ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

GIUSEPPE ZAMPIERI

Existence and regularity of solutions of the $\bar{\delta}$ -system on wedges of \mathbb{C}^N

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. **10** (1999), n.4, p. 271–278. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1999_9_10_4_271_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1999.

Funzioni di variabile complessa. — Existence and regularity of solutions of the $\overline{\partial}$ -system on wedges of \mathbb{C}^N . Nota di Giuseppe Zampieri, presentata (*) dal Corrisp. C. De Concini.

ABSTRACT. — For a wedge W of \mathbb{C}^N , we introduce two conditions of weak q-pseudoconvexity, and prove that they entail solvability of the $\overline{\partial}$ -system for forms of degree $\geq q + 1$ with coefficients in $C^{\infty}(W)$ and $C^{\infty}(\overline{W})$ respectively. Existence and regularity for $\overline{\partial}$ in W is treated by Hörmander [5, 6] (and also by Zampieri [9, 11] in case of piecewise smooth boundaries). Regularity in \overline{W} is treated by Henkin [4] (strong q-pseudoconvexity by the method of the integral representation), Dufresnoy [3] (full pseudoconvexity), Michel [8] (constant number of negative eigenvalues), and Zampieri [10] (more general q-pseudoconvexity and wedge type domains). This is an announcement of our papers [10, 11]; it contains refinements both in statements and proofs and, mainly, a parallel treatement of regularity in W and \overline{W} . All our techniques strongly rely on the method of L^2 estimates by Hörmander [5, 6].

KEY WORDS: L^2 estimates; Cauchy-Riemann system; C.R. structures.

RIASSUNTO. — Esistenza e regolarità delle soluzioni del sistema $\overline{\partial}$ in «wedges» di \mathbb{C}^N . Si introducono due condizioni di *q*-pseudoconvessità debole per un «wedge» di \mathbb{C}^N , e si dimostra che esse sono sufficienti per la risolubilità del sistema $\overline{\partial}$ per forme di grado $\geq q + 1$ a coefficienti in $C^{\infty}(W)$ e $C^{\infty}(\overline{W})$ rispettivamente. Esistenza e regolarità in W per il $\overline{\partial}$ sono trattate da Hörmander [5, 6] (e anche da Zampieri [9, 11] per bordi C^2 a tratti). Regolarità in \overline{W} è trattata da Henkin [4] (*q*-pseudoconvessità forte con il metodo della rappresentazione integrale), Dufresnoy [3] (pseudoconvessità «completa»), Michel [8] (costanza del numero di autovalori negativi) e Zampieri [10] (*q*-pseudoconvessità più generale e domini di tipo «wedge»). Questa è una nota preliminare agli articoli [10, 11]; contiene miglioramenti negli enunciati e nelle dimostrazioni e, soprattutto, una trattazione parallela della regolarità in W e \overline{W} . Tutte le tecniche qui impiegate si basano profondamente sul metodo delle stime L^2 introdotto da Hörmander in [5, 6].

Let W be a wedge of \mathbb{C}^N defined, in a neighborhood of a point $z_o \in \partial W$ by $r_j < 0, j = 1, \ldots, l$ with $\partial r_1 \wedge \cdots \wedge \partial r_l \neq 0$. We shall use the following notations: M_j will denote the hypersurfaces $\{r_j\} = 0, \widehat{M_j}$ the "faces" $M_j \cap \partial W$, R the union of the "wedges" $\{r_j = 0, r_i = 0 \text{ for } i \neq j\}$. $\overline{\partial}\partial r_j$ (resp. $\overline{\partial}\partial r_j|_{\partial r_j^{\perp}}$) will denote the Levi form of the function r_j (resp. of the hypersurface M_j) where ∂r_j^{\perp} denotes the plane orthogonal to ∂r_j *i.e.* the complex tangent plane to M_j . We shall formulate two different conditions of weak q-pseudoconvexity. For an orthonormal system of (1, 0)-forms $\omega' = \{\omega_1 \dots \omega_q\}$ on ∂W at z_o whose dual tangent derivations $\partial_{\omega'}$ verify $\operatorname{Span}\{\partial_{\omega'}\}|_{\widehat{M_j}} \subset T^{1,0}M_i \ \forall i$, which are $C^0(\partial W) \cap C^2(\partial W \setminus R)$ with bounded first and second derivatives, and for an orthonormal completion ω'' (possibly different on each

^(*) Nella seduta del 14 maggio 1999.

 M_i), we have

(1)
$$\begin{aligned} \overline{\partial}\partial r_i(z)(\overline{v}'',v') &= 0, \quad \overline{\partial}\partial r_i(z)(\overline{v}'',v') \ge 0, \\ \forall v &= (v',v'') \in \partial r_j^{\perp} \ (= \mathbb{C}^{N-1}) \quad \forall z \in \widehat{M}_i \cap U. \end{aligned}$$

(Here $\{U\}$ denotes a system of neighborhoods of z_o). We shall also deal with a slight improvement of (1):

(2) We have (1) and
$$\overline{\partial}\partial r_i(z)(\overline{v}'', v'') \ge \overline{\partial}\partial r_i(z)(\overline{v}', v') \quad \forall z \in \widehat{M}_i \quad \forall |v'|=1, |v''|=1.$$

Note that (1) means that $\text{Span}\{\partial_{\omega'}\}$ is engendred by a system of eigenvectors (the first q in case of (2)) which contains all negative ones.

REMARK 1. It shall be clear from our proofs that we can allow a «thin» set R' of C^0 -discontinuity for the coefficients of the forms $\{\omega'_i\}$ *i.e.* a set verifying codimension_{∂W} $R' \geq 2$.

Let us discuss our conditions (1) and (2) by means of some examples. We assume that W is a half-space $\{r < 0\}$ with C^4 -boundary $M = \{r = 0\}$, denote by $\mu_1(z) \le \mu_2(z) \ldots$ the ordered eigenvalues of the Levi form $L_M(z) := \overline{\partial}\partial r(z)|_{\partial r(z)^{\perp}}$ and let $s^+(z)$, $s^-(z)$, $s^0(z)$ be the numbers of its positive, negative and null eigenvalues respectively. With these notations it is clear that a sufficient condition for (2) is

(3)
$$\mu_q(z) < \mu_{q+1}(z) \text{ and } \mu_{q+1}(z) \ge 0 \quad \forall z \in M.$$

As for (3) three many cases are given.

(a) $q = N - 1 - s^+(z_o)$ (strong q-pseudoconvexity). In this case (3) clearly holds. (b) $q = s^-(z_o)$. The first of (3) holds but the second generally fails. (c) $q \equiv s^-(z) \forall z$. Then (3) clearly holds.

We can also easily exhibit an example, in \mathbb{C}^4 in which (1) holds (for q = 2) but (2) fails:

$$W = \{z \in \mathbb{C}^4 : x_1 > -|z_2|^2 + x_2|z_3|^2\}$$

Span $\{\partial_{\omega'}\}$ = the projection of Span $\{\partial_{z_2}, \partial_{z_2}\}$ on $T^{1,0}M$

We come back to the general case of a wedge W and aim to rephrase (1) and (2) into properties for an exhaustion function of W. We choose complex coordinates $z = x + \sqrt{-1}y$ in \mathbb{C}^N and represent ∂W as a graph $x_1 = h(y_1, z_2, \overline{z}_2, ...)$, W as $x_1 > h$ and each M_i as $x_1 = h_i$. We put $r = -x_1 + h$, $\delta = -r$ and define $\phi = -\log \delta + \lambda |z|^2$ (λ a large constant to be fixed in the following). Let $S := R + \mathbb{R}_{x_1} = \{z \in W : h_i = h_j \text{ for } i \neq j\}$. S is a manifold with boundary whose conormal n_S at generic points verifies

$$n_{S} = \frac{\partial(h_{i} - h_{j})}{|\partial(h_{i} - h_{j})|} \left(= \mathcal{J}(\frac{\partial r}{|\partial r|}) \right) \text{ the "jump" of } \frac{\partial r}{|\partial r|} \text{ between the "i and } j \text{ sides of } S".$$

We shall deal with vectors $(w_J)_J$ $(J = (j_1 \dots j_k))$ with alternate complex coefficients. We also extend the forms $\{\omega'\}$ of (1), (2) from ∂W to W in a neighborhood of z_o by prescribing a constant value on the fibers of the projection $W \to \partial W \ z \mapsto z^*$ along the x_1 -axis and complete to a full system of forms ω' , ω'' in $T^{1,0}X|_W$. (Here the forms ω'' have rank N - q and not N - 1 - q as was the case of (1), (2)). We shall denote by ϕ_{ii} the matrix of $\overline{\partial}\partial\phi$ in the basis ω' , ω'' .

THEOREM 2. (i) Let (1) hold. Then for $k \ge q + 1$, we have (in a neighborhood of z_o on W):

(4)
$$\sum_{|K|=k-1}' \sum_{i \text{ or } j \ge q+1} \phi_{ji} \overline{w}_{jK} w_{iK} \ge \lambda |w|^2 \quad \forall z \in W \setminus S, \ \forall (w_j).$$

(ii) Let (2) hold. Then for $k \ge q + 1$, we have :

(5)
$$\sum_{|K|=k-1}^{\prime} \sum_{ij=1,\dots,N} \phi_{ji} \overline{w}_{jK} w_{iK} - \sum_{|J|=k}^{\prime} \sum_{j \le q} \phi_{jj} |w_{J}|^{2} \ge \lambda |w|^{2} \quad \forall z \in W \setminus S, \ \forall (w_{J}).$$

PROOF. We begin by the proof of (ii) which is more involved. We first observe that

(6)
$$\overline{\partial}\partial r(z)|_{\partial r(z)^{\perp}} = \overline{\partial}\partial r(z^*)|_{\partial r(z^*)^{\perp}} \quad \forall z \in W,$$

where $z \mapsto z^*$ is the projection along \mathbb{R}_{x_1} . Let $\lambda_1 \leq \lambda_2 \leq \ldots$ and $\mu_1 \leq \mu_2 \leq \ldots$ denote the eigenvalues of $\overline{\partial}\partial\phi$ and $\overline{\partial}\partial r|_{\partial r^{\perp}}$ respectively. Note that

(7)
$$\overline{\partial}\partial\phi = \delta^{-1}\overline{\partial}\partial r + \delta^{-2}\overline{\partial}r \wedge \partial r + \lambda \, d\overline{z} \wedge dz \,.$$

In particular by (6), (7) the eigenvalues of $\overline{\partial}\partial\phi(z)|_{\partial r(z)^{\perp}}$ are $\delta^{-1}\mu_j(z^*) + \lambda$. Also, by (7) if ∂^{τ} and ∂^{ν} denote the derivatives of type (1, 0) normal to (resp. parallel to) ∂r on $W \setminus S$, then we have for a suitable c:

(8)
$$\overline{\partial}\partial\phi \geq \delta^{-1}\overline{\partial}^{\tau}\partial^{\tau}r - c\,d\overline{z}^{\tau}\wedge dz^{\tau} + \lambda\,d\overline{z}\wedge dz\,.$$

It follows

(9)
$$\sum_{j=1,\dots,k} \lambda_j(z) \ge \delta^{-1} \sum_{j=1,\dots,k} \mu_j(z^*) + (\lambda - c)k ,$$

and

(10)
$$\sum_{j=1,\dots,q} \phi_{jj}(z) = \delta^{-1} \sum_{j=1,\dots,q} \mu_j(z^*) + \lambda q \, .$$

In conclusion the left hand side (I) of (5) verifies (for |w| = 1)

$$(I) \ge \left(\sum_{j=1,\dots,k} \lambda_j(z) - \sum_{j=1,\dots,q} \phi_{jj}(z)\right) \ge \delta^{-1} \sum_{j=q+1,\dots,k} \mu_j(z^*) + \lambda(k-q) - ck \ge \lambda' \quad (\text{for suitable } \lambda \text{ and for a new } \lambda').$$

(i): Let us put $w'_K = (w_{jK})_{j \le q}$, $w''_K = (w_{jK})_{j \ge q+1}$. Then (8) implies, on account of (6) and (1)

(11)
$$\sum_{i \text{ or } j \ge q+1} \phi_{ji} \overline{w}_{jK} w_{iK} \ge -c(|w'_K|^2 + |w''_K|^2) + \lambda |w''_K|^2.$$

Observe now that any J with $J = k \ge q + 1$ can be written as J = jK for some $j \ge q + 1$; hence $\sum_{|K|=k-1}^{\prime} |w_K''|^2 \ge c'|w|^2$. It follows that if we take summation of (11) over K we get (4) for a new λ .

THEOREM 3. (i) Let W be a wedge of \mathbb{C}^N at z_o which satisfies (1). Then for any $\overline{\partial}$ -closed form f of degree $k \ge q + 1$ with $C^{\infty}(W \cap U)$ -coefficients, there is a solution u of degree k - 1 with $C^{\infty}(W \cap U)$ -coefficients to the equation $\overline{\partial}u = f$.

(ii) Let W satisfy (2) at z_o . Then the same statement as above holds for forms with $C^{\infty}(\overline{W \cap U})$ -coefficients.

PROOF OF THEOREM 3 (*ii*). We start by (*ii*) which is more difficult. We denote by $L_{\phi}^{2}(W)$ (ϕ a real positive function) the space of square integrable functions on Win the measure $e^{-\phi} dV$ (dV being the Euclidean element of volume). We denote by $|| \cdot ||_{\phi}$ the norm in the above space. We denote by $L_{\phi}^{2}(W)^{k}$ the space of (0, *k*)-forms $f = \sum_{|J|=k} f_{J}\overline{\omega}_{J}$ with coefficients f_{J} in $L_{\phi}^{2}(W)$. (Here \sum' denotes summation over ordered indices, $\{\omega_{j}\}$ denotes a basis of (1, 0) forms, and finally $\overline{\omega}_{J} = \overline{\omega}_{j_{1}} \wedge \cdots \wedge \overline{\omega}_{j_{k}}$. Also the forms ω_{j} 's are supposed to fulfill all assumptions in Theorem 2 and in particular have bounded first and second derivatives in $\overline{W} \cap U$). We denote by (ϕ_{ji}) the matrix of the Hermitian form $\overline{\partial}\partial\phi$ in the chosen basis. If ψ is another real positive function, which shall be fixed according to our future need, we shall deal with the complex of closed densely defined operators

(12)
$$L^{2}_{\phi-2\psi}(W)^{k-1} \xrightarrow{\overline{\partial}} L^{2}_{\phi-\psi}(W)^{k} \xrightarrow{\overline{\partial}} L^{2}_{\phi}(W)^{k+1}.$$

We denote by $\overline{\partial}^*$ the adjoint of $\overline{\partial}$ and also define the operator $\delta_{\omega_j}(\cdot) = e^{\phi} \partial_{\omega_j}(e^{-\phi} \cdot)$. We have

(13)
$$\overline{\partial}^{*}f = -\sum_{|K|=k-1}'\sum_{j=1,\dots,N} e^{-\psi} \delta_{\omega_{j}}(f_{jK})\overline{\omega}_{K} - \sum_{|K|=k-1}'\sum_{j=1,\dots,N} e^{-\psi}f_{jK} \partial_{\omega_{j}}\psi\overline{\omega}_{K} + e^{-\psi}R_{f}$$
$$\overline{\partial}f = \sum_{|J|=k}'\sum_{j=1,\dots,N} \overline{\partial}_{\omega_{j}}(f_{J})\overline{\omega}_{j} \wedge \overline{\omega}_{J} + R_{f},$$

where R_f are errors which involve products of the f_j 's by derivatives of coefficients of the ω_j 's. By means of (13) we then get the following estimate which generalizes [6, (4.2.8)]

$$(14) \quad \sum_{|K|=k-1}' \sum_{ij=1,\dots,N} \int_{W} e^{-\phi} (\delta_{\omega_i}(f_{iK}) \overline{\delta_{\omega_j}(f_{jK})} - \overline{\partial}_{\omega_j}(f_{iK}) \overline{\overline{\partial}_{\omega_i}(f_{jK})}) \, dV + \sum_{|J|=k}' \sum_{j=1,\dots,N} \int_{W} e^{-\phi} (14) |\overline{\partial}_{\omega_j}(f_j)|^2 \, dV \le 3 ||\overline{\partial}^* f||_{\phi-2\psi}^2 + 2||\overline{\partial}f||_{\phi}^2 + c||f||_{\phi}^2 + 3|||\partial\psi|f||_{\phi}^2 + c||f||_{\phi}^2 + c||f||_{\phi$$

where c depends on the sup-norm of the derivatives of the coefficients of the ω_j 's over the support of f. Since these are bounded in $\overline{W} \cap U$ (maybe with a smaller $U' \subset U$), then there is an uniform $c \ \forall f \in C^{\infty}_{c}(W \cap U)^{k}$. We have the commutation relations

(15)
$$[\delta_{\omega_i}, \overline{\partial}_{\omega_j}] = \partial_{\overline{\omega}_j} \partial_{\omega_i} \phi + \sum_b c_{ji}^b \partial_{\omega_b} - \sum_b \overline{c}_{ij}^b \partial_{\overline{\omega}_b} = \phi_{ji} + \sum_b c_{ji}^b \delta_{\omega_b} - \sum_b \overline{c}_{ij}^b \partial_{\overline{\omega}_b},$$

for suitable functions c_{ji}^{b} . We apply (15) to all terms in the first sum on the left of (14) and to the terms with $j \le q$ in the second. We obtain, if f belongs to $C_{c}^{\infty}(W)^{k}$:

$$\sum_{|K|=k-1}' \sum_{ij=1,...,N} + \sum_{|J|=k}' \sum_{j=1,...,N} = \\ = \left(\sum_{|K|=k-1}' \sum_{ij=1,...,N} \int_{\Omega} e^{-\phi} \phi_{ji} f_{iK} \overline{f}_{jK} \, dV - \sum_{|J|=k}' \sum_{j\leq q} \int_{\Omega} e^{-\phi} \phi_{jj} |f_{j}|^{2} \, dV \right) + \\ (16) + \left(\sum_{|J|=k}' \sum_{j\leq q} ||\delta_{\omega_{j}} f_{j}||_{\phi}^{2} + \sum_{|J|=k}' \sum_{j\geq q+1} ||\partial_{\overline{\omega_{j}}} f_{j}||_{\phi}^{2} \right) + \\ + \left(\sum_{|K|=k-1}' \sum_{ij=1,...,N} \int_{S} e^{-\phi} J(\partial_{\omega_{i}} \phi) \overline{n}_{j} f_{iK} \overline{f}_{jK} \, dS - \sum_{|J|=k}' \sum_{j\leq q} \int_{S} e^{-\phi} J(\partial_{\omega_{j}} \phi) \overline{n}_{j} |f_{j}|^{2} \, dS \right) +$$

+ Error ,

where the error term has the estimate

(17)
$$|\text{Error}| \le \left(\sum_{|J|=k}' \sum_{j \le q} ||\delta_{\omega_j} f_J||^2 + \sum_{|J|=k}' \sum_{j \ge q+1} ||\overline{\partial}_{\omega_j} f_J||^2 \right) + c ||f||_{\phi}^2$$

(where *c* depends now also on the second derivatives of the coefficients of the ω_i 's). Note that n' = 0 whence $\sum_{|J|=k}' \sum_{j \leq q} \int_S \cdot dS = 0$. Also, since $n = \frac{\mathcal{J}(\partial \phi)}{|\mathcal{J}(\partial \phi)|}$, then $\sum_{ij=1,\ldots,N} \mathcal{J}(\partial_{\omega_i} \phi) \overline{n}_j f_{iK} \overline{f}_{jK}$ is a square; hence the third term on the right of (16) is positive (thus negligeable). Assume that ϕ satisfies (5) of Theorem 2 on the whole W. Then by (16) we have the estimate:

(18)
$$\sum_{|K|=k-1}' \sum_{ij=1,\dots,N} + \sum_{|J|=k}' \sum_{j=1,\dots,N} \geq \lambda ||f||_{\phi}^2 - c ||f||_{\phi}^2.$$

By plugging together (14) and (18) we get with a new c

(19)
$$\lambda ||f||_{\phi}^{2} \leq 3 ||\overline{\partial}^{*}f||_{\phi-2\psi}^{2} + 2 ||\overline{\partial}f||_{\phi}^{2} + c ||f||_{\phi}^{2} + 3 ||\partial\psi|f||_{\phi}^{2} \quad \forall f \in C_{c}^{\infty}(W)^{k}.$$

We fix now a compact subset $K \subset W$, and choose ψ according to [6, Lemma 4.1.3]; (in particular we can choose $\psi|_K \equiv 0$). This ensures density of C_c^{∞} into L^2 -forms; hence now (19) holds for L^2 instead of C_c^{∞} forms. We assume w.l.o.g. that $K = \{\phi \leq n\}$; we replace the above ϕ by

$$\chi(\phi) + (3+c)|z|^2$$
 ,

where χ is a positive convex function of a real argument t which satisfies:

$$\begin{cases} \chi(t) \equiv 0, & \text{for } t \leq n \\ \dot{\chi}(t) \geq \sup_{\{z:\phi(z) \leq t\}} \frac{3(|\partial \psi|^2 + e^{\psi} - 1)}{\lambda}, & \text{for } t \geq n. \end{cases}$$

Under this choice of ϕ and ψ we conclude, for $k \ge q + 1$,

(20)
$$||f||_{\phi-\psi}^2 \le ||\overline{\partial}^* f||_{\phi-2\psi}^2 + ||\overline{\partial} f||_{\phi}^2 \quad \forall f \in D^k_{\overline{\partial}} \cap D^k_{\overline{\partial}^*},$$

where $D_{\overline{\partial}}^k$ and $D_{\overline{\partial}^*}^k$ are the domains in $L_{\phi}^2(W)^k$ of $\overline{\partial}$ and $\overline{\partial}^*$ respectively. Moreover for any compact subset $K \subset \subset \Omega$, we may choose $\psi|_K \equiv 0$ and $\phi|_K \equiv c|z|^2$ where we still write c instead of 3 + c. Let us point out that the estimate (20), with the additional condition $\phi|_K \equiv c|z|^2$, will be the main ingredient of our proof. Let us recall that it was obtained by assuming that ϕ satisfies (5) on the whole $W \setminus S$.

END OF PROOF OF THEOREM 3 (*ii*). We come back to our wedge W which satisfies (2). We suppose W be locally defined by $-x_1 + h < 0$ and then set $W_{\nu} = \{-x_1 + h < \frac{\eta^{2^{\nu}}}{2}\}$ for $0 < \eta < \frac{1}{2}$. Let U_{ν} (resp. U) be the sphere with center z_o and radius $\rho + \frac{\eta^{2^{\nu}}}{2}$ (resp. ρ) with ρ small. By an easy variant of Theorem 2 (*ii*), the functions $\phi := -\log(-r + \frac{\eta^{2^{\nu}}}{2}) + \lambda |z|^2 + \log(-|z - z_o|^2 + (\rho + \frac{\eta^{2^{\nu}}}{2})^2)$ will be exhaustion functions for the domains $W_{\nu} \cap U_{\nu}$ which satisfy (5) (globally). Thus (20) holds on each $W_{\nu} \cap U_{\nu}$. This easily implies that for $k \ge q + 1$ and for any form $f \in L^2_{c|z|^2}(W_{\nu} \cap U_{\nu})^k$ with $\overline{\partial}f = 0$, there exists $u \in L^2_{c|z|^2}(W_{\nu} \cap U_{\nu})^{k-1}$ such that

(21)
$$(\overline{\partial}u = f, \overline{\partial}^* u = 0) \quad ||u||_{c|z|^2}^2 \le ||f||_{c|z|^2}^2.$$

We note now that

(22)
$$\{z \in \mathbb{C}^N : \operatorname{dist}(z, W) < \eta^{2^{\nu+1}}\} \subset W_{\nu} \subset \left\{z \in \mathbb{C}^N : \operatorname{dist}(z, W) < \frac{\eta^{2^{\nu}}}{2}\right\},$$

(in a neighborhood of z_o). According to [3] we can show that (21) implies, by the aid of (22), that for $k \ge q + 1$, for $f_{\nu} \in C^{\infty}(\overline{W_{\nu} \cap U_{\nu}})^k$ with $\overline{\partial} f_{\nu} = 0$, there is $u_{\nu} \in C^{\infty}(\overline{W_{\nu+1} \cap U_{\nu+1}})^{k-1}$ such that

(23)
$$(\overline{\partial} u_{\nu} = f_{\nu}, \overline{\partial}^* u_{\nu} = 0) \quad ||u_{\nu}||_{(s+1)} \le \frac{M_s}{\eta^{2^{\nu+1}(s+1)}} ||f_{\nu}||_{(s)}$$

(where $||u_{\nu}||_{(s+1)}$ (resp. $||f_{\nu}||_{(s)}$) are the norms in the Sobolev spaces $H^{s+1}(W_{\nu+1} \cap U_{\nu+1})$ (resp. $H^{s}(W_{\nu} \cap U_{\nu})$).

We are ready to conclude. Let $f \in C^{\infty}(\overline{W} \cap U_1)^k$ satisfy $\overline{\partial} f = 0$. Extend f to \tilde{f} such that

However \widetilde{f} is no more $\overline{\partial}$ -closed. To overcome this problem we take a solution h_{ν} on

 $W_{\!\nu+1}\cap U_{\!\nu+1}$ of

$$\left\{ \begin{array}{l} \overline{\partial} h_{\nu} = \overline{\partial} \widetilde{f} \\ \\ || h_{\nu} ||_{(s+1)} \leq M_{s} (\eta^{2^{\nu+1}})^{-s-1} || \overline{\partial} \widetilde{f} \, ||_{(s)} \end{array} \right.$$

provided by (23). Now $\overline{\partial}(\tilde{f} - h_{\nu}) = 0$. We then solve on W_2 the equation $\overline{\partial}g_1 = \tilde{f} - h_1$, and, inductively on $W_{\nu+2} \cap U_{\nu+2}$:

$$\overline{\partial}g_{\nu+1} = h_{\nu} - h_{\nu+1}$$
 ,

with the estimates

$$\begin{split} ||h_{\nu+1}||_{(s+2)} &\leq M_{s+1}(\eta^{2^{\nu+2}})^{-(s+2)} ||h_{\nu} - h_{\nu+1}||_{(s+1)} \leq M_{s}'(\eta^{2^{\nu+2}})^{-2s-3} M_{\kappa} \eta^{r^{2\nu}} \leq \\ &\leq M_{\kappa}' \frac{1}{2^{\nu}} \quad (r, \ \nu \ \text{large} \). \end{split}$$

Therefore $\sum_{\nu=1}^{\infty} g_{\nu}$ converges in $C^{\infty}(\overline{W} \cap U)$ and solves on $\overline{W} \cap U$ the equation:

$$\overline{\partial}\left(\sum_{\nu=1}^{\infty}g_{\nu}\right) = \widetilde{f} - \lim_{\nu}h_{\nu} = \widetilde{f} \quad \Box$$

PROOF OF THEOREM 3 (*i*). We shall prove that if there is an exhaustion function ϕ which satisfies (4) globally on $W \setminus S$, then an estimate of type (20) will still hold. But in this case we shall have $\phi|_K = c|z|^2$, $c = c_K$; *i.e.* c will be no more uniform on compact subsets of \overline{W} . However this suffices for $C^{\infty}(W)$ regularity of $\overline{\partial}$ [5, 6]. We recall (14) and decompose the term in the left side as

$$\sum_{K}' \sum_{ij} \cdot + \sum_{J}' \sum_{j} \cdot = \sum_{K}' \sum_{i \text{ or } j \ge q+1} \cdot + (1-\epsilon) \left(\sum_{K}' \sum_{i,j \le q} \cdot + \sum_{J}' \sum_{j \le q} \cdot \right) + \epsilon \sum_{K}' \sum_{i,j \le q} \cdot + \epsilon \sum_{K}' \sum_{i,j \le q} \cdot + \left(\epsilon \sum_{J}' \sum_{j \le q} \cdot + \sum_{J}' \sum_{j \ge q+1} \cdot \right).$$

We apply (15) to the first term in the right

$$\sum_{K}' \sum_{i \text{ or } j \ge q+1} \cdot = \sum_{K}' \sum_{i \text{ or } j \ge q+1} \int_{W} e^{-\phi} \phi_{ji} \overline{f}_{jK} f_{iK} dV + \sum_{K}' \sum_{i \text{ or } j \ge q+1} \int_{S} e^{-\phi} \mathcal{J}(\partial_{\omega_{i}} \phi) \overline{n}_{j} f_{iK} \overline{f}_{jK} dS + \text{Error}.$$

Note that the projection of $n = \frac{\mathcal{J}(\partial \phi)}{|\mathcal{J}(\partial \phi)|}$ on the plane of $\text{Span}\{\partial_{\omega'}\}$ is 0. Hence the term which involves $\int_{S} \cdot$ is a square. On the other hand if ϕ satisfies (4) we have

$$\sum_{K}' \sum_{i \text{ or } j \ge q+1} \int_{W} e^{-\phi} \phi_{ji} \overline{f}_{jK} f_{iK} \, dV \ge \lambda ||f||_{\phi}^2 \, .$$

We remark now that $(1 - \epsilon)(\cdot)$ equals $||\overline{\partial}'^* f||^2_{\phi} + ||\overline{\partial}' f||^2_{\phi}$ up to a term $|||\partial \psi |f||^2_{\phi} +$ Error. Also if ν is an upper bound for the $|\phi_{ji}|$ for $i, j \leq q$, then $\epsilon(\cdot) \geq -\epsilon\nu ||f||^2_{\phi} +$ $+ \epsilon \sum_{j}' \sum_{ij \leq q} ||\overline{\partial}_{\omega_j} f_j||_{\phi}^2 + \text{Error. Collecting all together:}$

$$(\lambda - \epsilon \nu)||f||_{\phi}^2 \le 3||\overline{\partial}^* f||_{\phi - 2\psi}^2 + 2||\overline{\partial}f||_{\phi}^2 + \epsilon^{-1}c||f||_{\phi}^2 + 4||\partial\psi|f||_{\phi}^2.$$

We then choose $\epsilon = \frac{\lambda}{2\nu}$ and replace ϕ by $\chi(\phi) + 6|z|^2$ where

$$\dot{\chi}(t) \geq \sup_{\{z:\phi(z) \leq t\}} \frac{2}{\lambda} \left(\frac{2\nu c}{\lambda} + 4|\partial \psi| + 3e^{\psi} - 3 \right).$$

This gives the same estimate as (20) (but with no uniform control for ϕ). With this estimate in hands we get existence in L^2 and then gain of one derivative for solutions of the system $(\overline{\partial}, \overline{\partial}^*)$, in the same way as in Theorem 3 (*ii*). This entails existence in C^{∞} .

References

- R.A. AIRAPETYAN G.M. HENKIN, Integral representation of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions. Uspekhi Mat. Nauk., 39 (3), 1984, 39-106.
- [2] A. ANDREOTTI H. GRAUERT, Théorèmes de finitude pour la cohomologie des éspaces complexes. Bull. Soc. Math. France, 90, 1962, 193-259.
- [3] A. DUFRESNOV, Sur l'operateur of et les fonctions différentiables au sens de Whitney. Ann. Inst. Fourier, 29 (1), 1979, 229-238.
- [4] G.M. HENKIN, H. Lewy's equation and analysis on pseudoconvex manifolds (Russian). I. Uspehi Mat. Nauk., 32 (3), 1977, 57-118.
- [5] L. HÖRMANDER, L^2 estimates and existence theorems for the $\overline{\partial}$ operator. Acta Math., 113, 1965, 89-152.
- [6] L. HÖRMANDER, An introduction to complex analysis in several complex variables. Van Nostrand, Princeton N.J. 1966.
- [7] J.J. KOHN, Regularity at the boundary of the ∂-Neumann problem. Proceedings of the National Academy of Sciences of the United States of America, 49, 1963, 206-213.
- [8] V. MICHEL, Sur la regularité C^{∞} du $\overline{\partial}$ au bord d'un domaine de \mathbb{C}^n dont la forme de Levi a exactement s valeurs propres strictement negatives. Math. Ann., 195, 1993, 131-165.
- [9] G. ZAMPIERI, L^2 -estimates with Levi-singular weight, and existence for $\overline{\partial}$. J. d'Analyse Math., 74, 1998, 99-112.
- [10] G. ZAMPIERI, Solvability of $\overline{\partial}$ with C^{∞} regularity up to the boundary on wedges of \mathbb{C}^N . Israel J. of Math., 1999, in press.
- [11] G. ZAMPIERI, C^{∞} solvability of the $\overline{\partial}$ system on wedges of \mathbb{C}^N . Preprint 1998.

Dipartimento di Matematica Università degli Studi di Padova Via Belzoni, 7 - 35131 Padova zampieri@math.unipd.it

Pervenuta il 23 ottobre 1998,

in forma definitiva il 13 maggio 1999.