{array}\right.
$$

provided by (23). Now $\bar{\partial}\left(\tilde{f}-h_{\nu}\right)=0$. We then solve on W_{2} the equation $\bar{\partial} g_{1}=\tilde{f}-h_{1}$, and, inductively on $W_{\nu+2} \cap U_{\nu+2}$:

$$
\bar{\partial} g_{\nu+1}=h_{\nu}-h_{\nu+1}
$$

with the estimates

$$
\begin{aligned}
\left\|h_{\nu+1}\right\|_{(s+2)} \leq M_{s+1}\left(\eta^{2^{\nu+2}}\right)^{-(s+2)}\left\|h_{\nu}-h_{\nu+1}\right\|_{(s+1)} & \leq M_{s}^{\prime}\left(\eta^{2^{\nu+2}}\right)^{-2 s-3} M_{r s} \eta^{r 2^{\nu}} \leq \\
& \leq M_{r s}^{\prime} \frac{1}{2^{\nu}} \quad(r, \nu \text { large })
\end{aligned}
$$

Therefore $\sum_{\nu=1}^{\infty} g_{\nu}$ converges in $C^{\infty}(\bar{W} \cap U)$ and solves on $\bar{W} \cap U$ the equation:

$$
\bar{\partial}\left(\sum_{\nu=1}^{\infty} g_{\nu}\right)=\widetilde{f}-\lim _{\nu} h_{\nu}=\widetilde{f}
$$

Proof of Theorem 3 (i). We shall prove that if there is an exhaustion function ϕ which satisfies (4) globally on $W \backslash S$, then an estimate of type (20) will still hold. But in this case we shall have $\left.\phi\right|_{K}=c|z|^{2}, c=c_{K}$; i.e. c will be no more uniform on compact subsets of \bar{W}. However this suffices for $C^{\infty}(W)$ regularity of $\bar{\partial}[5,6]$. We recall (14) and decompose the term in the left side as

$$
\begin{aligned}
& \sum_{K}^{\prime} \sum_{i j}+\sum_{J}^{\prime} \sum_{j} \cdot=\sum_{K}^{\prime} \sum_{i \text { or } j \geq q+1} \cdot+(1-\epsilon)\left(\sum_{K}^{\prime} \sum_{i, j \leq q} \cdot+\sum_{J}^{\prime} \sum_{j \leq q} \cdot\right)+ \\
& +\epsilon \sum_{K}^{\prime} \sum_{i, j \leq q} \cdot+\left(\epsilon \sum_{J}^{\prime} \sum_{j \leq q} \cdot+\sum_{j}^{\prime} \sum_{j \geq q+1} .\right) .
\end{aligned}
$$

We apply (15) to the first term in the right

$$
\begin{aligned}
& \sum_{K}^{\prime} \sum_{i \text { or } j \geq q+1}=\sum_{K}^{\prime} \sum_{i \text { or } j \geq q+1} \int_{W} e^{-\phi} \phi_{j i f} \bar{i}_{j K} f_{i K} d V+ \\
&+\sum_{K}^{\prime} \sum_{i \text { or } j \geq q+1} \int_{S} e^{-\phi} \mathcal{J}\left(\partial_{\omega_{i}} \phi\right) \bar{n}_{j} f_{i K} \bar{f}_{j K} d S+\text { Error }
\end{aligned}
$$

Note that the projection of $n=\frac{\mathcal{J}(\partial \phi)}{|\mathcal{J}(\partial \phi)|}$ on the plane of $\operatorname{Span}\left\{\partial_{\omega^{\prime}}\right\}$ is 0 . Hence the term which involves \int_{S}. is a square. On the other hand if ϕ satisfies (4) we have

$$
\sum_{K}^{\prime} \sum_{i \text { or } j \geq q+1} \int_{W} e^{-\phi} \phi_{j i} \bar{f}_{j K} f_{i K} d V \geq \lambda| | f \|_{\phi}^{2}
$$

We remark now that $(1-\epsilon)(\cdot)$ equals $\left\|\bar{\partial}^{\prime *} f\right\|_{\phi}^{2}+\left\|\bar{\partial}^{\prime} f\right\|_{\phi}^{2}$ up to a term $\|\partial \psi \psi \mid f\|_{\phi}^{2}+$ Error. Also if ν is an upper bound for the $\left|\phi_{j i}\right|$ for $i, j \leq q$, then $\epsilon(\cdot) \geq-\epsilon \nu| | f \|_{\phi}^{2}+$
$+\epsilon \sum_{J}^{\prime} \sum_{i j \leq q}\left\|\bar{\partial}_{\omega_{j}} f_{j}\right\|_{\phi}^{2}+$ Error. Collecting all together:

$$
(\lambda-\epsilon \nu)\|f\|_{\phi}^{2} \leq 3\left\|\bar{\partial}^{*} f\right\|_{\phi-2 \psi}^{2}+2\|\bar{\partial} f\|_{\phi}^{2}+\epsilon^{-1} c\|f\|_{\phi}^{2}+4\| \| \partial \psi \mid f \|_{\phi}^{2} .
$$

We then choose $\epsilon=\frac{\lambda}{2 \nu}$ and replace ϕ by $\chi(\phi)+6|z|^{2}$ where

$$
\dot{\chi}(t) \geq \sup _{\{z: \phi(z) \leq t\}} \frac{2}{\lambda}\left(\frac{2 \nu c}{\lambda}+4|\partial \psi|+3 e^{\psi}-3\right) .
$$

This gives the same estimate as (20) (but with no uniform control for ϕ). With this estimate in hands we get existence in L^{2} and then gain of one derivative for solutions of the system $\left(\bar{\partial}, \bar{\partial}^{*}\right)$, in the same way as in Theorem 3 (ii). This entails existence in C^{∞}.

References

[1] R.A. Airapetyan - G.M. Henkin, Integral representation of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions. Uspekhi Mat. Nauk., 39 (3), 1984, 39-106.
[2] A. Andreotti - H. Grauert, Théorèmes de finitude pour la cohomologie des éspaces complexes. Bull. Soc. Math. France, 90, 1962, 193-259.
[3] A. Dufresnoy, Sur l'operateur $\bar{\partial}$ et les fonctions différentiables au sens de Whitney. Ann. Inst. Fourier, 29 (1), 1979, 229-238.
[4] G.M. Henkin, H. Lewy's equation and analysis on pseudoconvex manifolds (Russian). I. Uspehi Mat. Nauk., 32 (3), 1977, 57-118.
[5] L. Hörmander, L^{2} estimates and existence theorems for the $\bar{\partial}$ operator. Acta Math., 113, 1965, 89-152.
[6] L. Hörmander, An introduction to complex analysis in several complex variables. Van Nostrand, Princeton N.J. 1966.
[7] J.J. Kohn, Regularity at the boundary of the $\bar{\partial}-$ Neumann problem. Proceedings of the National Academy of Sciences of the United States of America, 49, 1963, 206-213.
[8] V. Michel, Sur la regularité $C^{\infty} d u \bar{\partial}$ au bord d'un domaine de \mathbb{C}^{n} dont la forme de Levi a exactements valeurs propres strictement negatives. Math. Ann., 195, 1993, 131-165.
[9] G. Zampieri, L^{2}-estimates with Levi-singular weight, and existence for $\bar{\partial}$. J. d'Analyse Math., 74, 1998, 99-112.
[10] G. Zampieri, Solvability of $\bar{\partial}$ with C^{∞} regularity up to the boundary on wedges of \mathbb{C}^{N}. Israel J. of Math., 1999, in press.
[11] G. Zampieri, C^{∞} solvability of the $\bar{\partial}$ system on wedges of \mathbb{C}^{N}. Preprint 1998.

Dipartimento di Matematica Università degli Studi di Padova Via Belzoni, 7 - 35131 Padova zampieri@math.unipd.it

