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Algebra. — A note on Jeu de Taquin. Nota (*) di Rocco Chiriv̀ı, presentata dal
Corrisp. C. De Concini.

Abstract. — A direct formula for jeu de taquin applied to the swap of two rows of standard tableaux is
given. A generalization of this formula to non standard tableaux is used to describe combinatorially a path
basis isomorphism for the algebra of type A‘.

Key words: Jeu de taquin; Skew tableaux; LS paths; Root operators.

Riassunto. — Una nota sul Jeu de Taquin. Otteniamo una formula diretta per il jeu de taquin applicato
allo scambio di due righe di un tableau standard. Una generalizzazione di questa formula ai tableaux non
standard è usata per descrivere, dal punto di vista combinatorio, un isomorfismo di basi di cammini per
l’algebra di tipo A‘.

1. Introduction

In this paper we mainly deal with tableaux consisting of two rows. We are interested
in skew tableaux with shape (m; m) \ (m − n) or shape (m; n), where m; n are positive
integers and m ≥ n. These two shapes can be obtained by swapping the two rows of
their diagrams. In the following figure we see an example for m = 5, n = 3.

In what follows we will describe a lifting of this «swapping» map from diagrams to
(also non standard) tableaux. If T is a skew tableau with two rows of length m; n,
then we write T = R1; R2, and R1 = r1;1r1;2 · · · r1;m, R2 = r2;1r2;2 · · · r2;n. We always
fix the shape of T in the following sense: if m ≥ n then T has shape (m; n) else
T has shape (n; n) \ (n − m). If R1 and R2 are two rows then by R1 ≤ R2 we mean
that in the tableau T = R1; R2 the numbers do not decrease in coloumns from top
to bottom.

Let T = R1; R2 be a standard skew tableau, i.e. R1 ≤ R2 and in the two rows R1

and R2 the numbers increase from left to right, with entries out of {1; : : : ; ‘; ‘ + 1}
of shape (m; m) \ (m − n) with n ≤ m. Schützenberger’s «jeu de taquin» [2, 5] can
be performed step by step to reduce T to a standard tableau T ′ of shape (m; n).
We give here a direct map that avoids this step by step procedure. For T as above,
define H (T ) as the set of (standard) rows R of length n such that R ⊂ R2 (i.e. R

(*) Pervenuta in forma definitiva all’Accademia il 6 luglio 1999.
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is a subrow of R2) and R1 ≤ R . The set H (T ) has a minimum element R2 (see
Proposition 2.1 below). Let R1 = [(R1 ∪ R2) \ R2] be the (standard) row obtained by
reordering the set (R1 ∪ R2) \ R2 (the elements are counted with multiplicity). We have
R1 ≤ R2, i.e. the tableau R1; R2 of shape (m; n) is standard. The main result of Section
2 is the that the tableau R1; R2 equals the tableau T ′ obtained using jeu de taquin
(see Theorem 2.1).

In Section 3 we change a bit our approach. We briefly introduce LS paths and
root operators (see [3, 4]), we give an «interpretation» of rows as integral weights and
an interpretation of tableaux as LS paths for the algebra of type A‘. Next we describe
root operators for tableaux corresponding to root operators for LS paths under the
interpretation. Then we define a generalization of the swapping map to non standard
tableaux. This map combinatorially describes a path isomorphism in terms of tableaux
with two rows (see the Problem 3.1).

In this generalization we introduce the notion of index of two rows. Roughly
speaking the index is a «measure of nonstandardness» for tableaux. Such notion turns
out to be invariant under root operators and under the swapping map. Finally we
consider tableaux with p rows and we define an action of the symmetric group Sp on
these tableaux. This action can be used to define standard tableaux of any shape.

2. Standard tableaux and jeu de taquin

Let T = R1; R2 be a standard tableau of shape (m; m) \ (m − n) with m ≥ n,
R1 = r1;1r1;2 · · · r1;n, R2 = r2;1r2;2 · · · r2;m. We attach to the tableau T the set H (T )
of standard rows R of length n such that R ⊂ R2 and R1 ≤ R . In the next proposition
we see that H (T ) has a minimum element.

Proposition 2.1. Set i1 = min{i | r1;1 ≤ r2;i} and for k = 1; : : : ; n − 1 set ik+1 =

= min{i | r1;k+1 ≤ r2;i; i > ik}. Then R2 = r2;i1
r2;i2

· · · r2;in
is the minimum element of

H (T ). Further if we set R1 = [(R1 ∪ R2) \ R2], then R1 ≤ R2, i.e. the tableau T = R1; R2 of
shape (m; n) is standard.

Proof. Notice that m − n + 1 ∈ {i | r1;1 ≤ r2;i} since T is standard, so i1 is well
defined and i1 ≤ m − n + 1. Hence using induction, i1; : : : ; in are well defined with
ik ≤ m−n + k. Now it is clear that R2 ∈ H (T ) (which is therefore non void). Let R =

= r2;j1
r2;j2

· · · r2;jn
be a row in H (T ) and let h be such that j1 = i1; j2 = i2; : : : ; jh = ih

and jh+1 �= ih+1 (or h = −1 if j1 �= i1). Then r2;jh+1
≥ r1;h+1 forces jh+1 > ih+1. Hence

jh+2 > jh+1, r2;jh+2
≥ r1;h+2 imply in turn jh+2 ≥ ih+2 and so on. This proves the first

statement.
We claim that R1 = r2;1 · · · r2;i1−1r1;1r2;i1+1 · · · r2;i2−1r1;2r2;i2+1 · · · r2;in−1r1;nr2;in+1 · · ·

· · · r2;n. This is clear once we show that the right hand is a standard row, and this
follows from the definition of i1; i2; : : : in.

Finally notice that the standardness of T is clear since ik ≥ k.



a note on jeu de taquin 221

In the figure below we see an example where the boxes of position ik are highlighted.

1 3 4 6 7

2 5 7

Using this proposition we define the swapping map as σ : T �→ T . We define also
j : T �→ j(T ), where j(T ) is the tableau of shape (m; n) obtained from T by applying
the jeu de taquin. The aim of this first section is to prove that j(T ) = σ(T ) for any
standard tableau T . We will use induction on the length of the rows of T and the
following lemma will be useful.

Lemma 2.1. Let T = R1; R2 be a standard tableau of shape (m; m) \ (m − n). Let
σ(T ) = R1; R2, j(T ) = R ′

1; R ′
2 and

S1; S2 = r1;2 · · · r1;n; r2;2 · · · r2;m

S1; S2 = r1;2 · · · r1;n; r2;2 · · · r2;m

S ′
1; S ′

2 = r ′
1;2 · · · r

′
1;n; r ′

2;2 · · · r
′
2;m :

If r2;1 ≥ r1;1 then σ(S1; S2) = S1; S2, j(S1; S2) = S ′
1; S ′

2 and r1;1 = r ′
1;1 = r1;1.

Proof. We have r2;i > r2;1 ≥ r1;1 for i = 2; : : : ; m.
(σ) R1 ⊂ R1 implies r1;1 = r1;1. Now σ(S1; S2) = S1; S2 follows from the definition

of σ.
( j ) Each step of jeu de taquin preserves r1;1 as the first entry of the upper row. Then

r ′
1;1 = r1;1 and j(S1; S2) = S ′

1; S ′
2 follows from the definition.

In the next lemma a sort of «associativity» for σ is proved.

Lemma 2.2. Let T = R1; R2 be a standard skew tableau of shape (m; m) \ (m − n). Let
R1; R2 = σ(T ), R ′

1; R ′
2 = σ(R1; r2;2r2;3 · · · r2;n), R ′′

1 ; R ′′
2 = σ(r ′

1;1 · · · r
′
1;n; r2;1r ′

2;1 · · · r
′
2;n).

If we suppose r1;1 > r2;1 then R2 = R ′′
2 .

Proof. If r ′′
2;1 = r2;1 then r2;1 ≥ r ′

1;1 ≥ r1;1, hence r ′′
2;1 �= r2;1. So R ′′

2 = r ′
2;1 · · · r

′
2;n =

= R ′
2 and using again r1;1 > r2;1 we see R ′

2 = R2.

Finally using the lemmas above we can prove

Theorem 2.1. If T = R1; R2 is a standard skew tableau of shape (m; m) \ (m − n), then
j(T ) = σ(T ).

Proof. If n = 1 or m = n + 1 it is obvious that σ(T ) = j(T ), we need just to use
the definition of σ and j . If r2;1 ≥ r1;1 we can use the Lemma 2.1 and the induction
on n. So we can suppose r2;1 < r1;1.

Now we use induction on m − n. If m − n > 1 then the Lemma 2.2 and the case
m − n = 1 prove the inductive step.
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In the following figure a simple example is treated with jeu de taquin, the highlighted
boxes represent R2.

1 3 4 6 7

2 5 7

1 3

5 72 4

6 7

5 71 2 4

3 6 7

3. The path basis isomorphism

We briefly recall the principal definition of LS paths language in the case A‘ (see
[3] for a general introduction to LS paths).

Let X ⊂ R‘ be the weight lattice of the Lie algebra g of type A‘. We denote
by X + ⊂ X the set of dominant weights, by Π the set of piecewise linear paths
π : [0; 1] −→ X ⊗ Q such that π(0) = 0 and π(1) ∈ X , with π and π′ identified if
π = π′ up to reparametrization. Let Π+ ⊂ Π be the subset of all paths whose image
is contained in the dominant Weyl chamber corresponding to the usual choise (see
[1]) of the simple roots α1; : : : ;α‘ of g. Let ω1; : : : ;ω‘ be the fundamental weights
correspondig to these simple roots.

Let ZΠ be the free Z-module with basis Π. We denote by π1 ∗π2 the concatenation
of the two paths π1 and π2. Taking α to be a simple root, in [3] root operators eα
and fα on Π are introduced. Let A ⊂ EndZ ZΠ be the subalgebra generated by eα, fα.
Denote by Bπ the basis of the A-module Aπ for π ∈ Π+.

This LS paths machinery has allowed a straight generalization of the Littelwood-
Richardson rule. Indeed the same language can be introduced in the more general
setting of symmetrizable Kac-Moody algebras and the following results hold.

Theorem 3.1 [3]. If π ∈ Π+ and π(1) = λ then
∑

η∈Bπ
eη(1) = ch Vλ, where Vλ is the

irreducible g-module of highest weight λ.

Theorem 3.2 [3]. If π1;π2 ∈ Π+ and π(1) = λ = π(2) then Aπ1 and Aπ2 are
A-modules isomorphic via a map extending π1 �→ π2.

Consider now two paths π1, π2 in Π+, define Bπ1 ∗ Bπ2 as the set of all concate-
nations η1 ∗ η2 with η1 ∈ Bπ1 and η2 ∈ Bπ2 and let Mπ1 ∗ Mπ2 be the Z-module
spanned by Bπ1 ∗ Bπ2. This is an A-module and it decomposes in the following way:
Mπ1 ∗ Mπ2 = ⊕A(π1 ∗ η) where the sum is over all η ∈ Bπ2 such that π1 ∗ η ∈ Π+

(see [3]). Then, using the character formula above (Theorem 3.1) we have:

Theorem 3.3 [3]. Let λ1;λ2 ∈ X + and let π1;π2 ∈ Π+ be such that π(1) = λ1,
π2(1) = λ2. Then Vλ1

⊗ Vλ2
= ⊕Vε(1), where the sum is over all LS paths ε = π1 ∗ η ∈ Π+

with η ∈ Bπ2.

Our first aim is to define an «interpretation» of tableaux in terms of paths for g of
type A‘ and to define operators ej , fj on tableaux behaving as e

α
, f

α
for α = αj . Then

we will consider the following problem (see [4]):
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Problem 3.1. Using the theorems above is clear that there exists an A-bijection Bπ
ωm

∗
∗ Bπωn

−→ Bπωn
∗ Bπωm

such that πωm
∗ η ∈ Π+ correspond to πωn

∗ η′ ∈ Π+ where
ωm + η(1) = ωn + η′(1). How can we combinatorially describe this map in terms of tableaux?

We will give an answer to this problem generalizing the jeu de taquin seen in
Section 2. Now we see the definitions of various maps used in the sequel.

Let R = r1 : : : rk be a row with entries out of {1; : : : ; ‘; ‘ + 1} and fix 1 ≤ j ≤ ‘.
Define νj (R) =+ 1 if j ∈ R; j + 1 �∈ R , define νj (R) = 0 if j; j + 1 ∈ R or j; j + 1 �∈ R
and define νj (R) = −1 if j �∈ R; j + 1 ∈ R . By R(κ1; : : : ;κh ←− κ̂1; : : : ; κ̂h)
we mean the row obtained by 1) replacing each occurrence of κ1; : : : ;κh in R with
κ̂1; : : : ; κ̂h and 2) rearranging in non decreasing order the new entries. Now define
sj (R) = R(j; j + 1 ←− j + 1; j) and notice that sj (R) is a standard row if R is a
standard row. Notice also that νj sj (R) = −νj (R), indeed νj can be seen as the «scalar
product» of R and αj and sj is a sort of «symmetry» with respect to αj . This has

a precise meaning once we introduce the map λ : R �→
∑k

i=1(ωri
− ωri−1). We have

(λ(R);αj ) = νj (R) and sαj
λ(R) = λ(sjR).

Now let T = R1; : : : ; Rs be a (skew) tableau with s rows and entries out of
{1; : : : ; ‘; ‘ + 1}. We attach to such a tableau a map hT : {0; : : : ; s} −→ Z defined
as follows

t �→ hT (t ) =
t∑

i=1

νj (Rs−i+1):

Notice that the index s − i + 1 just «reads» the tableau from the bottom to the top.
Now we finally come to the definition of the operator fj on tableaux. Let t0 be the
maximum such that hT (t0) = min hT . If t0 = s define fj (T ) = 0, otherwise define

fj (T ) = R1; : : : ; Rs−t0−1; sj (Rs−t0
); Rs−t0+1; : : : ; Rs :

In the same way, let t1 be the minimum such that hT (t1) = min hT . If t1 = 0 define
ej (T ) = 0, otherwise define

ej (T ) = R1; : : : ; Rs−t1
; sj (Rs−t1+1); Rs−t1+2; : : : ; Rs :

Given any tableau T = R1; : : : ; Rs we define its interpretation as path in the
following way π(T ) = π

λ(Rs )
∗π

λ(Rs−1) ∗ · · · ∗πλ(R1), where for a weight λ, π
λ

is the path
t �→ λt . It is almost obvious that πejT = eαj

πT and that πfjT = fαj
πT , we need just

to use the various definitions of ej , fj and of eαj
, fαj

. Now let see an example.

Example 3.1. Let T be the tableau 1; 123; 45; 135 of shape (4; 4; 2; 2)\ (3; 1; 1)
and let j = 3. This tableau corresponds to the path

π(T ) = πω1−ω2+ω3−ω4+ω5
∗ π−ω3+ω5

∗ πω3
∗ πω1

:

Then h3(T ) is the map (0; 1; 2; 3; 4) �→ (0; 1; 0; 1; 1). Hence t0 = 2 and t1 = 0.
So f3(T ) = 1; 124; 45; 135 and e3(T ) = 0.

In the sequel we will follow the notation introduced in the Problem 3.1 where we
fix n < m. Our first step is to investigate whose tableaux T = R1; R2 correspond to
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paths π
ωm

∗ η ∈ Π+, with η ∈ Bπ
ωn

. Clearly the tableau corresponding to the path π
ωm

is the tableau with just one row R2 = 1 · · ·m. It is evident from the definition of the
map λ that R1 must be of the following type 1 · · · s m + 1 · · · h, for some h and s and
we have π(T ) = πωm

∗ πωh−ωm+ωs
. We call a tableau of this kind a maximal tableau.

Note that just one maximal tableau is standard, namely the tableau T = 1 · · · n; 1 · · ·m.
Now our next step is to extend the map σ of Section 2 to non standard skew

tableaux. Let T = R1; R2 be any such tableau of shape (m; m) \ (m − n) and let t be
any positive integer. We define the following sets

Ht (T ) = {R row of length n | R ⊂ R2; R1 ≤ R2(∞)t}

where by R1(∞)t we mean the row obtained by adding to R1 t -times the new symbol
∞ to the right and declaring r < ∞ for any integer r . Notice that H0(T ) = H (T ) as
already defined in Section 2. But notice also that H0(T ) is void if T is non standard.

Let us see a simple example taking T = 46; 1345. Then H0(T ) = ∅, H1(T ) =

= {14; 15; 34; 35} and for any t ≥ 2 we have Ht (T ) = {xy | x < y with x; y ∈
∈ {1; 3; 4; 5}}.

It is evident that in general Ht (T ) is non void if t � 0 (take t = n) and that
Ht (T ) ⊂ Ht+1(T ).

Now consider the minimum t such that Ht (T ) �= ∅. We call such t the index
of the tableau T and denote it k(T ). Trying to follow what we have already seen in
Section 2 we come to the following proposition

Proposition 3.1. Let T = R1; R2 be a skew tableau of shape (m; m) \ (m − n) and let
k = k(T ) be its index. Set i1 = min{i | r2;i ≥ r1;1; i > k}, i2 = min{i | r2;i ≥ r1;2; i > i1}
and so on till in−k = min{i | r2;i ≥ r1;n−k; i > in−k−1}. Then i1; i2; : : : ; in−k are well
defined and R2 = r2;1r2;2 · · · r2;kr2;i1

· · · r2;in−k
is the minimum element of Hk(T ).

Proof. First notice that k = k(T ) implies r2;m−n+1r2;m−n+2 · · · r2;m ∈ Hk(T ) and
hence i1; : : : ; in−k are well defined. Let R ′ = r ′

1 · · · r
′
n ∈ Hk(T ), then R ′ ⊂ R2 and, for

h = 1; : : : ; n − k, we have r ′
k+h ≥ r1;h . Hence rk+h′ ≥ r2;ih

and so R2 ≤ R ′.

Now we see the main definition and theorem of this section.

Definition 3.1. Let T = R1; R2 be a skew tableau of shape (m; m) \ (m − n) and let
k = k(T ). Define the swapping of T as the tableau σ(T ) = R1; R2 of shape (m; n) with
R2 = min Hk(T ) and R1 = [(R1 ∪ R2) \ R2].

Theorem 3.4.
1. If fj (T ) �= 0 then k(fj (T )) = k(T ), if ej (T ) �= 0 then k(ej (T )) = k(T ),
2. σ(fj (T )) = fj (σ(T )), σ(ej (T )) = ej (σ(T )),
3. if T is maximal then σ(T ) is maximal.

Proof. We will prove 1 and 2 togheter for fj . Then they hold for ei too, since
if fj (T ) �= 0 then ej (fj (T )) = T . Set T ′ = fj (T ) = R ′

1; R ′
2, S = σ(T ) = S1; S2,

S ′ = fj (S ) = S ′
1; S ′

2 and k = k(T ).
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First suppose that fj (T ) = 0. We have to show fj (S ) = 0. We note here, once at
all, that σ preserves the multiplicities of the entries of the tableaux. So we suffice to
exclude the following cases («1» means true, «0» means false):

j∈R1 j+1∈R1 j∈R2 j+1∈R2 j∈S1 j+1∈S1 j∈S2 j+1∈S2

A 0 1 1 0 1 0 0 1
B 1 1 0 0 1 0 0 1
C 0 0 1 1 1 0 0 1

Cases A, B. These are impossible since S2 �⊂ R2.
Case C. Consider S ′

2 = S2{j + 1 ←− j}. S2(∞)k ≥ R1, j + 1 �∈ R1 imply S ′
2(∞)k ≥ R1

and we have also S ′
2 ⊂ R2. So S ′

2 ∈ Hk(T ), S ′
2 � S2. This is impossible since S2 =

= min Hk(T ).
Now suppose that fj (T ) �= 0. We have fj (S ) �= 0 except in the following situation

j∈R1 j+1∈R1 j∈R2 j+1∈R2 j∈S1 j+1∈S1 j∈S2 j+1∈S2

1 0 0 1 0 1 1 0

and this is impossible since S2 �⊂ R2.
Now we have to prove fj (S ) = σ(T ′). In the following table we have listed all the

possibilities of j; j + 1 in T and in S taking into account the multiplicities invariance
and that S2 ⊂ R2 («x» means true or false, and has a fixed value for each line).

j∈R1 j+1∈R1 j∈R2 j+1∈R2 j∈S1 j+1∈S1 j∈S2 j+1∈S2

A x 0 1 0 x 0 1 0
B 0 0 1 0 1 0 0 0
C 1 1 1 0 1 1 1 0
D 1 0 x x 1 0 x x
E 1 0 1 1 1 1 1 0
F 1 0 0 1 1 0 0 1

Notation: if S is a standard row we write

S =

{
sj (S ) = S{j ←− j + 1} if νj (S ) =+ 1

S otherwise

S =

{
sj (S ) = S{j + 1 ←− j} if νj (S ) = −1

S otherwise.

Note that S and S are still standard rows, that S ≥ S , S ≤ S , (S ) = S = (S ). Moreover
is easy to see that S ≥ T implies S ≥ T , S ≥ T . In cases A, B, C, D, E we procede
in this way. We prove

S ∈ Hk(T ) ⇒ S ∈ Hk(T ′)

S ∈ Hk(T ′) ⇒ S ∈ Hk(T )
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for any k. This implies that k(T ′) = k(T ). Then, using min Hk(T ′) = S2, we suffice
to verify that S ′

2 = S2.

Case A.
We have R ′

1 = R1, R ′
2 = R2{j ←− j + 1}, S ′

1 = S1 and S ′
2 = S2{j ←− j + 1}.

Let S ∈ Hk(T ), then S (∞)k ≥ R1 ⇒ S (∞)k ≥ R ′
1 = R1. Moreover if νj (S ) =+ 1

then S = S{j ←− j + 1} ⊂ R ′
2 = R2{j ←− j + 1} since S2 ⊂ R2. Otherwise if

νj (S ) �=+ 1 then j �∈ S since j + 1 �∈ R2, S ⊂ R2. So S = S ⊂ R ′
2. In any case

S ∈ Hk(T ′).
Let S ∈ Hk(T ′). Suppose νj (S ) = −1, so we have j �∈ S , j + 1 ∈ S . Then

S (∞)k ≥ R1 = R ′
1 since S (∞)k ≥ R ′

1 and j + 1 �∈ R ′
1. Moreover S ⊂ R ′

2 = R2 since
S ⊂ R ′

2. So S ∈ Hk(R1; R2).
Suppose νj (S ) �= −1, so we have S (∞)k = S (∞)k ≥ R1 = R ′

1. Further S ⊂ R ′
2 implies

j �∈ S , so j + 1 �∈ S too, hence S = S ⊂ R2 and S ∈ Hk(T ).
Till now we have proved that k(T ′) = k(T ). But we have also S2 = S2{j ←− j +

+ 1} = S ′
2 and this complete this case.

Case B.
We have R ′

1 = R1, R ′
2 = R2{j ←− j + 1}, S ′

1 = S1{j ←− j + 1} and S ′
2 = S2.

Let S ∈ Hk(T ). We have S (∞)k ≥ R1 that implies S (∞)k ≥ S (∞)k ≥ R1 = R1 = R ′
1.

If νj (S ) =+ 1 then S ⊂ R2 since S ⊂ R2. Otherwise if νj (S ) �= 0 then j �∈ S since

S ⊂ R2 forces j + 1 �∈ S . So S = S ⊂ R ′
2 and hence S ∈ Hk(T ).

Let S ∈ Hk(T ′). Suppose νj (S ) = −1. We have j �∈ S , j + 1 ∈ S . Further

S (∞)k ≥ R1 = R ′
1 since S (∞)k ≥ R ′

1 and j + 1 �∈ R1. We have also S ⊂ R ′
2 = R2 since

S ⊂ R ′
2. So we deduce S ∈ Hk(T ).

Suppose νj (S ) = −1. We have S (∞)k = S (∞)k ≥ R1 = R ′
1 since S (∞)k ≥ R ′

1. Moreover
S ⊂ R ′

2 implies j �∈ S and so j + 1 �∈ S too since νj (S ) �= −1. So S = S ⊂ R ′
2 = R2.

Hence we have S ∈ Hk(T ).
This proves k(T ′) = k(T ) and then this case is proved since S2 = S2 = S ′

2.

Case C, D, E.
These cases are very similar to the previous ones (or more easy) so the details are
omitted.

Case F.
In this case we claim that Hk(T ) = Hk(T ′) for any k. Let S ∈ Hk(T ). We have
S (∞)k ≥ R1 hence S (∞)k ≥ R1 = R ′

1. But S ⊂ R2 implies j �∈ R2 and hence S = S .
Further it is clear that S ⊂ R ′

2 = R2. So we deduce S ∈ Hk(T ′).
Let S ∈ Hk(T ). We have S (∞)k ≥ R ′

1 > R1 and S ⊂ R2 = R ′
2. So it is clear that

S ∈ Hk(T ).
This proves our claim and also that k(T ) = k(T ′). So min Hk(T ′)(T

′) = min Hk(T )(T ) =

= S2 = S ′
2 and hence σ(T ′) = S ′.

This finish the proof of statement 1 and 2.
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The statement 3 is very easy since we can directly compute T and σ(T ) in the case
T maximal. Let T = 1 2 · · ·m−1 m; 1 2 · · · s−1 s m + 1 m + 2 · · · h−1 h. Hence
k(T ) = n − s and we have min Hk(T )(T ) = 1 2 · · · n − 1 n using the Proposition 3.1.
So for multiplicity reason we have σ(T ) = 1 2 · · · n − 1 n; 1 2 · · · s − 1 s n +

+ 1 n + 2 · · · h − 1 h and this tableau is maximal. So the proof of the theorem is
complete.

Corollary 3.1. The map σ is invertible.

Proof. This is clear since it is invertible on maximal tableaux using the computation
in the proof of the statement 3 of the theorem above.

It is possible to define a more symmetric form of σ. If T = R1; R2 then we
have σ(T ) = max Gk(T ); min Hk(T ) where k = k(T ), for t ≥ 0 we define Ht (T )
as above and Gt (T ) is the set of all rows R of length m such that R ⊃ R1 and
R ≤ R2(∞)t . Moreover the index of T can also be defined as the minimum t such that
Gt (T ) �= ∅. This kind of formulas can be used to define σ−1 too: if S = S1; S2 has
shape (m; n) then σ−1(S ) = max Gk(S ); min Hk(S ) where for t ≥ 0 we define Gt (S ) =

= {R row of length n | R ⊂ R1; R ≤ R2(∞)t} and Ht (S ) = {R row of length m | R ⊃
⊃ R2; R1 ≤ R(∞)t} and where k = k(S ) is the index of S defined as the minimum t
such that Ht (S ) �= ∅. Also in this case k(S ) is the minimum t such that Gt (S ) �= ∅ as
well.

Corollary 3.2. The index is invariant under the swap map.

Proof. The computation in the proof of statement 3 of the theorem above gives
k(σ(T )) = k(T ) for T maximal. Now for general T it suffices to use the statement 1
and 2.

Corollary 3.3. The map T �→ σ(T ) combinatorially describes the path isomorphism
Bπ

ωn
∗ Bπ

ωm
−→ Bπ

ωm
∗ Bπ

ωn
of Problem 3:1.

The following corollary gives the answer for a generalization of Problem 3.1 to path
basis of type Bπωn1

∗ · · · ∗ Bπωnp
.

Corollary 3.4. Consider the set of tableaux T = R1; : : : ; Rp with p rows and define the
following maps

τi(T ) = R1; : : : Ri−1; Si; Si+1; Ri+2; : : : ; Rp

where 1 ≤ i ≤ n − 1 and (Si; Si+1) = σ(Ri; Ri+1). Then the maps τi define an A-action of
the group Sp of permutations of p symbols.

Proof. That the τi define an action can be seen looking at the swapping of maximal
tableaux with three rows. That this action commutes with root operators ej , fj is an
easy consequence of the theorem above.
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This corollary can be used to describe standard tableaux of any shape. Let T =

= R1; : : : ; Rp be a tableau with rows of length n1; : : : ; np such that Ri ≤ Ri+1 for
i = 1; : : : ; p − 1. We call such tableaux weak standard. Let σ ∈ Sp be a permutation
such that σ(ni) ≥ σ(ni+1) for i = 1; : : : ; p − 1. Then we say that T is standard if
σ(T ) is standard in the usual sense. It is known that T is standard if and only if τ (T )
is weak standard for all permuations τ (see [4]).
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