ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

Olivia Rossi-Doria

A $\mathcal{U}_q(\mathfrak{sl}(2))$ -representation with no quantum symmetric algebra

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. **10** (1999), n.1, p. 5–9. Accademia Nazionale dei Lincei

Recademia Nazionale del Emeer

<http://www.bdim.eu/item?id=RLIN_1999_9_10_1_5_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1999.

Algebra. — A $U_q(\mathfrak{sl}(2))$ -representation with no quantum symmetric algebra. Nota (*) di Olivia Rossi-Doria, presentata dal Corrisp. C. De Concini.

ABSTRACT. — We show by explicit calculations in the particular case of the 4-dimensional irreducible representation of $\mathcal{U}_q(\mathfrak{sl}(2))$ that it is not always possible to generalize to the quantum case the notion of symmetric algebra of a Lie algebra representation.

KEY WORDS: Quantized enveloping algebra; Representation; Symmetric algebra.

RIASSUNTO. — Una rappresentazione di $U_q(\mathfrak{sl}(2))$ che non ha algebra simmetrica quantica. Si dimostra, mediante calcoli espliciti per la rappresentazione irriducibile di dimensione 4 di $U_q(\mathfrak{sl}(2))$, che non è sempre possibile generalizzare al caso quantico la nozione di algebra simmetrica di una rappresentazione di un'algebra di Lie.

1. Preliminaries

The quantized enveloping algebra $\mathcal{U}_q(\mathfrak{g})$ was introduced by Drinfeld and Jimbo in [1, 2] and [3]. Refer to these papers for the general definition and to Rosso [6] for the representation theory of finite dimensional $\mathcal{U}_q(\mathfrak{g})$ -modules. As for the quantized enveloping algebra $\mathcal{U}_q(\mathfrak{sl}(2))$, recall that it is the Hopf algebra over $\mathbb{C}(q)$ generated by $E, F, K^{\pm 1}$ with the following relations

(1.1)
$$KEK^{-1} = q^{2}E$$
$$KFK^{-1} = q^{-2}F$$
$$[E, F] = \frac{K - K^{-1}}{q - q^{-1}}$$

with comultiplication Δ , antipode S and counit ε given by

(1.2)

$$\Delta(E) = E \otimes 1 + K \otimes E$$

$$\Delta(F) = F \otimes K^{-1} + 1 \otimes F$$

$$\Delta(K) = K \otimes K$$

$$S(E) = -K^{-1}E$$

$$S(F) = -FK$$

$$S(K) = K^{-1}$$

(1.4)
$$\varepsilon(E) = \varepsilon(F) = 0$$

 $\varepsilon(K) = 1$.

(*) Pervenuta in forma definitiva all'Accademia il 23 ottobre 1998.

The results about finite dimensional representation of $U_q(\mathfrak{sl}(2))$ are completely analogous to those for the enveloping algebra $\mathcal{U}(\mathfrak{sl}(2))$. In particular one has the following

THEOREM 1. (1) Let V be an irreducible representation of $\mathcal{U}_q(\mathfrak{sl}(2))$. Then the action of both E and F on V is nilpotent, dim(ker E) = dim(ker F) = 1. For any vector $v \in \ker E$, $Kv = \varepsilon q^n v$ with $\varepsilon = \pm 1$ and n the non negative integer such that dim(V) = n + 1. The pair (ε , n) is called the highest weight of V.

(2) Given a pair (ε , n), with ε as above and n a non negative integer, there exists, up to isomorphism, a unique irreducible representation $V_{(\varepsilon,n)}$ of highest weight (ε , n).

For the proof see [6] or for example [4, Theorem VI.3.5]. In what follows for the representations of $\mathcal{U}_{a}(\mathfrak{sl}(2))$ let V_{n} for $V_{(1,n)}$.

2. The quantum symmetric algebra

We want to give a definition of a quantum analogue of the symmetric algebra of a Lie algebra representation.

Let's start with the classical case. For a representation V of $\mathcal{U}(\mathfrak{g})$ the symmetric algebra S(V) is the quotient of the tensor algebra T(V) by the ideal generated by the antisymmetric component $\Lambda^2(V)$ of the tensor product representation $V \otimes V$. This is exactly the polynomial algebra in the classes x_1, \ldots, x_n of the basis vectors v_1, \ldots, v_n for V. Since $\Lambda^2(V)$ is a submodule of $V \otimes V$ the Hopf algebra action of $\mathcal{U}(\mathfrak{g})$ on the tensor algebra transfers to the quotient algebra S(V). There is a natural way to characterize the elements of $\Lambda^2(V)$. Since $\mathcal{U}(\mathfrak{g})$ is cocommutative the involutive automorphism σ of $V \otimes V$, given by the switch of the two tensor factors, commutes with the action of $\mathcal{U}(\mathfrak{g})$ on $V \otimes V$. Therefore $V \otimes V$ decomposes as a representation of $\mathcal{U}(\mathfrak{g})$ in two subrepresentation of eigenvalues ± 1 for σ . The antisymmetric tensors are the eigenvectors of eigenvalue -1, while the symmetric tensors are the eigenvectors of eigenvalue +1.

Now for a representation V of the quantum group $\mathcal{U}_q(\mathfrak{g})$ associated to the Lie algebra \mathfrak{g} we define

DEFINITION 2. The quantum symmetric algebra $S_q(V)$ of V is a \mathbb{Z}^+ -graded algebra over $\mathbb{C}(q)$ with a graded $\mathbb{C}[q, q^{-1}]$ -subalgebra $\overline{S_q(V)}$ such that

(1) the degree-one part of $S_a(V)$ is V;

(2) $\overline{S_q(V)}$ is free as a graded $\mathbb{C}[q, q^{-1}]$ -module and in each degree has the same dimension of the polynomial algebra in dim V variables;

(3) the natural map $\overline{S_q(V)} \bigotimes_{\mathbb{C}[q,q^{-1}]} \mathbb{C}(q) \to S_q(V)$ is an isomorphism;

(4) $\overline{S_q(V)}/(q-1)$ is the classical symmetric algebra of the $U(\mathfrak{g})$ -representation corresponding to V, i.e. the polynomial algebra over \mathbb{C} in dim V variables;

(5) there is an Hopf algebra action of $\mathcal{U}_q(\mathfrak{g})$ on the algebra $S_q(V)$ such that an integral form of $\mathcal{U}_q(\mathfrak{g})$ acts on $\overline{S_q(V)}$ inducing the usual action of $\mathcal{U}(\mathfrak{g})$ on the symmetric algebra $\overline{S_q(V)}/(q-1)$.

In order to satisfy condition (5) we have to consider the quotient of the tensor algebra T(V) modulo the ideal generated by the $\mathcal{U}_q(\mathfrak{g})$ -submodule of $V \otimes V$ corresponding to the antisymmetric component in the classical case.

The composition R of the R-matrix with the switch σ of the two tensor factors plays in the quantum case the role of σ and commutes with the action of $\mathcal{U}_q(\mathfrak{g})$ on $V \otimes V$, which therefore decomposes into irreducible submodules that are eigenspaces for \check{R} . More precisely

PROPOSITION 2 [5, (1.38)]. Let $V = U^{\lambda}$ be the irreducible module with highest weight λ for $\mathcal{U}_{a}(\mathfrak{g})$. Then \check{R} satisfies the equation

$$\prod_{\nu} \left(\check{R} \pm q^{\frac{1}{2}(\nu,\nu+2\rho)-(\lambda,\lambda+2\rho)} \right) = 0$$

where ν ranges over the irreducible summands U^{ν} of $V \otimes V$ and ρ is half the sum of the positive roots. The sign is positive for the U^{ν} corresponding to the antisymmetric summands and negative for the U^{ν} corresponding to the symmetric summands.

As a consequence, for an irreducible representation V, we need to take the quotient of the tensor algebra T(V) by the ideal generated by the eigenvectors for \hat{R} of eigenvalues with negative sign, although it is not necessarily true that this verifies all the requested properties for $S_q(V)$. On the contrary we shall give in the next section a counterexample to the existence of the quantum symmetric algebra.

3. The counterexample

Let's consider the irreducible n + 1-dimensional representation of $U_q(\mathfrak{sl}(2))$. There is a quantum version of the classical Clebsch-Gordan formula. It gives the decomposition $V_n \otimes V_n \simeq V_{2n} \oplus V_{2n-2} \oplus \cdots \oplus V_0$ into irreducible summands. It is easy to check from the formula for a highest weight vector of V_{2n-2p} (cf. [4, Chapter VII])

(3.1)
$$v^{(2n-2p)} = \sum_{i=0}^{p} (-1)^{i} \frac{[p]! [n-p+i]! [n-i]!}{[p-i]! [i]! [n]! [n-p]!} q^{i(n-i+1)} v_{i} \otimes v_{p-i}$$

where $v_i = F^i v_0$ and v_0 is the highest weight vector for V_n , that the V_{2n-2p} with odd p are the ones with negative eigenvalues for \mathring{R} . In the case of V_3 the tensor product $V_3 \otimes V_3$ decomposes into irreducible summands $V_6 \oplus V_4 \oplus V_2 \oplus V_0$, and V_4 and V_0 generate the ideal of relations for the quantum symmetric algebra, if it exists. A basis of V_4 is given by the 2-tensors

$$v_{0} \otimes v_{1} - q^{3} v_{1} \otimes v_{0}$$

$$v_{0} \otimes v_{2} + (q^{-1} - q^{3}) v_{1} \otimes v_{1} - v_{2} \otimes v_{0}$$
(3.2)
$$v_{0} \otimes v_{3} + (q^{-1} + q - q^{3}) v_{1} \otimes v_{2} + (q^{-2} - 1 - q^{2}) v_{2} \otimes v_{1} - q^{-3} v_{3} \otimes v_{0}$$

$$(q + q^{-1}) v_{1} \otimes v_{3} + (q^{-2} - q^{4}) v_{2} \otimes v_{2} - (q + q^{-1}) v_{3} \otimes v_{1}$$

$$(q^{2} + q^{-2}) v_{2} \otimes v_{3} - (q + q^{5}) v_{3} \otimes v_{2}$$

and V_0 has generator given by $v_0 \otimes v_3 - q^3 v_1 \otimes v_2 + q^4 v_2 \otimes v_1 - q^3 v_3 \otimes v_0$. It follows that the quotient algebra is generated on $\mathbb{C}(q)$ by x_0 , x_1 , x_2 , x_3 with the following commutation relations:

$$x_{1}x_{0} = q^{-3}x_{0}x_{1}$$

$$x_{2}x_{0} = x_{0}x_{2} + (q^{-1} - q^{3})x_{1}^{2}$$

$$x_{2}x_{1} = \frac{1 + q^{2} + q^{4} - q^{6}}{q^{3}(q^{2} + 1)}x_{1}x_{2} + \frac{q^{3} - q^{-3}}{q^{3}(q^{2} + 1)}x_{0}x_{3}$$

$$x_{3}x_{0} = \frac{q^{4} + q^{2} + 1 - q^{-2}}{q^{3}(q^{2} + 1)}x_{0}x_{3} + \frac{1 - q^{6}}{q^{2}(q^{2} + 1)}x_{1}x_{2}$$

$$x_{3}x_{1} = x_{1}x_{3} + \frac{1 - q^{6}}{q(q^{2} + 1)}x_{2}^{2}$$

$$x_{3}x_{2} = q^{-3}x_{2}x_{3}.$$
(3.3)

Now it is not difficult to see that this algebra does not satisfy the property (2) of the definition of the quantum symmetric algebra for V_3 . Let's take the monomial $x_2x_1x_0$ and write it in terms of ordered monomials. There are two ways of doing it and they give different results. We obtain

(3.4)
$$x_2 x_1 x_0 = \frac{(q^6 - 1)}{q^9 (q^2 + 1)} x_0^2 x_3 + \frac{(1 + q^2 + q^4 - q^6)}{q^6 (q^2 + 1)} x_0 x_1 x_2 + \frac{(1 - q^4)}{q^4} x_1^3 ,$$

if we commute first x_1 with x_0 , and

$$(3.5) \quad x_2 x_1 x_0 = \frac{(q^6 - 1)(q^4 + q^2 + 1 - q^{-2})}{q^9 (q^2 + 1)^2} x_0^2 x_3 + \\ + \frac{-1 + q^2 + 2q^4 + 4q^6 - q^{10} - q^{12}}{q^8 (q^2 + 1)^2} x_0 x_1 x_2 + \frac{(1 + q^2 + q^4 - q^6)(1 - q^4)}{q^4 (q^2 + 1)} x_1^3$$

if we start commuting x_2 with x_1 .

Then we find the following linear dependence relation on $\mathbb{C}(q)$ between ordered monomials of degree 3

(3.6)
$$\frac{(q^6-1)^2}{q^{11}(q^2+1)^2}x_0^2x_3 - \frac{(q^6-1)^2}{q^8(q^2+1)^2}x_0x_1x_2 + (q^2-1)^2x_1^3 = 0$$

REMARK. Clearly for q = 1 this is an empty relation.

As a consequence of relation (3.6) the dimension of the degree-three component is less than the dimension of the degree-three component of the polynomial algebra in four variables. We have then finally proved the following

THEOREM 3. For $\mathcal{U}_q(\mathfrak{g}) = \mathcal{U}_q(\mathfrak{sl}(2))$ and $V = V_3$ the quantum symmetric algebra $S_q(V)$ does not exist.

Acknowledgements

I would like to thank Professor Corrado De Concini for calling my attention to the problem and encouraging me to write this *Note*.

References

- [1] V. G. DRINFELD, Hopf algebras and quantum Yang-Baxter equation. Soviet. Math. Dokl., 32, 1985, 254-258.
- [2] V. G. DRINFELD, Quantum groups. Proc. ICM, Berkeley 1986, 1, 798-820.
- [3] M. JIMBO, A q-difference analogue of $U(\mathfrak{g})$ and the Yang-Baxter equation. Lett. Math. Phys., 10, 1985, 63-69.
- [4] C. KASSEL, Quantum groups. Graduate Texts in Math., vol. 155, Springer-Verlag, New York 1995.
- [5] N. YU. RESHETIKHIN, Quantized universal enveloping algebra, the Yang-Baxter equation and invariants of links I. LOMI, preprint 1987, no. E-4-87.
- [6] M. Rosso, Finite-dimensional representations of the quantum analogue of the enveloping algebra of a complex simple Lie algebra. Comm. Math. Phys., 117, 1988, 581-593.

Pervenuta il 28 luglio 1998,

Dipartimento di Matematica Università degli Studi di Roma «La Sapienza» Piazzale Aldo Moro, 5 - 00185 Roma

in forma definitiva il 23 ottobre 1998.